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Abstract
The family of the multivariate conditional hazard rate functions often reveals to be a con-
venient tool to describe the joint probability distribution of a vector of non-negative ran-
dom variables (lifetimes) in the absolutely continuous case. Such a tool can have in par-
ticular an important role in the study of the behavior of the minima among inter-dependent 
lifetimes. In this paper we introduce the concept of reversed multivariate conditional haz-
ard rate functions, which extends the one-dimensional notion of reversed hazard rate of a 
single non-negative random variable. Several basic properties of this concept are proven. 
In particular, we point out a related role in the study of the behavior of the maximum 
value among inter-dependent lifetimes. In different applied fields, and in particular in the 
reliability literature, a remarkable class of dependence models for vectors of lifetimes is 
related with the load-sharing condition, which can be defined in terms of the multivariate  
conditional hazard rate functions. In the paper we define the class of reversed load- 
sharing models, which can be seen as natural extensions to the multivariate case of the 
univariate inverse exponential distributions. We analyze basic properties of such a class 
of dependence models. In particular we show a result related to the study of the inactiv-
ity time of a coherent system when the joint distribution of the components’ lifetimes is a 
reversed load-sharing model.
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1  Introduction

For a non-negative and absolutely continuous random variable X, the probability density func-
tion f, the cumulative distribution function F, and the survival function F are three equivalent 
ways to describe the probability distribution. Alternative tools for such a description are also 
the hazard rate and the reversed hazard rate of X, denoted by r(x) and q(x) respectively. See 
e.g. Barlow and Proschan (1996) and Chandra and Roy (2001) for details. The latter func-
tions have many key applications in different applied fields. In a sense, the reversed hazard 
rate function q(x) is the dual of the hazard rate function and it bears some interesting features 
useful in reliability analysis; see Block et al. (1998) and Finkelstein (2002). In particular, it is 
useful in the analysis of inactivity times.

For x such that F(x) > 0 , the reversed hazard rate at x of X is defined by

When X denotes the lifetime of a unit U, the function q(x) can be interpreted as the rate of 
instantaneous failure of U occurring immediately before the time-point x, given that U has not 
survived the age x.

The integrated past intensity function Q is defined by

In terms of q and Q, the other characteristics of the distribution of X are given by

So far we have considered the case when X is a scalar random variable. Also, when we deal 
with a family of independent scalar random variables with absolutely continuous distribu-
tions, the family of the corresponding hazard rate or of the reversed hazard rate functions is 
sufficient to describe the joint distribution of them.

As it is well known, in the case of non-negative random variables -which are not independ-
ent but still have an absolutely continuous joint distribution- such distribution can be rather 
described in terms of the so called multivariate conditional hazard rate functions (m.c.h.r.); 
see, for instance, Shaked and Shanthikumar (1990, 2015) and Spizzichino (2018).

Let X1,… ,Xn be non-negative random variables with an absolutely continuous joint dis-
tribution. For a fixed index j ∈ [n] = {1,… , n} and I = {i1,… , ik} ⊂ [n] with j ∉ I , and an 
ordered sequence 0 ≤ t1 ≤ ⋯ ≤ tk , the m.c.h.r. function �j(t|I;t1,… , tk) is defined as follows:

q(x) ∶= lim
Δx→0+

ℙ(x − Δx < X ≤ x|X ≤ x)

Δx

=
1

F(x)
lim

Δx→0+

ℙ(x − Δx < X ≤ x)

Δx
=

f (x)

F(x)
.

Q(x) ∶= ∫
+∞

x

q(s)ds.

F(t) = e−Q(t), f (t) = q(t)e−Q(t),

r(x) =
q(t)e−Q(t)

1 − e−Q(t)
.

𝜆j(t|I;t1,… , tk) ∶= lim
Δt→0+

1

Δt
ℙ

(
Xj ≤ t + Δt

||||
Xi1

= t1,… ,Xik
= tk, min

h∉I
Xh > t

)
.
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Furthermore, we use the notation

The main purpose of this paper is to introduce a concept of multivariate conditional 
reversed hazard rate function. In this respect a family of functions �j(t|I;t1,… , tk) and 
�j(t|�) will be suitably defined in the next section. On this purpose we will both follow 
the analogy with the definition of the function q in the scalar case, on one side, and the 
analogy with the above definition of the m.c.h.r. functions for the multivariate case, on the 
other side.

Several results based on the family of the � ’s can be obtained by following the anal-
ogy with results presented in the literature concerning the family of the �’s. In particular, 
the recent paper De Santis et  al. (2020) has pointed out a natural role of the functions 
�1(t|�), �2(t|�),… , �n(t|�) in the study of the minimum X1∶n among dependent variables. 
In this paper we show an analogous role of �j(t|�) , j = 1,… , n , in the study of the maxi-
mum Xn∶n.

A further purpose of the paper is to introduce a concept of reversed time-homogeneous 
load-sharing models. The latter can be introduced in a natural way starting from the so-
called time-homogeneous load-sharing models, a particular class of dependence models for 
the lifetimes X1,… ,Xn (see Spizzichino (2018)).

More precisely the structure of the paper is as follows. After presenting the definition 
of the multivariate conditional reversed hazard rate functions, in Section 2 we study some 
related properties and show, in particular, how the functions �j(t|�) ’s emerge in the study 
of the maximum order statistic Xn;n (see Proposition 2). We also show how two families 
{�j(t|I, �)} and {�j(t|I, �)} can be connected each other. As natural generalizations of the joint 
distributions of several independent variables marginally distributed according to inverse 
exponential distributions, in Section 3 we introduce and study reversed time-homogeneous 
load-sharing models. In this context, a relation will be shown between the class formed 
by those dependence models and the one of the (ordinary) time-homogeneous load-sharing 
models. Some properties related with reliability issues and distributions of inactivity times 
will be analyzed in the second part of the section. The paper concludes with a section con-
taining a brief discussion and a few hints concerning future work.

2 � Multivariate Conditional Reversed Hazard Rates and Related 
Properties

Let us consider a vector of n non-negative random variables X1,… ,Xn defined on the same 
probability space (Ω,F,ℙ) . We assume that the joint probability distribution of X1,… ,Xn 
is absolutely continuous and so ties among X1,… ,Xn have probability zero (see formula 
(1) below). In the following definition, for any fixed positive number t, the set I must be 
interpreted as the set of indices associated to the variables which take values greater than t. 
Correspondingly, Ĩ is the set of indices of the variables which take values less than or equal 
to t, so that Ĩ is the complementary set of I in [n].

𝜆j(t|�) ∶= lim
Δt→0+

1

Δt
ℙ

(
Xj ≤ t + Δt

||||
min
h∈[n]

Xh > t

)

= lim
Δt→0+

1

Δt
ℙ
(
Xj ≤ t + Δt||X1∶n > t

)
.
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Definition 1  For a fixed index j ∈ [n] , a vector (i1,… , ik) where i1 ≠ ⋯ ≠ ik ∈ [n] , let us 
set I ≡ {i1,… , ik} ⊂ [n] . For j ∉ I and an ordered sequence 0 ≤ t ≤ tk ≤ ⋯ ≤ t1 the mul-
tivariate conditional reversed hazard rate (m.c.r.h.r.) function �j(t|I;t1,… , tk) is defined as 
follows:

Furthermore, we use the notation

Occasionally, when necessary to distinguish between different vectors of lifetimes, 
we shall use a notation of the form � (�)

j
(t|�), �(�)

j
(t|�) in place of �j(t|�), �j(t|�) and 

�
(�)

j
(t|I;t1,… , tk), �

(�)

j
(t|I;t1,… , tk) in place of �j(t|I;t1,… , tk) , �j(t|I;t1,… , tk).

Remark 1  In the case when X1,… ,Xn are independent, �j(t|I) , for j = 1,… , n, does not 
depend on I. Actually, in this case, �j(t|I) coincides with the classical, univariate, reversed 
hazard rate function qj(x) of Xj.

Remark 2  We remind that one can give formulas that express the joint density function 
in terms of m.c.h.r. functions and viceversa. An analogous equivalence can also be estab-
lished for m.c.r.h.r. functions.

The information contained in the family of the m.c.r.h.r. functions allows us to ana-
lyze different type of properties of the order statistics X1∶n,… ,Xn∶n of n random vari-
ables X1,X2,… ,Xn . In passing, we observe that the assumption of absolute continuity, 
in view of the implied condition of no-tie, guarantees the property

In particular, the knowledge of the m.c.r.h.r. functions is relevant when studying the behav-
iour of the maximum order statistic Xn∶n (see Proposition 2 below). Such a result can 
have different types of applications in view of the special role of the statistic Xn∶n in many 
applied fields.

We respectively denote by k(n),K(n),F(n), f(n) , the past intensity function, i.e., the 
reversed hazard rate function, the integrated past intensity function, the distribution 
function and the probability density function of Xn∶n . Namely

𝜏j(t|I;t1,… , tk) = lim
Δt→0+

1

Δt
ℙ

(
Xj ≥ t − Δt

||||
Xi1

= t1,… ,Xik
= tk, max

h∈Ĩ
Xh ≤ t

)
.

�j(t|�) = lim
Δt→0+

1

Δt
ℙ

(
Xj ≥ t − Δt

||||
max
h∈[n]

Xh ≤ t

)

= lim
Δt→0+

1

Δt
ℙ
(
Xj ≥ t − Δt||Xn∶n ≤ t

)
.

(1)P
(
X1∶n < … < Xn∶n

)
= 1.

(2)

k(n)(t) = lim
Δt→0+

1

Δt
ℙ
(
Xn∶n ≥ t − Δt||Xn∶n ≤ t

)

K(n)(t) = �
+∞

t

k(n)(s)ds

F(n)(t) = e−K(n)(t)

f(n)(t) = k(n)(t)e
−K(n)(t)
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For illustrative purposes, we can consider the i.i.d. exponential case. In this case, the previ-
ous relations reduce to

In view of the assumption of absolute continuity and following the analogy with the defini-
tion of multivariate conditional hazard rate functions, we can define the following limits for 
j = 1,… , n

and we notice that

Let us prove that

In fact,

By taking into account (4) and (5), and by performing an integration from t to +∞ we 
immediately get

Proposition 1  For any t ≥ 0 we have

The role of the functions �1(t|�),… , �n(t|�) in the study of the properties of the statistic 
Xn∶n is described by the following result

Proposition 2  For any t ≥ 0 and j = 1,… , n , we have

Proof  Taking into account (2), (3) and (5) we obtain

k(n)(t) =
�ne−�t

1 − e−�t
, K(n)(t) = −n log(1 − e−�t),

F(n)(t) = (1 − e−�t)n, f(n)(t) = �ne−�t(1 − e−�t)n−1.

(3)�j(t) = lim
Δt→0+

ℙ(Xj = Xn∶n|Xn∶n ∈ (t − Δt, t]) = ℙ(Xj = Xn∶n|Xn∶n = t)

(4)
n∑

j=1

�j(t) = 1.

(5)�j(t|�) = k(n)(t)�j(t).

k(n)(t)𝛿j(t) = lim
Δt→0+

ℙ(Xj = Xn∶n,Xn∶n ∈ (t − Δt, t])

ℙ(Xn∶n ∈ (t − Δt, t])

ℙ(Xn∶n ∈ (t − Δt, t])

Δt ℙ(Xn∶n ≤ t)

= lim
Δt→0+

ℙ(Xj > t − Δt,Xn∶n ≤ t)

Δt ℙ(Xn∶n ≤ t)
= 𝜏j(t|�).

(6)k(n)(t) =

n∑

j=1

�j(t|�), K(n)(t) = ∫
+∞

t

n∑

j=1

�j(s|�)ds.

ℙ(Xj = Xn∶n,Xn∶n ≤ t) = �
t

0

�j(s|�)e−K(n)(s)ds.
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that is the thesis.

As an immediate consequence of the previous Proposition we note that, for j = 1,… , n , 
the probability ℙ(Xj = Xn∶n,Xn∶n ≤ t) only depends on the functions �1(t|�),… , �n(t|�) . 
Whence, we get the following result.

Proposition 3  Take n independent random variables Z1,… , Zn with reversed hazard rate 
functions qj(t) and let (X1,… ,Xn) be a vector with m.c.r.h.r. functions � (�)

j
(t|�) such that

Then, for any j ∈ [n] and for any t ≥ 0

Proof  In view of independence, the m.c.r.h.r. functions � (�)
j

(t|�) for the vector Z1,… , Zn 
respectively coincide with the univariate reversed hazard rate functions qj(t) (see Remark 
1). Then the thesis follows immediately by applying Proposition 2 to both the vectors 
(X1,… ,Xn) and (Z1,… , Zn).

We also notice that the multivariate conditional reversed hazard rate functions � (�)
j

 ’s 
of variables X1,… ,Xn are strictly related to the m.c.h.r. functions �(�)

j
 ’s of the variables 

Y1 ∶= 1∕X1,… , Yn ∶= 1∕Xn . More precisely we have the following proposition.

Proposition 4  Let X1,… ,Xn be absolutely continuous random variables and let Yi = 1∕Xi , 
for i = 1,… , n . Then, we have

and, for � ≠ I ⊂ [n] , 0 ≤ t ≤ tk ≤ ⋯ ≤ t1

Proof  One can obtain the stated result as follows:

ℙ(Xj = Xn∶n,Xn∶n ≤ t) = �
t

0

f(n)(s)ℙ(Xj = Xn∶n|Xn∶n = s)ds

= �
t

0

k(n)(s)e
−K(n)(s)�j(s)ds = �

t

0

�j(s|�)e−K(n)(s)ds,

(7)�
(�)

j
(t|�) = qj(t), j = 1,… , n.

(8)ℙ(Xj = Xn∶n,Xn∶n ≤ t) = ℙ(Zj = Zn∶n, Zn∶n ≤ t).

(9)�
(�)

j
(t|�) = 1

t2
�
(�)

j

(
1

t

||||
�

)

(10)�
(�)

j
(t|I;t1,… , tk) =

1

t2
�
(�)

j

(
1

t

||||
I;
1

t1
,… ,

1

tk

)
.

(11)�
(�)

j
(t|�) = lim

Δt→0+

1

Δt
ℙ
(
Xj ≥ t − Δt||Xn∶n ≤ t

)
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Similarly, for � ≠ I ⊂ [n] , 0 ≤ t ≤ tk ≤ ⋯ ≤ t1

3 � Reversed Load‑Sharing Models

First of all, we remind the definition of inverse exponential distribution. Let us consider 
Y distributed as an exponential random variable, Y ∼ Exp(�) , then X = 1∕Y ∼ invExp(�) 
is an inverse exponential random variable. For t > 0 , the cdf, pdf and reversed hazard 
rate function of X are respectively given by

The inverse exponential distribution and some of its generalizations have found many key 
applications in several contexts, such as medicine, survival analysis of patients and of 
devices. For further details see Murty and Naikan (1996); Oguntunde et al. (2017); Pavlov 
et al. (2018).

The following result concerns with the behaviour of the maximum Xn∶n among inde-
pendent variables distributed according to inverse exponential distributions.

Proposition 5  Let X1,… ,Xn be independent random variables, respectively distributed 
according to inverse exponential distributions with parameters �1, … , �n . Then, the follow-
ing identities hold:

(12)

= lim
Δt→0+

1

Δt
ℙ

(
1

Yj
≥ t − Δt

||||
Y1∶n ≥ 1

t

)

= lim
Δt→0+

1

Δt
ℙ

(
Yj ≤ 1

t − Δt

||||
Y1∶n ≥ 1

t

)

= lim
Δt→0+

1

Δt
ℙ

(
Yj ≤ 1

t
+

Δt

t(t − Δt)

||||
Y1∶n ≥ 1

t

)

= lim
Δt→0+

1

t(t − Δt)
⋅

t(t − Δt)

Δt
ℙ

(
Yj ≤ 1

t
+

Δt

t(t − Δt)

||||
Y1∶n ≥ 1

t

)

=
1

t2
�
(�)

j

(
1

t

||||
�

)
.

(13)

�
(�)

j
(t|I;t1,… , tk) = lim

Δt→0+

1

Δt
ℙ

(
Xj ≥ t − Δt

||||
Xi1

= t1,… ,Xik
= tk, max

h∉I
Xh ≤ t

)

= lim
Δt→0+

1

Δt
ℙ

(
Yj ≤ 1

t − Δt

||||
Yi1 =

1

t1
,… , Yik =

1

tk
, min
h∉I

Yh ≥ 1

t

)

=
1

t2
�
(�)

j

(
1

t

||||
I;
1

t1
,… ,

1

tk

)
.

(14)

FX(t) = FY

(
1

t

)
= e−�∕t,

fX(t) =
1

t2
fY

(
1

t

)
=

�

t2
e−�∕t,

qX(t) =
1

t2
rY

(
1

t

)
=

�

t2
.
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Proof  We start from the event (Xn∶n ≤ t) . In view of independence among variables, we 
have

Let us then consider the event (Xn∶n = Xj,Xn∶n ≤ t) . By recalling Proposition 2, we can 
write

By taking into account the independence among X1,… ,Xn we can then write

Hence, the events (Xn∶n ≤ t) and (Xn∶n = Xj) are independent and so we get

Remark 3  We highlight that Proposition 5 is analogous to a well known result concerning 
with minimum among variables and with exponential distributions. See e.g. Theorem 2.3.3 
in Norris (1998): Let Y1,… , Yn be independent random variables such that Yj ∼ Exp(�j) , 
then we have

(15)ℙ(Xn∶n = Xj,Xn∶n ≤ t) = ℙ(Xn∶n = Xj)ℙ(Xn∶n ≤ t), for any t > 0,

(16)ℙ(Xn∶n = Xj) =
�j

∑n

i=1
�i
,

(17)ℙ(Xn∶n ≤ t) = e
−

1

t

∑n

i=1
�i .

ℙ(Xn∶n ≤ t) =ℙ(X1 ≤ t,… ,Xn ≤ t)

=ℙ(X1 ≤ t)⋯ℙ(Xn ≤ t)

=e−
1

t

∑n

i=1
�i .

ℙ(Xn∶n = Xj,Xn∶n ≤ t) =ℙ(Xj ≤ t and Xj > Xi, i ≠ j)

=�
t

0

𝜆j

s2
e
−

𝜆j

s ℙ(Xi ≤ s, i ≠ j)ds.

ℙ(Xn∶n = Xj,Xn∶n ≤ t) =�
t

0

�j

s2
e
−

�j

s

n�

i=1,i≠j
e
−

�i

s ds

=�
t

0

�j

s2

n�

i=1

e
−

�i

s ds

=
�j

∑n

i=1
�i
e
−

1

t

∑n

i=1
�i .

ℙ(Xn∶n = Xj) =
�j

∑n

i=1
�i
.

ℙ(Y1∶n = Yj, Y1∶n > t) = ℙ(Y1∶n = Yj)ℙ(Y1∶n > t), for any t > 0,

ℙ(Y1∶n = Yj) =
𝜆j

∑n

i=1
𝜆i
,

ℙ(Y1∶n > t) = e
−

1

t

∑n

i=1
𝜆i .
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We have preferred to provide a direct proof of Proposition 5, even though a proof can be 
easily obtained from the above result. In fact, it is sufficient to remind that when X1,… ,Xn 
are independent and Xj ∼ invExp(�j) then Y1 = 1∕X1,… , Yn = 1∕Xn are independent and 
Yj ∼ Exp(�j) and, furthermore, that the following equivalences hold

Before continuing, we focus attention on a special class of dependence models 
for lifetimes which has been considered several times in the applied literature, possi-
bly under a variety of different terminologies. Here we will say that the random vec-
tor (X1,… ,Xn) is distributed according to a Load-Sharing model (LS) if, for non-empty 
I ⊂ [n] with cardinality k and j ∈ [n] ∖ I , there exist functions �j(t|I) such that, for all 
0 ≤ t1 ≤ ⋯ ≤ tk ≤ t,

Furthermore, a load-sharing model is time-homogeneous (THLS) when there exist non-
negative numbers �j(I) and �j(�) such that, for any t > 0,

For further details, see e.g. Shaked and Shanthikumar (2015); Spizzichino (2018) and ref-
erences cited therein.

Remark 4  Notice that the joint distribution of n independent and exponential variables 
(non-necessarily identically distributed) is a special case of THLS.

Definition 2  We say that the random vector (X1,… ,Xn) is distributed according to a 
Reversed Load–Sharing model (RLS) if, for nonempty I ⊂ [n] and j ∈ [n] ∖ I , the m.c.r.h.r. 
functions �j(t|I;t1,… , t|I|) does not depend on t1,… , t|I| , for all 0 ≤ t ≤ t|I| ≤ ⋯ ≤ t1 , i.e.,

We now concentrate attention on a special subclass of reversed load sharing models. 
Let us consider a vector (Y1,… , Yn) distributed according to a THLS model with param-
eters �j(�),�j(I) . Then (X1,… ,Xn) , defined by Xj = 1∕Yj , for j = 1,… , n , is such that the 
m.c.r.h.r. functions are expressed by (9) and (10) in the following way

By recalling the formula of the reversed hazard rate qX in (14), we observe, in particular, 
that the reversed m.c.h.r. functions of vectors of independent, inverse-exponentially dis-
tributed random variables satisfy the identities in (18). Also taking into account the above 
Remark 4, we then give the following definition.

Y1∶n = Yj ⇔ 1∕Xn∶n = 1∕Xj ⇔ Xn∶n = Xj,

Y1∶n > t ⇔ 1∕Xn∶n > t ⇔ Xn∶n <
1

t
.

�j(t|I;t1,… , tk) = �j(t|I).

�j(t|I) = �j(I),

�j(t|�) = �j(�).

�j(t|I;t1,… , t|I|) = �j(t|I).

(18)
�
(�)

j
(t|�) = 1

t2
�
(�)

j

(
1

t

||||
�

)
=

1

t2
�j(�)

�
(�)

j
(t|I) = 1

t2
�
(�)

j

(
1

t

||||
I

)
=

1

t2
�j(I).
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Definition 3  We say that the random vector (X1,… ,Xn) is distributed according to a 
Reversed Time Homogeneous Load–Sharing model (RTHLS) if, it is a RLS and, in addi-
tion, for I ⊂ [n] and j ∈ [n] ∖ I , the m.c.r.h.r. functions are expressed as

where cj(I) ≥ 0.

Remark 5  Notice that we have tacitly assumed that any coefficient cj(I) depends only on 
the set I and it does not depend on the order according to which its elements are considered.

We emphasize that the vector (X1,… ,Xn) is distributed according to a RTHLS model 
if and only if the vector (Y1,… , Yn) is distributed according to a THLS model, where 
Yj = 1∕Xj , j = 1,… , n . Furthermore, the RTHLS models can be seen as natural generali-
zations of the case of independent variables with inverse exponential distributions and, 
in particular, they inherit several remarkable properties of them. See in particular the 
basic property shown in the following Proposition 6.

If (X1,… ,Xn) follows a RTHLS model, then we set, for j ∈ [n] , I ⊂ [n] , j ∉ I,

We note furthermore that the parameters cj
(
�
)
, cj(I) of a reversed THLS model for vari-

ables X1,… ,Xn actually coincide with the parameters of the THLS model for the recipro-
cal variables Yj = 1∕Xj ( j = 1,… , n ), i.e.

Before continuing, we present the following simple example.

Example 1  Consider a triple of lifetimes Y1, Y2, Y3 distributed according to a THLS model 
with parameters fixed as follows: for j = 1, 2, 3 and i ≠ j

whereas

where � is a positive number, close to 0. Setting Xj ∶=
1

Yj
 ( j = 1, 2, 3 ) and noting that 

X1,X2,X3 are distributed according to a RTHLS model, we will write

�j(t|I) =
cj(I)

t2
,

(19)N(I) =
∑

h∉I

ch(I)

(20)�j(I) =
�j(t�I)∑
h∉I �h(t�I)

=
cj(I)∑
h∉I ch(I)

=
cj(I)

N(I)
.

(21)cj(�) = �j(�), cj(I) = �j(I).

�j

(
�
)
= 1, �j(i) = 1;

�2(1, 3) = �3(1, 2) = 1,

�1(2, 3) = �,
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Thus, by letting � ∶= t−1 and by taking into account that Y1, Y2, Y3 are jointly distributed 
according to a THLS model with parameter specified as above,

Then we obtain

Furthermore,

The latter equation demonstrates that, in particular, the events 
(
X3∶3 < t

)
 and 

(
X3∶3 = Xj

)
 

are independent. In particular, this fact guaranties that RTHLS is different from THLS. 
Notice on the contrary that the events 

(
X1∶3 = Xj

)
 and 

(
X1∶3 < t

)
 cannot, in general, be 

independent. In fact the conditional probability

generally depends on t. This fact also admit an heuristic explanation as follows: when  
the value of � is very, very large (i.e. t very, very small), the condition �1(2, 3) = � with 
𝜀 << 1 leads us to assign much greater probability to the event 

(
Y3∶3 = Y1

)
 than to the com-

plementary event 
(
Y3∶3 ≠ Y1

)
.

The following result points out the appropriate way to extend Proposition 5 from the 
independent case to the case of time-homogeneous reversed load-sharing models.

Proposition 6  Let 
(
X1,… ,Xn

)
 be distributed according to a reversed time-homogeneous 

load-sharing model with parameters cj(I) . Then, the following identities hold:

ℙ
(
Xj > t − 𝛿|X3∶3 < t

)
=ℙ

(
1

Yj
> t − 𝛿| 1

Y1∶3
< t

)

=ℙ
(
Yj <

1

t − 𝛿
|Y1∶3 >

1

t

)
.

ℙ

(
Yj < 𝜔 +

(
1

t − 𝛿
− 𝜔

)
|Y1∶3 > 𝜔

)
=ℙ

(
Yj < 𝜔 +

𝛿

t2 − 𝛿t
|Y1∶3 > 𝜔

)

=
𝛿

t2 − 𝛿t
+ o(𝛿) =

𝛿

t2
+ o(𝛿).

�j(t|�) = lim
�→0+

1

�

(
�

t2
+ o(�)

)
=

1

t2
.

ℙ
(
X3∶3 > t − 𝛿|X3∶3 < t

)
= ℙ

(
Y1∶3 <

1

t − 𝛿
|Y1∶3 > 𝜔

)
= exp

{
−3

𝛿

t2 − 𝛿t

}
,

ℙ
(
X3∶3 = Xj|X3∶3 < t

)
= ℙ

(
Y1∶3 = Yj|Y1∶3 > 𝜔

)
=

1

3
.

ℙ
(
X1∶3 = Xj|X1∶3 < t

)
= ℙ

(
Y3∶3 = Yj|Y3∶3 > 𝜔

)

(22)
ℙ(Xn∶n = Xj,Xn∶n ≤ v) = ℙ(Xn∶n = Xj)ℙ(Xn∶n ≤ v), for any v > 0,

ℙ(Xn∶n = Xj) = 𝜂j
(
�
)
,

(23)ℙ(Xn∶n ≤ v) = e
−

N(�)
v .
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Proof  By applying Proposition 2 to the present case, we can write

Notice also that, in the case when 
(
X1,… ,Xn

)
 is distributed according to a reversed 

THLS model, the independent variables Z1,… , Zn introduced in Proposition 3 are dis-
tributed according to inverse exponential distributions with parameters cj

(
∅
)
.

Now, we introduce the discrete random variables J1,… , Jn , where

Other basic aspects of RTHLS models can be better understood by writing down, for 
k = 1,… , n , the joint pdf fXn∶n,…,Xk∶n,Jn,…,Jk

(tn,… , tk;jn,… , jk) of (Xn∶n,… ,Xk∶n;Jn,… , Jk) 
with respect to the product between the k-dimensional Lebesgue measure and an appropri-
ate counting measure. For t1 ≤ t2 ≤ ⋯ ≤ tn , we can write in this respect

Taking into account both the meaning of the reversed m.c.h.r. functions and the definition 
of reversed THLS models, the above equation takes the form

ℙ(Xn∶n = X�(n),Xn∶n ≤ v) =�
v

0

��(n)(s��)e− ∫ +∞

s

∑n

i=1
�i(w��)dwds

=�
v

0

c�(n)(�)

s2
e
− ∫ +∞

s

∑n
i=1

ci (�)

w2
dw
ds

=�
v

0

c�(n)(�)

s2
e
−

∑n
i=1

ci (�)

s ds

=
c�(n)(�)

∑n

i=1
ci(�)

e
−

∑n
i=1

ci (�)

v = ��(n)(�)e
−

N(�)

v .

Jh = j if Xh∶n = Xj.

fXn∶n,…,Xk∶n,Jn ,…,Jk
(tn,… , tk;jn,… , jk)

= fXn∶n,Jn
(tn;jn) × fXn−1∶n,Jn−1

(tn−1;jn−1|tn;jn) ×…

×fXk∶n,Jk
(tk;jk|tn,… , tk+1;jn,… , jk+1).

fXn∶n,…,Xk∶n,Jn ,…,Jk
(tn,… , tk;jn,… , jk)

=
cjn (�)

t2
n

exp

{
−∫

+∞

tn

1

u2

n∑

i=1

ci(�)

}
du×

×
cjn−1 (jn)

t2
n−1

exp

{
−∫

tn

tn−1

1

u2

(
∑

i∈[n]⧵{jn}

ci(jn)

)
du

}
×…

(24)×
cjk (jn,… , jk+1)

t2
k

exp

{
−∫

tk+1

tk

1

u2

(
n∑

i∈[n]⧵{jn,…,jk+1}

ci(u|(jn,… , jk+1))

)
du

}
.
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For I ⊂ [n] we remind the notation

Thus we can write

In view of Remark 5, we notice that it could be more precise to use the notation 
N({jn,… , jk+1}) in place of N(jn,… , jk+1) . Here, we omit the curly brackets for the sake of 
simplicity.

4 � On Inactivity Times of Coherent Systems

In this section we aim to study the probability distribution of the inactivity time of a 
coherent system made up of components whose lifetimes are jointly distributed accord-
ing to reversed THLS models. More precisely, let S be a coherent system, let TS be its 
lifetime and T̂v,S ∶= v − TS be its inactivity time at time v. We aim to compute the condi-
tional probability

Namely, we look for the conditional distribution of the system’s inactivity time, conditional 
on the detailed information that all the components are down at time v. On this purpose, we 
will in particular employ the following results which, in a sense, are respectively dual to 
results valid for the ordinary THLS models, as presented in Spizzichino (2018) or to results 
presented in De Santis et al. (2020).

First of all we notice that, in view of Proposition 6, the conditional distribution of 
the maximum order statistic Xn∶n given the event 

(
Xn∶n = Xj

)
 coincides with an inverse 

exponential distribution whose parameter is N
(
∅
)
 . More precisely we can state the fol-

lowing result.

Proposition 7  We have, for any v > t > 0 and for any j ∈ [n], 

N(I) =
∑

j∉I

cj(I).

fXn∶n,…,Xk∶n,Jn ,…,Jk
(tn,… , tk;jn,… , jk)

=
cjn (�)

t2
n

exp

{
−∫

+∞

tn

1

u2
N(�)du

}
×
cjn−1 (jn)

t2
n−1

exp

{
−∫

tn

tn−1

1

u2
N
(
jn
)
du

}
×…

(25)×
cjk (jn,… , jk+1)

t2
k

exp

{
−∫

tk+1

tk

1

u2
N
(
jn,… , jk+1

)
du

}
.

ℙ(T̂v,S ≥ t|Xn∶n ≤ v).

(26)ℙ(v − Xn∶n ≥ t|Xn∶n = Xj,Xn∶n ≤ v) = exp

(
−

t N(�)

v(v − t)

)
.
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Proof  From Proposition 2 and Equations (19)–(20), we have

and this completes the proof of (26).

Proposition 8  Let (X1,… ,Xn) be distributed according to a reversed time homogeneous 
load–sharing model with parameters cj(I) , I ⊂ [n], j ∈ [n] ∖ I . Let us fix v > 0 . We have for 
k = 1,… , n,

Proof  By plugging the identity

for 0 < a < b and A > 0 , within formula (25), we can write

(27)

ℙ(v − Xn∶n ≥ t�Xn∶n = Xj,Xn∶n ≤ v) =ℙ(Xn∶n ≤ v − t�Xn∶n = Xj,Xn∶n ≤ v)

=
ℙ(Xn∶n ≤ v − t,Xn∶n = Xj)

ℙ(Xn∶n ≤ v,Xn∶n = Xj)

=
∫ v−t

0
�j(s��)e− ∫ +∞

s

∑n

h=1
�h(w��)dwds

∫ v

0
�j(s��)e− ∫ +∞

s

∑n

h=1
�h(w��)dwds

=
�j(�) exp

�
−

N(�)

v−t

�

�j(�) exp
�
−

N(�)

v

�

= exp

�
−

t N(�)

v(v − t)

�
,

ℙ(Xn∶n = Xjn
,Xn−1∶n = Xjn−1

,… ,Xk∶n = Xjk
,Xn∶n ≤ v)

= �jn (�)�jn−1 ({jn})⋯ �jk ({jn, jn−1,… , jk+1}) exp

{
−
N(�)

v

}
.

∫
b

a

A

u2
du = A

(
1

a
−

1

b

)
,

fXn∶n,…,X1∶n,Jn ,…,J1
(tn,… , t1;jn,… , j1)

=
cjn (�) ⋅ cjn−1 (jn) ⋅… ⋅ cj1 (jn,… , j2)

t2
n
⋅ t2

n−1
⋅… ⋅ t2

1

×

× exp

{
−

[
N(�)

1

tn
+ N(jn)

(
1

tn−1
−

1

tn

)
+⋯ + N(jn,… , j2)

(
1

t1
−

1

t2

)]}

=
cjn (�) ⋅ cjn−1 (jn) ⋅… ⋅ cj1 (jn,… , j2)

t2
n
⋅ t2

n−1
⋅… ⋅ t2

1

×

× exp

{
−

[
1

tn

[
N(�) − N(jn)

]
+

1

tn−1

[
N(jn) − N(jn, jn−1)

]
+…
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By properly integrating the joint density function of (Xn∶n,… ,X1∶n;Jn,… , J1) over the 
appropriate domain, we obtain

Now, by taking into account the identity

we write

+
1

t2

[
N(jn,… , j3) − N(jn,… , j2)

]
+

1

t1
N(jn,… , j2)

]}
.

ℙ
(
Xn∶n = Xjn

,… ,Xk∶n = Xjk
,Xn∶n ≤ v

)

= cjn (�) ⋅… ⋅ cjk (jn,… , jk+1)
∑

j1≠⋯≠jk−1≠jk≠jk+1≠⋯≠jn
cjk−1 (jn,… , jk) ⋅… ⋅ cj1 (jn,… , j2)×

×∫
v

0

dtn ∫
tn

0

dtn−1⋯∫
t2

0

1

t2
n
⋅ t2

n−1
⋅… ⋅ t2

1

exp

{
−

[
1

tn

[
N(�) − N(jn)

]
+

⋯ +
1

t2
[N(jn,… , j3) − N(jn,… , j2)] +

1

t1
N(jn,… , j2)

]}
dt1

= cjn (�) ⋅… ⋅ cjk (jn,… , jk+1)
∑

j1≠⋯≠jk−1≠jk≠jk+1≠⋯≠jn
cjk−1 (jn,… , jk) ⋅… ⋅ cj1 (jn,… , j2)×

∫
v

0

exp
{
−
[
1

tn

[
N(�) − N(jn)

]]}

t2
n

dtn⋯∫
t3

0

exp
{
−
[
1

t2

[
N(jn,… , j3) − N(jn,… , j2

]]}

t2
2

×

×∫
t2

0

exp
{
−

1

t1
N(jn,… , j2)

}

t2
1

dt1.

∫
t2

0

exp
{
−

1

t1
N(jn,… , j2)

}

t2
1

dt1 =
exp

{
−

1

t2
N(jn,… , j2)

}

N(jn,… , j2)
,

ℙ
(
Xn∶n = Xjn

,… ,Xk∶n = Xjk
,Xn∶n ≤ v

)

= cjn (�) ⋅… ⋅ cjk (jn,… , jk+1)
∑

j1≠⋯≠jk−1≠jk≠jk+1≠⋯≠jn
cjk−1 (jn,… , jk) ⋅… ⋅ cj1 (jn,… , j2)×

×∫
v

0

exp
{
−
[
1

tn

[
N(�) − N(jn)

]]}

t2
n

dtn⋯∫
t3

0

exp
{
−

1

t2
[N(jn,… , j2)

}

N(jn,… , j2) ⋅ t
2
2

dt2.
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Continuing so on, we obtain

Remark 6  In the following, we give a different proof of Proposition 8 based on THLS 
models. Let us consider the variables Yj = 1∕Xj , j = 1,… , n , we have

As pointed out in De Santis et al. (2020), an important property of THLS models is the 
following: conditioning on the event {Y1∶n > t} the joint distribution of residual lifetimes 
Yj − t , j = 1,… , n , is the same of original variables. Then, we have

Now, by using Proposition 2 of Spizzichino (2018) we can conclude

ℙ
(
Xn∶n = Xjn

,… ,Xk∶n = Xjk
,Xn∶n ≤ v

)

=
cjn (�) ⋅… ⋅ cjk (jn,… , jk+1)

N(jn) ⋅… ⋅ N(jn,… , jk+1)

∑

j1≠⋯≠jk−1≠jk≠jk+1≠⋯≠jn

cjk−1 (jn,… , jk) ⋅… ⋅ cj1 (jn,… , j2)

N(jn,… , jk) ⋅… ⋅ N(jn,… , j2)
×

×∫
v

0

exp
{
−
[
1

tn

[
N(�) − N(jn)

]]}
exp

{
−

1

tn
N(jn)

}

t2
n

dtn

= cjn

(
�
)
⋅ �jn−1 (jn) ⋅… ⋅ �jk

(
jn,… , jk+1

) 1

N(�)
exp

{
−
N(�)

v

}

= �jn

(
�
)
⋅ �jn−1 (jn) ⋅… ⋅ �jk

(
jn,… , jk+1

)
exp

{
−
N(�)

v

}
.

ℙ
(
Xn∶n = Xjn

,… ,Xk∶n = Xjk
,Xn∶n ≤ v

)

= ℙ

(
Y1∶n = Yjn ,… , Yn−k+1∶n = Yjk , Y1∶n >

1

v

)

= ℙ

(
Y1∶n = Yjn ,… , Yn−k+1∶n = Yjk

||||
Y1∶n >

1

v

)
ℙ

(
Y1∶n >

1

v

)

= ℙ

(
Y1∶n = Yjn ,… , Yn−k+1∶n = Yjk

||||
Y1∶n >

1

v

)
exp

{
−
1

v
N(�)

}
.

ℙ
(
Xn∶n = Xjn

,… ,Xk∶n = Xjk
,Xn∶n ≤ v

)

= ℙ
(
Y1∶n = Yjn ,… , Yn−k+1∶n = Yjk

)
⋅ exp

{
−
1

v
N(�)

}
.

ℙ
(
Xn∶n = Xjn

,… ,Xk∶n = Xjk
,Xn∶n ≤ v

)
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It is convenient now to introduce the following notation. We denote by G�1,…,�r
 the 

survival function of the distribution obtained as convolution of r exponential distribu-
tions with parameters �1,… , �r , respectively. Also the next result can easily be obtained 
by resorting to THLS models by recalling the notation introduced in (19). We can state

Proposition 9  Let 
(
X1,… ,Xn

)
 be distributed according to a reversed time-homogeneous 

load-sharing model. We have, for any v > u > 0 and k = 1,… , n,

Proof  Let us consider the variables Yj = 1∕Xj , j = 1,… , n . Then, (Y1,… , Yn) follows a 
THLS model with the same parameters of the RTHLS model associated to (X1,… ,Xn) . 
Then, we have

where the last equality follows by Proposition 4 of Spizzichino (2018).

We now turn to the computation of reliability characteristics of coherent systems. Several 
properties can be obtained by assuming a THLS model for the components’ lifetimes. In par-
ticular a special formula is obtained for the computation of the survival function of the lifetime 
TS of a given system S, in terms of appropriate convolutions of exponential distributions (see 
Spizzichino (2018)). In the following, we will show a dual result under the assumption of a 
reversed THLS model.

Let us consider a system formed by n components C1,… ,Cn , whose lifetimes are non-
negative random variables X1,… ,Xn . We assume that the joint probability distribution of 
X1,… ,Xn is absolutely continuous and so ties among X1,… ,Xn have probability zero. Let 
us indicate by TS the lifetime of the system and by T̂v,S the inactivity time at time v, namely 
T̂v,S = v − TS.

Let Pn denote the set of permutation of {1,… , n} and let Bk denote the subset of Pn formed 
with the elements � such that the event {Xn∶n = X�(n),… ,Xk∶n = X�(k)} implies that the sys-
tem fails at the k-th failure at component level, i.e.

where, for k = 1,… , n , Ek is the event Ek = {TS = Xk∶n} . The events Ek are strictly related 
to the structure of the system. They are also related to the concepts of signature and dual 
signature, see Samaniego (2007) for further details.

= �jn

(
�
)
⋅ �jn−1 (jn) ⋅… ⋅ �jk

(
jn,… , jk+1

)
⋅ exp

{
−
1

t
N(�)

}
.

(28)
ℙ
(
Xk∶n < u|Xn∶n = Xjn

,… ,Xk∶n = Xjk
,Xn∶n ≤ v

)

= GN(�),…,N(jn ,…,jk+1)

(
1

u
−

1

v

)
.

ℙ
(
Xk∶n < u|Xn∶n = Xjn

,… ,Xk∶n = Xjk
,Xn∶n ≤ v

)

= ℙ

(
Yn−k+1∶n >

1

u

||||
Y1∶n = Yjn ,… , Yn−k+1∶n = Yjk , Y1∶n >

1

v

)

= ℙ

(
Yn−k+1∶n >

1

u
−

1

v

||||
Y1∶n = Yjn ,… , Yn−k+1∶n = Yjk

)

= GN(�),…,N(jn,…,jk+1)

(
1

u
−

1

v

)
,

Bk = {� ∈ Pn ∶ if Xn∶n = X�(n),… ,Xk∶n = X�(k) then Ek},
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Proposition 10  Let S be a system formed by n components whose lifetimes are non-negative 
random variables X1,… ,Xn distributed according to a reversed time-homogeneous load-
sharing model and let T̂v,S be the inactivity time of the system at time v. We have, for 0 < t < v,

Proof  Taking into account that {B1,… ,Bn} is a partition of Pn , we can write

In the following, based on the result of Proposition 10, we give an example of evalu-
ation of the probability distributions of the inactivity times for two different systems.

Example 2  Let us consider a coherent system S formed by three components X1,X2,X3 and 
whose lifetime TS is described as

ℙ(T̂v,S ≥ t|Xn∶n ≤ v) =

n∑

k=1

∑

𝜋∈Bk

GN(�),…,N(𝜋(n),…,𝜋(k+1))

(
t

v(v − t)

)
⋅

⋅ 𝜂𝜋(n)(�)⋯ 𝜂𝜋(2)({𝜋(n),𝜋(n − 1),… ,𝜋(3)}).

ℙ(T̂v,S ≥ t|Xn∶n ≤ v) =
∑

𝜋∈Pn

ℙ(T̂v,S ≥ t|Xn∶n = X𝜋(n),… ,X1∶n = X𝜋(1),Xn∶n ≤ v)⋅

⋅ ℙ(Xn∶n = X𝜋(n),… ,X1∶n = X𝜋(1)|Xn∶n ≤ v)

=

n∑

k=1

∑

𝜋∈Bk

ℙ(TS ≤ v − t|Xn∶n = X𝜋(n),… ,X1∶n = X𝜋(1),Xn∶n ≤ v)⋅

⋅ ℙ(Xn∶n = X𝜋(n),… ,X1∶n = X𝜋(1))

=

n∑

k=1

∑

𝜋∈Bk

ℙ(Xk∶n ≤ v − t|Xn∶n = X𝜋(n),… ,X1∶n = X𝜋(1),Xn∶n ≤ v)⋅

⋅ ℙ(Xn∶n = X𝜋(n),… ,X1∶n = X𝜋(1))

=

n∑

k=1

∑

𝜋∈Bk

GN(�),…,N(𝜋(n),…,𝜋(k+1))

(
t

v(v − t)

)
⋅

⋅ 𝜂𝜋(n)(�)⋯ 𝜂𝜋(2)({𝜋(n),𝜋(n − 1),… ,𝜋(3)}).

TS = max{X1, min{X2,X3}}.
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Now, as far as the joint distribution of X1,X2,X3 is concerned, we simply consider the 
RTHLS model introduced in the previous Example 1.

We want to apply the result of Proposition 10 to evaluate the distribution of the inac-
tivity time of the system. In order to do this, we need to establish how the partition 
{B1,B2,B3} of P3 is composed. Here, we have

Hence, about the inactivity time of the system, we have

By recalling the identities (19)–(20), we can say that the related coefficients are described 
as follows. Regardless of � ∈ P3 , we have

Then, we can conclude

Concerning the computation of the convolution of several exponential distributions one can 
of course resort to a quite wide literature. See e.g. Akkouchi (2008); Cramer and Kamps 
(2003) and references cited therein.

Maintaining the same RTHLS model as above for the components’ lifetimes, we now 
switch to considering the system S̃ dual of S, whose lifetime is

B1 = �,

B2 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (3, 1, 2)},

B3 = {(2, 3, 1), (3, 2, 1)}.

ℙ(T̂v,S ≥ t|Xn∶n ≤ v) =

3∑

k=2

∑

𝜋∈Bk

GN(�),…,N(𝜋(3),…,𝜋(k+1))

(
t

v(v − t)

)
⋅

⋅ 𝜂𝜋(3)(�)𝜂𝜋(2)(𝜋(3))

=
∑

𝜋∈B2

GN(�),N(𝜋(3))

(
t

v(v − t)

)
⋅

⋅ 𝜂𝜋(3)(�)𝜂𝜋(2)(𝜋(3))+

+
∑

𝜋∈B3

GN(�)

(
t

v(v − t)

)
⋅ 𝜂𝜋(3)(�)𝜂𝜋(2)(𝜋(3)).

N(�) = 3, N(�(3)) = 2, ��(3)(�) = 1∕3, ��(2)(�(3)) = 1∕2.

ℙ(T̂v,S ≥ t|Xn∶n ≤ v) =4G3,2

(
t

v(v − t)

)
⋅

1

6
+ 2G3

(
t

v(v − t)

)
⋅

1

6

=
2

3
G3,2

(
t

v(v − t)

)
+

1

3
exp

(
−3

t

v(v − t)

)
.

T
S̃
= min{X1, max{X2,X3}}.



	 Methodology and Computing in Applied Probability

1 3

In this case, the partition {B1,B2,B3} of P3 is given by

Hence, about the inactivity time of the system S̃ , we have

The parameters of the form N(�) and N(i) ( i = 1, 2, 3 ) have already been computed above. 
For what concerns the parameters of the form N(i1, i2) , with i1 ≠ i2 , the special structure 
of this system entails that we only need to consider the value N(2, 3) = � . Then, we can 
conclude

5 � Conclusions

For a n-tuple of non-negative random variables X1,… ,Xn , we have introduced the concept 
of Multivariate Reversed Hazard Rate (m.c.r.h.r.) and the related class of special depend-
ence models, that we termed Reversed Time-Homogeneous Load-Sharing.

Such notions can in particular be of interest when studying the probabilistic behav-
ior of the inactivity time of a coherent system, made with n interdependent components 

B1 = {(1, 2, 3), (1, 3, 2)},

B2 = {(2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)},

B3 = �.

ℙ(T̂
v,�S ≥ t|Xn∶n ≤ v) =

∑

𝜋∈B1

GN(�),N(𝜋(3)),N(𝜋(3),𝜋(2))

(
t

v(v − t)

)
⋅

⋅ 𝜂𝜋(3)(�)𝜂𝜋(2)(𝜋(3))+

+
∑

𝜋∈B2

GN(�),N(𝜋(3))

(
t

v(v − t)

)
⋅ 𝜂𝜋(3)(�)𝜂𝜋(2)(𝜋(3)).

ℙ(T̂
v,�S ≥ t|Xn∶n ≤ v) =2G3,2,𝜀

(
t

v(v − t)

)
⋅

1

6
+ 4G3,2

(
t

v(v − t)

)
⋅

1

6

=
1

3
G3,2,𝜀

(
t

v(v − t)

)
+

2

3
G3,2

(
t

v(v − t)

)
.
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( X1,… ,Xn being the corresponding lifetimes). Starting from the relation existing between 
the univariate concepts of failure rate and of reversed failure rate functions, the new notions 
have been inspired by following a principle of duality which can be established between 
“forward” and “backward” longitudinal observation.

In this frame we have proven several basic aspects of the m.c.r.h.r. functions, along with 
the exact relations between them and the ordinary m.c.h.r. functions. In the past, these lat-
ter functions have been fruitfully applied to different types of problems in applied prob-
ability, for instance in simulation, in the definition of multivariate stochastic orderings, 
dependence concepts, and multivariate ageing notions (see Shaked and Shanthikumar 
(2015); Shaked et al. (1994), in particular).

By employing the afore-mentioned relations and duality, analogous and/or different 
results might be further obtained in terms of m.c.r.h.r. functions. To start with, in this paper 
we have then confined our analysis to basic properties, whereas additional studies may be 
the object of future work.

Potential results concerning applications of m.c.r.h.r. functions to multivariate stochastic 
orderings and to inactivity times of systems might in particular be combined in order to 
deal with the important problem of obtaining stochastic comparisons between inactivity 
times of different systems (see e.g. Misra et al. (2008); Navarro et al. (2017)).

Computation of the m.c.r.h.r. functions in the case of multivariate mixture models (see 
Belzunce et al. (2009); Li and Da (2010)) and related applications may also be an interest-
ing issue.

Furthermore, one might investigate about properties and applications of a discrete-time 
version of m.c.r.h.r. (see Shaked et al. (1994, 1995), and references therein for what con-
cerns the discrete versions of the usual notions of multivariate failure rates).
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