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a b s t r a c t

Recent numerical results showed that thermalization of Fourier modes is achieved in
short time-scales in the Toda model, despite its integrability and the absence of chaos.
Here we provide numerical evidence that the scenario according to which chaos is
irrelevant for thermalization is realized even in the simplest of all classical integrable
system: the harmonic chain. We study relaxation from an atypical condition given with
respect to random modes, showing that a thermal state with equilibrium properties is
attained in short times. Such a result is independent from the orthonormal basis used
to represent the chain state, provided it is a random basis.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Whether chaos is a necessary or just a sufficient condition in order for many-body Hamiltonian systems to exhibit
hermalization is an old debate, to which a final assessment has not yet been given [1–3]. A possibility, outlined with
n interesting mathematical argument first by Khinchin in 1949 [4] and then by Mazur and van der Linden [5], is that
he applicability of the statistical mechanics description to a macroscopic object relies on the number of its microscopic
onstituents being very large, irrespective to details of their dynamics. There are in fact examples showing that chaos is
ot necessary to have good statistical features [6], sometimes being not even sufficient [7,8]. It is in this spirit that two
f us recently investigated how an atypical initial condition relaxes to equipartition in an integrable Hamiltonian system,
he Toda chain [9]. It turned out that in order to see fast relaxation to thermal equilibrium it is sufficient to consider
ppropriate observables, for instance observables almost independent from the conserved quantities of the integrable
ystem [9]. For what concerns the Toda model at not too low energies this is for instance the case of the Fourier modes
armonic energies, which thermalize fast. On the other hand, one could say that thermalization of Fourier modes in the
oda chain is specific to the choice of variables and to its intricate relation with the Toda modes; in fact it is well known
hat, if one considers the Toda modes, the thermodynamic of the system is well described by the Generalized Gibbs
nsemble [10–13]. The goal of the present work is to give further and more stringent evidences in favour of the scenario
ested numerically in [9] and at the basis of the Khinchin approach [4]: in the large-N limit details of the microscopic
ynamics are not relevant for statistical mechanics.
In the present paper we discuss an alternative way to study the behaviour of a system which is a textbook example:

he harmonic chain. Our goal is to show that the lack of thermalization is a property specific of the Fourier modes, in the
ense that there are infinitely many other choices of canonical variables to represent the chain state and that using such
ariables one can see fast relaxation to a thermal state. In order to complement the results of [9] we will present here
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he numerical evidence of two important facts: (1) there are many (ideally, infinitely many) independent sets of canonical
ariables with respect to which the system shows thermalization and (2) the relaxation to a thermal state is a large-N
ffect. The fact that the validity of statistical mechanics can be generally claimed for any system only in the large-N limit
s particularly relevant for integrable systems, for which at small sizes the regular behaviour of the dynamics is manifest.
t is therefore definitely worth to recall the enunciate of the Khinchin result, in order to grasp the relevance of the bound
mposed by the large-N limit. Given that f (q, p) : R2dN

→ R is an observable of our many-body classical Hamiltonian
ystem (with d the number of space dimensions and N the number of degrees of freedom), with ⟨f ⟩ and f respectively its
statistical and time averages, if f is a sum function, namely something of the kind f (q, p) =

∑N
i=1 fi(qi, pi) (in practice any

sort of additive quantity which can be measured as a function of small portions of the system), then under quite general
hypothesis [4] one has that the probability to have a difference between ⟨f ⟩ and f small in N is itself small in N , namely
it decreases when N increases, as well expressed by Eq. (1) below. By denoting as P this probability, in formulas we have:

P

(⏐⏐⏐⏐ f − ⟨f ⟩
⟨f ⟩

⏐⏐⏐⏐ ≥
C1

N1/4

)
<

C2

N1/4 , (1)

where C1 and C2 are O(1) constants which do not depend on N . The necessity of having many degrees of freedom (N ≫ 1)
and that of avoiding ‘‘strange’’ initial conditions for the equilibrium statistical mechanics description to hold have been
stressed in a clear way by a group of scientist around Lebowitz, see e.g. [14,15], in terms of typicality. It is not difficult
to realize that there is a strong relationship between the typicality and the Khinchin approach. Without going in the
mathematical details, we can notice that the key idea of typicality is in agreement with our results: irrespective to the
nature of the microscopic dynamics, ensemble and dynamical averages are for practical purposes equivalent in the large-N
limit. Let us note that often in non-equilibrium problems it is not possible to use in a simple way the Khinchin idea: for
instance the study of transient properties necessarily requires initial conditions which are not typical, so that numerical
simulations are unavoidable.

2. Model

Let us consider a harmonic chain with the following Hamiltonian

H(q, p) =

N∑
j=1

p2j
2m

+
k
2

N∑
j=0

(qj+1 − qj)2, (2)

where we can set masses and the elastic coefficient of the springs to m = k = 1. We consider fixed boundary conditions,
q0 = qN+1 = 0. The Hamiltonian in Eq. (2) can be easily put in a diagonal form with the following change of variables

Qk =

√
2

N + 1

N∑
j=1

qj sin
(
π jk

N + 1

)

Pk =

√
2

N + 1

N∑
j=1

pj sin
(
π jk

N + 1

)
. (3)

By applying the above transformation, which is a canonical change of coordinates, one gets:

H(Q , P) =
1
2

N∑
k=1

(P2
k + ω2

kQ
2
k ) (4)

where

ωk = 2 sin
(

πk
2N + 2

)
, (5)

is the angular frequency of the kth normal mode. It is then convenient for our purposes to introduce the semi-canonical
complex variables:

zk =
Pk + iωkQk

√
2ωk

z∗

k =
Pk − iωkQk

√
2ωk

, (6)

such that

H(z, z∗) =

N∑
k=1

ωk |zk|2

{z∗, z } = i δ (7)
k q k,q

2
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. Random modes thermalization

The considered system is such that if only one harmonic is excited at the beginning, i.e., one sets as initial condition
zk|2 = E, for a given k and |zq|2 = 0 for all q ̸= k, energy is never shared among Fourier modes due to the lack of
nteraction. In other words, Fourier modes are integrability Liouville–Arnol’d theorem variables, so that no signature of
hermalization can be found by definition looking at such variables. But let us consider a different point of view. The
armonic chain is a system characterized by a set of 2N real coordinate-momenta variables, or by a set of N complex
oordinates, which can be chosen at will. The complex coordinates zk represent just one of the infinitely many choices
vailable. Any random rotation in the N-dimensional complex space leads to another possible system of coordinates. Let
s denote with the symbol

θ = {θ1, . . . , θN}, (8)

he N random angles which define a random rotation in CN and with M(θ ) the unitary matrix, M(θ ) ∈ U(N), which
represent this rotation. In particular we have

M†M = MM†
= 1, (9)

where M† means transpose and complex conjugate. We thus have infinitely many choices of ‘‘random modes’’, which we
define as random rotations of the Fourier modes and indicate as:

zk(θ ) =

N∑
q=1

Mkq(θ ) zq. (10)

It is easy to check that the random rotation does not alter the Poisson parentheses structure between the variables:{
zp(θ ), z∗

q (θ )
}

=

∑
ij

Mpi(θ ) M∗

qj(θ )
{
zi, z∗

j

}
= i

N∑
i=1

Mpi(θ ) M
†
iq(θ ) = i δpq (11)

Clearly, in terms of these random modes the Hamiltonian is not anymore diagonal:

H(z(θ ), z∗(θ )) =

N∑
qp=1

cqp(θ ) z∗

q (θ ) zp(θ ), (12)

where

cqp =

N∑
k=1

ωk M∗

kq(θ ) Mkp(θ ), (13)

with M(θ ) = [M−1(θ )], M(θ ) ∈ U(N).
We then define the energy of the random mode k as

Ek(θ ) = ckk(θ )|zk(θ )|2, (14)

since ckk(θ ) is real then also Ek(θ ) is real. We have in fact by definition ckk(θ ) = c∗

kk(θ ), see Eq. (13). We can thus write
the Hamiltonian by separating the diagonal from the non-diagonal contribution as

H(z(θ ), z∗(θ )) =

N∑
k=1

Ek(θ ) +

N∑
q̸=p

cqp(θ ) z∗

q (θ ) zp(θ ), (15)

and then perform the standard FPUT numerical experiment, which amounts to the numerical study of the relaxational
dynamics when energy is initially fed to a single random mode:

Ek =

{
E0 k = 1
0 k ̸= 1 .

(16)

It is important to stress that, while it is true that at t = 0 the energy of the random mode with k = 1 is the total energy
of the systems, since for all k ̸= 1 we have zk(θ, t = 0) = 0 and hence all non-diagonal terms in Eq. (15) vanish, this
is not true for any t > 0: due to the dynamics energy is shared among random modes and the off-diagonal terms of
Eq. (15) also contribute at later times. We have checked that the amount of energy transferred to the off-diagonal terms
in Eq. (15) amounts to less than the 1% of the total energy, on average in time, so that the random modes still represent
physically meaningful variables, as long as they carry (on average) almost all the energy of the system. In the numerical
simulations we used a symplectic algorithm to study the dynamics of a harmonic chain made of N = 1023 particles. The
configuration of the system is evolved according to its Hamiltonian dynamics in the particles coordinate and momenta

representation.

3
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Fig. 1. Panels (a) and (b) show two different choices of random modes, i.e., two independent choices of the unitary random matrix M(θ ). Main:
ormalized random modes energy spectrum at different times, uk(θ, t) vs k for increasing values of t; Inset: effective number of degrees of freedom
s a function of time, neff (θ, t) vs t . The fact that at t = 0 energy is concentrated on the k = 1 mode, thus guaranteeing overall energy conservation,
s emphasized in Fig. 2.

In agreement with the traditional approach to the Fermi–Pasta–Ulam–Tsingou problem [16–20] we have monitored
long the dynamics the behaviour of the energy spectrum and of the effective number of degrees of freedom neff, an
bservable, defined below in Eq. (19), raising from neff = 0 when energy is concentrated on few modes to neff = 1 when
nergy is perfectly equipartited. The simplest way to study the degree of equipartition is obtained by considering the
pectrum of uk(θ, t):

uk(θ, t) =
⟨Ek(θ )⟩t
⟨Etot (θ )⟩t

, (17)

here ⟨Etot (θ )⟩t =
∑N

k=1⟨Ek(θ )⟩t and we consider cumulative time averages of the kind

⟨Ek(θ )⟩t =
1
t

∫ t

0
ds Ek(θ, s) . (18)

The strategy of considering time averages of single degree of freedom energies is quite common in the FPUT literature [18],
although averages over initial conditions are considered as well [21]. While in non-pathological cases these two kind of
averages are usually expected to yield the same kind of results, there are situations where the choice of initial conditions
and the choice of the averaging procedure are of crucial importance, in particular for the behaviour of transients. This issue
has been investigated in depth for the FPUT model [21–24], for which it has been shown explicitly how some particular
choices of initial conditions, e.g., the choice of Fourier modes initial phases [22], strongly affect the duration of transients.
Quite remarkably, in [24] it was then presented a first evidence that an appropriate choice of conditions (or, more
generally, an appropriate choice of degrees of freedom as we will show in the following) allows to find thermalization
even in the Toda model, a result in perfect agreement with the recent findings of two of us [9]. Coming back to the
definition of neff(θ, t), which, physically, is analogous to an inverse participation ratio, we have that it reads as:

neff(θ, t) =
exp

(
Ssp(θ, t)

)
N

. (19)

here Ssp(θ, t) is the so-called spectral entropy:

Ssp(θ, t) = −

N∑
k=1

uk(θ, t) log uk(θ, t), (20)

a sort of entropy quite common in the FPUT literature [18], which is maximal when the degree of equipartition between
the variables considered is maximal.

The parametric dependence of the spectrum uk(θ, t) on the time variable t that we have found in numerical simulations
is illustrated in Fig. 1 for two different choices of the random rotation θ . Two remarkable observations are in order: first,
equipartition among random modes is fast; second, the phenomenon takes place on the same time-scale for different
choices of the random rotation θ . We have therefore an indication that, apart the Fourier basis, fast relaxation to a thermal
state seems to be the typical phenomenon for a random choice of the basis used to represent the chain configuration.
The inset of each of the two panels of Fig. 1 represents the behaviour of the effective number of degrees of freedom
neff(t): the typical sigmoidal shape with a fast convergence to neff(t) ≈ 1 signals the reaching of equipartition. Let us also
point out a difference between Fig. 1 and similar ones which can be typically found in the literature on the Fermi–Pasta–
Ulam–Tsingou problem, see for instance Fig. 1 in [20]. In the present case, when initially starting with energy only on the
4
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Fig. 2. Behaviour as a function of time of the normalized energy on the random mode with k = 1, uk=1(t) vs t .

Fig. 3. Effective number of degrees of freedom as a function of time, neff (θ, t) vs t: the continuous (black) line represents the average neff (t) over
30 choices of the random modes basis, points represent the individual behaviour of 8 different instances.

k = 1 mode, there is no such thing as the two-stage relaxation process consisting first in the formation of a packet of
excited modes with k close to k = 1 on a short time scale which is then followed by relaxation to equipartition at later
times. This can be seen very clearly from Fig. 1 of the present paper: the energy stored initially on the k = 1 random mode
is shared democratically at all times among all other modes. While from Fig. 1 it might be not clear that a decreasing
amount of energy is left on uk=1, this is clarified by Fig. 2, where it is represented the behaviour of uk=1(t) as a function
of time. The overall trend of energy equipartition between random modes tells us that in this case the ‘‘wave-number’’
k does not represent indeed any length-scale, but is just a label for N independent random combinations of the Fourier
modes. In some sense, anyone of the N random modes plays a role akin to that of a particle in the harmonic chain, as it is
evident from the comparison of the time autocorrelation function shown in Fig. 3 of [6] and the autocorrelation function
discussed later in this work (see Fig. 4). Physically, the difference between random modes and particles is that the former
are all in interaction while the latter have only first neighbour interactions. Despite integrability thermalization is observed
even in the harmonic chain, provided the ‘‘right variables’’ are considered. And, what is most remarkable, thermalization
looks as the typical phenomenon (see Fig. 3 below), while the lack of it is specific only to the representation of the chain
configuration in Fourier space. The idea that in the large-N limit the relevant thermodynamic properties of a system
cannot be tight to a particular choice of coordinates was at the basis of an averaging strategy proposed already in [25] to
capture the essential thermodynamic features of the low temperature glassy phase of an optimization problem.

In Fig. 3 the behaviour of the effective number of degrees of freedom averaged over M = 30 instances of the random
modes, where neff(θ, t) (continuous line in Fig. 3) is defined as

neff(t) =
1
M

M∑
neff(θi, t), (21)
i=1

5
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Fig. 4. Main: time auto-correlation function Ck(t) as a function of time for different choices of the random modes index k, system size N = 1023;
Inset: probability distribution of random-modes energy Ek for some values of k, system size N = 1023.

s compared with the behaviour for single instances of the random modes, neff(θ, t) (points): there is a clear evidence
hat for a chain of N = 1023 the behaviour of neff(θ, t) for each single instance is typical. Let us stress that the time
verage which is implicit in the definition of neff(θ, t) from the definition of uk(θ, t) (see Eq. (17)), is not a necessity
ut is customarily used to smooth out the finite-N fluctuations. At large enough N the same behaviour is obtained from

instantaneous configurations, as pointed out also in a recent paper on the thermodynamic behaviour of an ideal gas [26].

4. Equilibrium dynamics: importance of the large-N limit

Beside the ‘‘standard’’ FPUT-like numerical experiment discussed in the previous section, namely the study of
relaxation from an atypical initial condition to a thermal state, it is important to investigate the equilibrium dynamics of
the system. This will show that thermalization is achieved not only as equipartition among the chosen set of degrees of
freedom, but also in the form of a Boltzmann-like equilibrium distribution of their energies. We present first the numerical
results for the single-mode energy probability distributions, simply defined as the histogram of values taken by Ek. In the
inset of Fig. 4 it is shown that p(Ek), plotted for different values of k, has in all cases a nice exponential behaviour, as
expected from a thermal ensemble:

p(Ek) ∼ exp (−bEk) , (22)

here the value of b, proportional to the inverse of energy per degree of freedom, is identical for all randommodes k. How
o chose the degrees of freedom so that, even in an integrable systems, they thermalize? A conjecture about that, clearly
nspired by the features of the random modes studied here, will be discussed in ‘‘Conclusions’’ paragraph. The second
mportant test of thermalization is to check that the auto-correlation functions of the observables of interest decay in
ime fast enough. Clearly this is an heuristic approach: by definition, since our system is integrable it will always retain
emory of the initial conditions. But one can adopt a pragmatic point of view: just look at the random modes energies
nd ignore that the system is integrable. How does look like an time auto-correlation function Ck(t) of the energy on the

random mode k? Let us define Ck(t) as

Ck(t) =
⟨Ek(t)Ek(0)⟩ − ⟨Ek⟩2

⟨E2
k ⟩ − ⟨Ek⟩2

. (23)

n the main panel of Fig. 4 it is shown the behaviour of Ck(t) for different values of k: the function rapidly decays and
hen oscillates in the vicinity of Ck = 0. How it is possible that an integrable system, moreover characterized by simple
inear interactions, presents such good signatures of an equilibrium behaviour? Isn’t it inconsistent with integrability? The
ay out to this apparent contradiction comes by taking into account the same two points which are the cornerstones of
he Khinchin theorem: the consideration of the right observables and the large-N limit. The dynamics of Fourier modes
mplitudes in the harmonic chain can be described analytically, as it is done, for instance, in a very insightful paper of
azur and Montroll [6]. In fact, already in [6] it was shown that even in the harmonic chain, if one considers the energy
f a single particle of the chain, the time-autocorrelation function decays fast to zero. In [6] the signature of integrability
n the single particle dynamics was traced back to the quasi-periodic oscillations around zero of amplitude N−1/2 in the
time-autocorrelation function. The general picture emerging already from [6] and corroborated by the present results on
random modes is therefore clear: if one considers as observables functions which are a (random) combinations of all the
coordinates diagonalizing the Hamiltonian, integrability effects are small in N . For instance, if one considers the motion
6
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Fig. 5. Time autocorrelation function Ck(t) as a function of time for different choices of the random-modes index k, system size N = 7.

f a single particle in a harmonic chain they are of order O(N−1/2) [6]. For what concerns the present work we have
hown that the autocorrelation function of a random mode energy is for all practical purposes equivalent to that of single
article in the harmonic chain, since they both result from the combination of all Fourier modes. In agreement with the
esults of [6], it is worth showing that even in the present case the fast decay of ⟨Ek(t)Ek(0)⟩ is a large-N effect. Without
oing through a too much detailed finite-size analysis, we show here in Fig. 5 that for small system sizes (e.g., N = 7
articles) the recurrent nature of the integrable dynamics clearly emerges. In Fig. 5 it can be seen how the autocorrelation
unction defined in Eq. (23) depends on time for a harmonic chain of N = 7 particles and for some values of k: it is clear
hat at a characteristic time τ ≈ 4520 the system has gone back to the initial condition.

. Overlaps distribution

Let us now represent in a quantitatively precise manner the statement, already stressed by some of us in [9], that
he variables allowing to see thermalization in an integrable system must be almost uncorrelated to those diagonalizing
he Hamiltonian. The purpose of the present section is therefore to stress, with the help of a quantitative evidence, that
lmost all the infinitely many possible choices of a random basis to represent the chain configuration, all corresponding
o perfectly legitimate semi-canonical change of variables, correspond to variables statistically uncorrelated to Fourier
odes. To this purpose let us introduce a more convenient bra–ket formalism. By considering a chain made of N particles
e represent the harmonics of the chain as an orthonormal vector basis:

|zk⟩ =

√
2

N + 1

{
sin
(

πk
N + 1

)
, . . . , sin

(
πkN
N + 1

)}
, (24)

ith a scalar product defined as:

⟨zq|zk⟩ =

N∑
j=1

(z jq)
∗z jk = δqk, (25)

here

z jk =

√
2

N + 1
sin
(
πkj

N + 1

)
(26)

n this manner any state of the chain can be defined as

|ψ⟩ =

N∑
k=1

zk|zk⟩, (27)

here zk is the quantity defined in Eq. (6). Using this formalism the energy of the system can be for instance represented
s an operator such that

Ĥ|ψ⟩ =

N∑
k=1

ωkzk|zk⟩, (28)

o that the Hamiltonian of the systems simply reads as H(z∗, z) = ⟨ψ |Ĥ|ψ⟩. Then, and here comes the usefulness of this
formalism, it is straightforward to define a change of basis in the representation of the chain:

|zk(θ )⟩ =

N∑
Mkq(θ )|zq⟩ (29)
q=1

7
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Fig. 6. Main: probability distribution P(|q|) of the absolute value of the overlap between a Fourier mode and a random mode, for different sizes N
of the system; Inset: collapsed data for different N .

It then comes natural the definition of the overlap between Fourier modes and random modes,

qkp = ⟨zk(θ )|zq⟩ =

N∑
p=1

M∗

kp(θ )⟨zp|zq⟩ = M∗

kq(θ ). (30)

rom the properties of random unitary matrices it is then possible to compute the probability distribution ρ(|q|) of the
verlap modulus. For the ease of the reader we report this elementary large deviation estimate in the Appendix, quoting
ere only the final result:

ρ(|q|) = 2N|q| exp
(
−N|q|2

)
(31)

y recalling that we are dealing with a complex variable, q ∈ C, the linear dependence on |q| in front ρ(|q|) is simply
he Jacobian for the representation of a complex variable in polar coordinates, so that the probability distribution of the
verlap, P(q) : C → R, is in fact simply a Gaussian with variance 1/N:

P(q) ∝ exp
(
−Nq2

)
, (32)

hich completes our discussion about choosing a set of canonical coordinates which are random combination of the
oordinates which make the integrable nature of the system manifest. In addition to what already observed in [9], in the
resent work we provided some further evidence in favour of the hypothesis that the set of (semi) canonical coordinates
hich behaves ‘‘thermally’’ are ‘‘many’’, most likely those corresponding to all the random unitary transformations
(θ ) : CN

→ CN not too close to the identity. It is remarkable how the large-N prediction of Eq. (31) is in good
greement with the numerical estimates of the probability distribution of overlaps at finite N , which is shown in Fig. 6.
he numerical results of this paper cannot be clearly conclusive, but strongly suggest that a generic choice of a random
odes basis allows to detect good thermalization properties. Once proved more rigorously, this result would be very close

o a property outlined in [27] for random choices of eigenfunction basis in quantum systems.

. Conclusions

The results presented in this work aim at clarifying a foundational problem in statistical mechanics: is dynamical
haos really a necessary condition to guarantee the thermalization of systems with many degrees of freedom? Our
esults generalize and strengthen the conclusions drawn for the Toda model in [9]: thermalization is achieved even
n an integrable system, provided that an appropriate choice of the observables is made. The study of the harmonic
hain added an insight: we have shown that in this system there are many (ideally, infinitely many) different choices
f canonical coordinates which allow to detect thermalization. This evidence tells us that the lack of equilibrium is really
specific property of the coordinates which diagonalizes the Hamiltonian. Robust thermodynamic properties must be

ndependent from the choice of the coordinates used to write the partition sum, an idea already exploited with success in
eplica calculations for ordered systems with a glassy phase [25]. This idea, which is substantiated mathematically by the
hinchin approach and of which we presented numerical evidence in this paper, tells us that even for integrable systems
here are no a priori reasons to not expect the validity of equilibrium ensembles. This of course is not in contradiction
ith well established frameworks for integrable systems such as the Generalized Gibbs Ensemble [10–13,28–31], the

atter being just specific of particular choice of the canonical coordinates. At the same time it is clear that the possibility
8
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f unveiling specific properties of the dynamics crucially depends on the choice of variables, in particular for system where
rgodicity is spontaneously broken as spin glasses [32–35] or systems highly structured and intrinsically characterized
y multiple length/time scales like macro-molecules [36]. From the results of the present work and from that of [9],
e are led to the conjecture that the observables following a Boltzmann–Gibbs statistics could be those defined in the

ollowing manner. Let Ai with i = 1, . . . ,N be the N conserved quantities of our integrable system. An observable with
ood thermal properties should be each function B ‘‘independent enough’’ from any of the conserved quantities, that is,
ny function whose Poisson parenthesis with each conserved quantity is small in N , say {Ai, B} ∼ 1/

√
N for each i. This

condition is for instance the one fulfilled by what we have called ‘‘random modes’’.
As a final remark, let us notice that a generalization of the present results to quantum mechanics may provide

further insights on the thermalization mechanism in quantum isolated systems [37], a theoretical issue which is
the object of renewed interest thanks to the possibilities, offered by new technologies, to manipulate nanostructured
materials suitable for quantum computing tasks. The point made by our findings on the irrelevance of chaos for the
thermalization of harmonic systems are in fact quite similar to the Von Neumann quantum ergodic theorem approach
[38,39]. According to the latter thermalization is in fact related to an appropriate choice of observables, rather than to
the spectral properties of the Hamiltonian. The same scenario, where the choice of observables plays a central role,
is the one underlying the Eigenstate Thermalization Hypothesis [40,41]. Numerical experiments to better explore the
analogies between statistical mechanics foundations in classical and quantum systems, for instance simulations aimed
at investigating thermal ensembles applicability in the presence of an external driving [42], in particular the study of
fluctuation–dissipation relations, would be for instance very interesting.
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Appendix

In this Appendix we show how to compute the probability distribution of the generic matrix elementMki (for simplicity
of notation, let us omit the angle θ). To this aim it is possible to exploit the fact that each row/column of the matrix
represents one (normalized) element of an eigenvector basis of CN , so that the following condition holds:

N∑
i=1

|Mki|
2

= A ∀k , (33)

here A is the normalization that we will fix to 1 at the end of the calculation. Changing the notation so that: ζi = Mki,
e have that the volume spanned by the elements of a row in M reads:

ΩN (A) =

∫ N∏
i=1

d Re(ζi)d Im(ζi) δ

(
A −

N∑
i=1

|ζi|
2

)
, (34)

so that the joint probability density is:

ρ(ζ1, . . . , ζN |A) =
1

ΩN (A)
δ

(
A −

N∑
i=1

|ζi|
2

)
. (35)

Since we are looking for the distribution of a single matrix element, we are interested in the marginal:

ρ(ζ1|A) =

∫ N∏
i=2

d Re(ζi)d Im(ζi) ρ(ζ1, . . . , ζN |A) . (36)

In order to compute ΩN (A), let us switch to polar coordinates
{
Re(ζi) = ri cos(φi)
Im(ζi) = ri sin(φi)

:

ΩN (A) = (2π )N
∫

∞
[

N∏
dri ri

]
δ

(
A −

N∑
r2i

)
. (37)
0 i=1 i=1

9



N. Cocciaglia, A. Vulpiani and G. Gradenigo Physica A 601 (2022) 127581

a

h
e

h
w
u
f

a

w
s
t
W
G

R

In order to get to the result, we compute its Laplace transform:

ΩN (µ) =

∫
∞

0
dA e−µA ΩN (A)

= (2π )N
∫

∞

0

[
N∏
i=1

dri ri

]
exp [−µ

∑
i

r2i ] =

=

[
2π
∫

∞

0
dr r e−µr2

]N
=

(
π

µ

)N

= πN exp [−N logµ] (38)

nd then its inverse transform by applying the saddle point approximation, in the large-N limit:

ΩN (A) =
1

2π i

∫ µ0+i∞

µ0−i∞
dµ eµA ΩN (µ)

=
πN

2π i

∫ µ0+i∞

µ0−i∞
dµ eN[µa−logµ]

=
πN

2π i
exp

{
N[µ∗(a)a − logµ∗(a)]

}
, (39)

aving put a = A/N and defined µ∗(a) as the saddle point value, which can be explicitly computed using the saddle point
quation:

∂

∂µ
[µa − log(µ)] = 0 H⇒ µ∗

=
1
a

=
N
A

= N , (40)

aving finally imposed the normalization condition: A = 1 −→ a = 1/N . Since we selected the value of µ
hich corresponds to the correct normalization of eigenvectors, we can simply compute the Laplace transform of the
nnormalized marginal ρ(ζ |A) and plug in the correct value of µ∗ in order to estimate its leading behaviour. Namely, we
irst consider:

ρ(r|A) ∝

∫
∞

0

[
N∏
i=2

dri ri

]
r δ

(
A − r2 −

N∑
i=2

r2i

)
(41)

nd then its Laplace transform, with the same procedure we already employed:

ρ(r|µ) ∝ θ (r) re−µr2 µ∗
=N

−→ ρ(r|N) = N θ (r) re−Nr2 , (42)

here θ (·) is the Heaviside function and N the normalization factor. Therefore, considering that ri = |ζi| = |Mki|, it is been
hown that the probability distribution of the overlap between one of the normal modes and one of the random ones, in
he large-N limit, is the product of a linear function and a Gaussian centred in r = 0 with standard deviation: σg ∼ 1/

√
N .

e can easily compute the normalization factor of the distribution, as well as the mean value and the variance, by solving
aussian integrals; the results are:

A = 2N

⟨r⟩ =

√
π

4N

σ 2
= ⟨r2⟩ − ⟨r⟩2 =

(
1 −

π

4

) 1
N

(43)

In conclusion, the probability distribution for the overlaps |q| (dropping the indices) reads:

ρ(|q|) = 2N|q|e−N|q|2 (44)
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