Recent numerical results showed that thermalization of Fourier modes is achieved in short time-scales in the Toda model, despite its integrability and the absence of chaos. Here we provide numerical evidence that the scenario according to which chaos is irrelevant for thermalization is realized even in the simplest of all classical integrable system: the harmonic chain. We study relaxation from an atypical condition given with respect to random modes, showing that a thermal state with equilibrium properties is attained in short times. Such a result is independent from the orthonormal basis used to represent the chain state, provided it is a random basis.

Thermalization without chaos in harmonic systems / Cocciaglia, Niccolò; Vulpiani, Angelo; Gradenigo, Giacomo. - In: PHYSICA. A. - ISSN 0378-4371. - (2022), p. 127581. [10.1016/j.physa.2022.127581]

Thermalization without chaos in harmonic systems

Cocciaglia, Niccolò;Vulpiani, Angelo;
2022

Abstract

Recent numerical results showed that thermalization of Fourier modes is achieved in short time-scales in the Toda model, despite its integrability and the absence of chaos. Here we provide numerical evidence that the scenario according to which chaos is irrelevant for thermalization is realized even in the simplest of all classical integrable system: the harmonic chain. We study relaxation from an atypical condition given with respect to random modes, showing that a thermal state with equilibrium properties is attained in short times. Such a result is independent from the orthonormal basis used to represent the chain state, provided it is a random basis.
2022
thermalization; chaos; ergodicity
01 Pubblicazione su rivista::01a Articolo in rivista
Thermalization without chaos in harmonic systems / Cocciaglia, Niccolò; Vulpiani, Angelo; Gradenigo, Giacomo. - In: PHYSICA. A. - ISSN 0378-4371. - (2022), p. 127581. [10.1016/j.physa.2022.127581]
File allegati a questo prodotto
File Dimensione Formato  
Cocciaglia_Thermalization_without_chaos_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 567.37 kB
Formato Adobe PDF
567.37 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1640395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact