We study the linear excitations around typical energy minima of a mean-field disordered model with continuous degrees of freedom undergoing a random first order transition. Contrary to naive expectations, the spectra of linear excitations are ungapped and we find the presence of a pseudogap corresponding to localized excitations with arbitrary low excitation energy. Moving to deeper minima in the landscape, the excitations appear increasingly localized while their abundance decreases. Beside typical minima, there also exist rare ultra-stable minima, with an energy gap and no localised excitations.

Linear low energy excitations in fully-connected models of glasses / Franz, Silvio; Nicoletti, Flavio; Ricci-Tersenghi, Federico. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2022:5(2022), p. 053302. [10.1088/1742-5468/ac6518]

Linear low energy excitations in fully-connected models of glasses

Nicoletti, Flavio;Ricci-Tersenghi, Federico
2022

Abstract

We study the linear excitations around typical energy minima of a mean-field disordered model with continuous degrees of freedom undergoing a random first order transition. Contrary to naive expectations, the spectra of linear excitations are ungapped and we find the presence of a pseudogap corresponding to localized excitations with arbitrary low excitation energy. Moving to deeper minima in the landscape, the excitations appear increasingly localized while their abundance decreases. Beside typical minima, there also exist rare ultra-stable minima, with an energy gap and no localised excitations.
2022
random matrix theory and extensions; spin glasses; energy landscapes; mode coupling theory
01 Pubblicazione su rivista::01a Articolo in rivista
Linear low energy excitations in fully-connected models of glasses / Franz, Silvio; Nicoletti, Flavio; Ricci-Tersenghi, Federico. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2022:5(2022), p. 053302. [10.1088/1742-5468/ac6518]
File allegati a questo prodotto
File Dimensione Formato  
Franz_Linear low energy_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1637083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact