The popularity of the cluster analysis in the tourism field has massively grown in the last decades. However, accordingly to our review, researchers are often not aware of the characteristics and limitations of the clustering algorithms adopted. An important gap in the literature emerged from our review regards the adoption of an adequate clustering algorithm for mixed data. The main purpose of this article is to overcome this gap describing, both theoretically and empirically, a suitable clustering algorithm for mixed data. Furthermore, this article contributes to the literature presenting a method to include the “Don’t know” answers in the cluster analysis. Concluding, the main issues related to cluster analysis are highlighted offering some suggestions and recommendations for future analysis.

A Tourist Segmentation Based on Motivation, Satisfaction and Prior Knowledge with a Socio-Economic Profiling: A Clustering Approach with Mixed Information / D'Urso, P.; De Giovanni, L.; Disegna, M.; Massari, R.; Vitale, V.. - In: SOCIAL INDICATORS RESEARCH. - ISSN 0303-8300. - 154:1(2021), pp. 335-360. [10.1007/s11205-020-02537-y]

A Tourist Segmentation Based on Motivation, Satisfaction and Prior Knowledge with a Socio-Economic Profiling: A Clustering Approach with Mixed Information

D'Urso P.;Massari R.;Vitale V.
2021

Abstract

The popularity of the cluster analysis in the tourism field has massively grown in the last decades. However, accordingly to our review, researchers are often not aware of the characteristics and limitations of the clustering algorithms adopted. An important gap in the literature emerged from our review regards the adoption of an adequate clustering algorithm for mixed data. The main purpose of this article is to overcome this gap describing, both theoretically and empirically, a suitable clustering algorithm for mixed data. Furthermore, this article contributes to the literature presenting a method to include the “Don’t know” answers in the cluster analysis. Concluding, the main issues related to cluster analysis are highlighted offering some suggestions and recommendations for future analysis.
2021
Fuzzy clustering; Mixed data; Visitors; “Don’t know” answers
01 Pubblicazione su rivista::01a Articolo in rivista
A Tourist Segmentation Based on Motivation, Satisfaction and Prior Knowledge with a Socio-Economic Profiling: A Clustering Approach with Mixed Information / D'Urso, P.; De Giovanni, L.; Disegna, M.; Massari, R.; Vitale, V.. - In: SOCIAL INDICATORS RESEARCH. - ISSN 0303-8300. - 154:1(2021), pp. 335-360. [10.1007/s11205-020-02537-y]
File allegati a questo prodotto
File Dimensione Formato  
Pubblicazione 4.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1637525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact