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Abstract. We study the linear excitations around typical energy minima of
a mean-field disordered model with continuous degrees of freedom undergoing
a random first order transition. Contrary to naive expectations, the spectra of
linear excitations are ungapped and we find the presence of a pseudogap corre-
sponding to localized excitations with arbitrary low excitation energy. Moving
to deeper minima in the landscape, the excitations appear increasingly localized
while their abundance decreases. Beside typical minima, there also exist rare
ultra-stable minima, with an energy gap and no localised excitations.
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1. Introduction

The nature of low energy excitations in glasses has attracted a lot of attention in the
last few years [1–17]. Though glasses behave as solids, disorder induces low energy exci-
tations—both of linear and non-linear—of very different nature to the ones of ordered
solids. Remarkably, low energy excitations of glasses display a high degree of univer-
sality. In addition to usual phonons, in a variety of model glassy systems one finds the
presence of ungapped and quasi-localized low energy excitations with density of states
(DOS) behaving quadratically at low frequencies ρQLS(ω) ∼ A4ω4 [1–13]. The ω4 behav-
ior seems to be very general, independent of the system [9, 10, 18], preparation protocol
[1] and even of the space dimension [5]. The coefficient A4 on the other hand depends on
the system and the preparation protocol. It appears that deeper states in the landscape,
corresponding to better optimized glasses, have fewer and fewer low energy excitations,
reflected by smaller and smaller values of A4, and correspondingly, the excitations are
more and more localized [12, 13]. This spectrum of localized modes was first rational-
ized through phenomenological theories [19, 20], while new predictions have recently
enriched the picture. In [21–23], a mean-field model of unbounded soft spins inspired
by [19] is exactly solved, finding a regime of parameters with a D(ω) ∼ ω4 spectrum.

In addition to typical ungapped minima, found by usual minimization protocols,
it has been noticed in [24] that in some model glasses gapped mimima can be found
through the use of smart minimization protocols that include particle swap [25, 26].
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In such ultrastable minima the ω4 spectrum is cut-off at low frequencies and localized
excoriations are suppressed.

A theoretical comprehension based on microscopic models is however desirable. In
such a context, long range spin glasses with continuous degrees of freedom provide a
natural playground, the Hessian matrices turn out to be random matrices from classical
ensembles and their spectral properties can be simply derived. Emblematic is the case of
spherical disordered models [27, 28] and particles in high dimensional random landscapes
where the Hessian belongs to either the Gaussian orthogonal ensemble (GOE)—for
instance, the spherical p-spin models [27, 28] and related random landscape models
[29, 30]—or Wishart ensembles [31] (perceptron model), with a constant shift on the
diagonal that ensures that all eigenvalues are positive. In these cases, either the minima
are gapped and the minimal excitations have a positive energy, or there is a square-
root pseudo-gap, the spectrum behaves as ρ(λ) ∼

√
λ and the non-linear (spin-glass)

susceptibility, associated with the inverse second moment of λ, is divergent. In all these
cases, eigenvectors are fully delocalized.

Recent work on soft-spin [21] and vectorial-spin [32] disordered models, however, has
emphasized that even with long-range interactions non-trivial spectral pseudo-gaps can
be present and some degree of localization is possible.

The aim of this paper is to extend our work on a spin-glass model with vectorial
spins [32], where we showed that stable minima with a finite spin glass susceptibility,
still have low energy quasi-localized excitations, resulting in a pseudo-gap in the spec-
tral density. We are interested in studying glassy minima of long-range models with
a glass transition of the one replica symmetry broken/random first order transition
(1RSB/RFOT) kind [33]. These provide good mean-field models of the glass transition
and have a finite complexity (configurational entropy) of stable glassy minima in a finite
interval of low energy. We then consider a natural generalization of the p-spin model to
vector spins [34–36], characterize the complexity of the energy minima, and study the
spectral properties of the corresponding Hessian matrices. We find that typical stable
minima have quasi-localized low energy excitations and no spectral gap. In addition,
there are rare ultrastable minima where localized excitations are suppressed and the
spectrum is gapped.

The structure of the paper is as follows: in section 2 we define the model and study
its minima. In section 3 we study the complexity as a function of the energy. Then
we study the spectral density in section 4 and the eigenvector statistics in section 5.
In section 6 we study rare ultra-stable minima, where localized excitations are absent.
Finally, in the discussion we draw our conclusions.

2. The model

We consider the following version of a p-spin model with vector spins. We have Nm-
dimensional vector variables S i with i = 1, . . . , N such that |Si|2 =

∑m
α=1(S

α
i )2 = 1,

interacting through a disordered Hamiltonian

H[S] = −
∑

p

ap

∑

i,α

J
α1,...,αp

i1,...,ip
Sα1

i1
. . . S

αp

ip
, (1)
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where the couplings J
α1,...,αp

i1,...,ip are Gaussian variables symmetric over all the indexes but

otherwise independent, with zero mean and variance (J
α1,...,αp

i1,...,ip )2 = p!
2 N−(p−1). The model

generalizes to O(m) spins the mixed p-spin model usually considered for Ising or spher-
ical variables. It differs from the model considered by Panchenko in [36] by the fact
that here all the spin components interact with each other, while in that model only
components with the same label interact. This is a minor difference that does not affect
the physics and it is only for notational simplicity that we choose the present version.
As in the usual mixed p-spin model, an alternative formulation of the model is provided
by defining the Hamiltonian as a Gaussian function with correlation function

H[S]H[S ′] = Nf(q(S,S ′)), (2)

where q(S ,S ′) is the overlap

q(S,S ′) =
1

N

N∑

i=1

Si · S ′
i, (3)

and the function f is

f(q) =
1

2

∑

p

a2
pq

p. (4)

In this paper, we concentrate on the cases m > 2 and the pure monomial case where a
single ap with p > 2 is non-vanishing.

2.1. Minima of the Hamiltonian

The equations defining the minima of the model state in that each spin is aligned with
its molecular field:

∂H[S]/∂Sα
i + µiS

α
i ≡ ∂Hα

i + µiS
α
i = 0, (5)

with

µi = −Si · ∂Hi = |∂Hi|. (6)

We are interested in low temperature linear excitations around the minima of energy
E. These are ruled by the Hessian matrix. The Hessian, which we will implicitly think
to be restricted to fluctuations orthogonal to each of the S i, can be written as

Mαβ
ij = ∂∂Hαβ

ij + µiδ
αβ
ij . (7)

It is well known in these problems [28, 37] that independently of the value E of the
energy, the matrix ∂∂H can be considered as a GOE Wigner–Dyson matrix with ran-

dom Gaussian i.i.d. elements with variance (∂∂Hαβ
ij )2 = f′′(1)/N . This can be seen from

the explicit computation of the moments of the matrix elements and their mutual corre-
lations [37]. The Hessian M is therefore a random matrix of the Porter–Rosenzweig
(or deformed Wigner–Dyson) ensemble [38, 39] with elements µi on the diagonal.
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Once knowing the µi, the statistical properties of eigenvalues and eigenvectors can be
obtained by the ‘local resolvent’ elements Gαα

ii (λ) = [(M − λ + iε)−1]ααii , which verify the
well-known equation

∑

α

Gαα
ii (λ) = (m − 1)

1

µi − λ− f′′(1)G(λ)
, (8)

and G(λ) =
∑

i,αG
αα
ii (λ)/N . Notice that for λ = 0, Gαα

ii (0) is just the local susceptibility
of the spin S i to an applied field on site i. This should be a positive quantity for all i
implying that µi > f ′′(1)G(0) for all i [40–43].

In order to study the stability properties of the minima we therefore need access to
the distribution of the molecular fields µi. Before addressing this task, let us relate the
true molecular field moduli µi to the ‘cavity fields’: that is the molecular fields computed
when the ith variable is removed from the system.

2.2. A glimpse of the cavity method

At the basis of the application of the ‘cavity method’ [44], there is the hypothesis that
the solutions to equation (5) are continuous upon removal or addition of a single spin.
Suppose that a spin configuration S j solves the complete set of equation (5), which
includes the coupling with the spin i. Thanks to the fact that couplings are small, we
can use linear response theory to relate S j to the corresponding solution S j→i where the
spin i is removed. We then write

Sα
j = Sα

j→i +
∑

β,γ

χαβ
jj ∂∂Hβγ

ji Sγ
i , (9)

which, introducing the cavity field hi = |∂Hi(S→i)| (the notation S→i means that the
spin i is removed), allows us to conclude

µi = hi + f′′(1)G0 with G0 =
1

N

∑

αj

χαα
jj . (10)

While equation (10) is generally valid for all minima, it does not inform us about the
distribution of the cavity fields and its dependence on the energy level. We can obtain
this information through the study of the complexity (configurational entropy) of typical
minima with fixed energy E. Notice that equation (10) allows us to write a self-consistent
equation for the resolvent from equation (8) that reads

G(λ) = (m − 1)

〈
1

h − λ− f′′(1)[G(λ) − G0]

〉
, (11)

where the angular average is performed on the (still unknown) distribution of the cavity
fields. Equation (11) implies that the susceptibility inside a state is related to the first
inverse moment of the field distribution,

χ = G0 = G(0) = (m − 1)

〈
1

h

〉
, (12)
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while the spin glass susceptibility, χsg = 1
N Tr M−2 = ∂G

∂λ

∣∣
λ=0

reads

χsg =
1

f′′(1)

1 − Λ

Λ
, (13)

Λ = 1 − (m − 1)f′′(1)

〈
1

h2

〉
, (14)

leading to the stability condition Λ > 0. It can be shown that Λ is the ‘replicon
eigenvalue’ appearing in the T = 0 replica formalism, and whose positivity is necessary
for stability.

3. The complexity

According to the theory developed by Monasson in [45], the complexity of stable states
can be computed through the replica method studying the replica symmetric free-energy
for a non-vanishing number of replicas n. Compared with other existing methods, this
has the advantage that with the same token one can study both thermodynamics and
the properties of the metastable states. We need then to consider the average partition
function of n replicas at temperature T = 1/β where all the replicas have a mutual
overlap q:

Zn =

∫
dS exp

(
−β

n∑

a=1

H[Sa]

)
∏

a,b

δ(Sa · Sb − Nq).

At the saddle point for q, the free-energy as a function of n, considered now as a positive
real number, is related to the Legendre transform of the complexity of metastable states
as a function of the free-energy g by

G(n, T ) =
1

N
log Zn = Σ(g, T )− βng, (15)

at the point where Σ′(g) = βn. In order to obtain the complexity of the energy minima,
one should consider the limit T → 0 and n → 0 with y = βn fixed: the result is G0(y) =
Σ(E) − yE. A standard calculation that we reproduce in the appendix provides the
expression of the replica symmetric finite n free-energy as follows:
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G(n, T ) =
nβ2

2
[f(1) + (n − 1)(f(q) − qf′(q)) − f′(q)]

+ log




∫∞

0 dh hm−1e−
h2

2f′(q) Y (βh)n

∫∞
0 dh hm−1e−

h2

2f′(q)



 ,

Y (u) = (2 π)m/2
Im−2

2
(u)

u
m−2

2
,

(16)

where Iν(u) is the modified Bessel function of order ν. The overlap q between the replicas
verifies the saddle point equation

q =

∫∞
0 dh hm−1 exp

[
− h2

2f′(q)

]
Y (βh)n−2Y ′(βh)2

∫ ∞
0 dh hm−1 exp

[
− h2

2f′(q)

]
Y (βh)n

. (17)

From the replica free-energy one can also compute the ‘replicon eigenvalue’ Λ, whose
positiveness is a necessary stability condition for the free-energy (16). Its expression is
rather lengthy and we give it in appendix A.

Equation (17) has always a trivial q = 0 solution with vanishing complexity. Depend-
ing on the temperature, two q > 0 solutions can appear. The one with a small value of
q is always unstable. The one with a larger q can be stable or unstable depending on
the sign of Λ. From simple thermodynamics, we get the complexity of metastable states
at temperature T as a function of the internal free-energy g:

g = − 1

β

∂G
∂n

Σ = −n2∂G/n

∂n
. (18)

The complexity of equilibrium states at temperature T is obtained, as usual, considering
the limit n → 1 in the previous formulae. Different values of n, on the other hand, allow
us to explore different families of metastable states, which have a collective vanishing
weight at equilibrium. Notice that for fixed n and T , the present analysis gives us access
to the distribution of the cavity field h. This distribution can be read directly from
equation (16) and is written as:

P (h) =
hm−1 exp

[
− h2

2f′(q)

]
Y [βh]n

∫ ∞
0 dh hm−1 exp

[
− h2

2f′(q)

]
Y [βh]n

. (19)

The behavior of metastable states is qualitatively similar to the case of the familiar
spherical p-spin model and closely follows the RFOT pattern. The model is paramagnetic
at high temperature, equation (17) has only the q = 0 solution and the Gibbs measure
is concentrated on a single pure state. Below a dynamical transition temperature T d

ergodicity is broken. In the interval of temperatures T K, T d an exponential number
of mutually inaccessible metastable states dominates the equilibrium measure: in this
situation equation (17) admits a stable solution with q > 0. Below T K the number of
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Figure 1. (Top) The equilibrium complexity Σ for the pure models with m = 4
and p = 3 (blue), p = 4 (red) and p = 5 (green). The complexity is different from
zero in the interval of temperatures (TK,T d) and vanishes at TK. The value of the
configurational entropy at T d is Σd = 0.0627 787 (p = 3), Σd = 0.220 444 (p = 4),
and Σd = 0.396 359 (p = 5). (Bottom) The replicon eigenvalue Λ for the pure models
with m = 4 and p = 3 (blue), p = 4 (red) and p = 5 (green). The replicon eigenvalue
vanishes at T d as (Td − T )1/2.

states is sub-exponential, and the equilibrium measure concentrates on the lowest free-
energy states. We notice that the replicon eigenvalue, which is vanishing for the states
that dominate at T d, is positive at all temperatures below.

In figure 1, we show the equilibrium complexity and the replicon eigenvalue as a
functions of T , for m = 4 and p = 3, 4, 5. Notice that Λ is positive for T < T d and
vanishes at T d as Λ ∼ (Td − T )1/2.

The number of stable energy minima can be obtained performing the limit of G for
β →∞, n → 0, keeping the value y = nβ fixed. In this case, important simplifications
occur and, observing that Y (βh)n ≈ eyh, we get

G0(y) =
1

2
y2 (f(1) − f′(1)) + log




∫∞

0 dh hm−1 exp
(
− h2

2f′(1) + yh
)

∫ ∞
0 dh hm−1 exp

(
− h2

2f′(1)

)



 , (20)
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where the last term can be written in terms of confluent hypergeometric functions

∫∞
0 dh hm−1e−

h2

2f′(1)
+yh

∫ ∞
0 dh hm−1e−

h2

2f′(1)

= 1F1

(
m

2
;
1

2
;
y2f′(1)

2

)

+
Γ
(

m+1
2

)

Γ
(

m
2

) y
√

2f′(1)1F1

(
m + 1

2
;
3

2
;
y2f′(1)

2

)
. (21)

The cavity field distribution in this limit takes the simple form of a reweighed chi
distribution:

P (h) = p0h
m−1 exp

[
− h2

2f′(1)
+ yh

]
, (22)

where p0 is a normalization constant

p0 =
1

∫∞
0 dh hm−1 e−

h2

2f ′(1)
+yh

≡ 1

Z0
. (23)

The replicon eigenvalue exactly takes the form in equation (13)

Λ = 1 − (m − 1)f′′(1)

〈
1

h2

〉
. (24)

The study of Λ shows that the solution giving the complexity as a function of energy is
stable around the ground state energy Egs, and only becomes unstable at some higher
values Emg of the energy before disappearing at E last [46]. In order to study the com-
plexity beyond Emg replica symmetry breaking should be included [47, 48], a task that
we will not undertake in this paper. The complexity of the energy minima within the
1RSB approximation and the corresponding values of the replicon eigenvalue are shown
in figure 2.

Comparing figures 1 and 2, we notice that Σd < Σmax, where the number of energy
minima is much larger than the maximum number of equilibrium states (those domi-
nating the measure at T d). This feature is at variance to what has been observed in the
spherical pure p-spin model [49], where the lack of chaos in temperature preserves the
number of states in the whole range of temperatures in the spin glass phase. Instead,
it reminds what has been observed in the Ising p-spin model [50] and in the spherical
mixed p-spin model [51], where the complexity of dominating states may change with
the temperature.

4. The spectral density

We now have all the elements for studying the spectral density of the Hessian matrix in
the energy minima from equations (11) and (22). Let us first make an argument allowing
to estimate the spectrum in the region

Re G(λ) − G0 * 1, Im G(λ) * 1. (25)

https://doi.org/10.1088/1742-5468/ac6518 9
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Figure 2. (Top) The complexity of the energy minima for the pure models with
m = 4 and p = 3 (blue), p = 4 (red) and p = 5 (green). The maximum complexity is
Σmax = 0.0760 961 (p = 3), Σmax = 0.236 176 (p = 4) and Σmax = 0.409 372 (p = 5).
The number of stable minima is considerably larger that the number of states at
T d. (Bottom) The replicon eigenvalue in the energy minima for the pure models
with m = 4 and p = 3 (blue), p = 4 (red) and p = 5 (green). Notice that here the
replicon eigenvalue vanishes as Emg − E, although the slope is very large: we have
|Λ′(Emg)| + 23, 82, 212 respectively for p = 3, 4, 5.

In order to make the argument simpler, let us assume that m > 3 so that
〈

1
h3

〉
< ∞. In

that region, the leading contribution to the integral in equation (11) can be estimated
expanding the denominator for small (but non vanishing) values of λ,

G(λ) + (m − 1)

[〈
1

h

〉
+

〈
1

h2

〉
[λ + f′′(1)(G(λ) − G0)]

+

〈
1

h3

〉
[λ + f′′(1)(G(λ) − G0)]

2
]

, (26)

which gives
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ρ(λ) ∝ Im G(λ) ∝
√
λ− λ∗, (27)

for λ > λ∗ ≡ Λ2

4(m − 1)f′′(1)
〈

1
h3

〉 . (28)

This expression would suggest the existence of a spectral gap λ∗ ∼ Λ2 that vanishes
only on marginal states where Λ = 0. However, the expansion in equation (26) is not
valid for λ→ 0. In fact, any distribution of cavity fields extending its support to h = 0 is
incompatible with a spectral gap, because close to λ = 0 we have Re G(λ) − G0 = χsgλ
and the real part of the denominator in equation (11) reads h − λ/Λ. That is, for all
the minima but the marginal ones, if we had to admit ImG = 0, we would find that the
integral in equation (11) is divergent. The only possible solution is to have ρ(λ) > 0 for
any λ > 0, which is a pseudo-gap for λ < λ∗.

Detailed estimates presented in [32] allow us to conclude that, whenever the field
distribution behaves as P (h) ∼ hm−1 close to the origin (which is the case here), in a
stable minimum we have Λ > 0 and a spectral density behaving for small λ as

ρ(λ) =
1

Λ
P

(
λ

Λ

)
≈ Amλ

m−1 Am =
p0

Λm . (29)

This is a pseudo-gap with a power law directly related to the cavity fields ‘DOS’ in
the origin and is independent from the energy of the minimum. The prefactor A, con-
versely, depends on the energy and diverges for Λ→ 0. Notice that p0 also depends on
Λ implicitly, since it depends on y, which is a function of Λ. In figure 3, we show the
dependence of the prefactor Am with respect to the energy E, in the case of the pure
p-spin with m = 4 and p = 3, 4, 5. We can see that this term has a strong dependence
on the energy, varying by several order of magnitudes in the energy range of the 1RSB
landscape. This feature is consistent with what observed for the computer glasses cited
in the introduction of this work: the more the minimum is stable and low in energy, the
smaller the prefactor is and, consequently, the more localised the excitations are (see
discussion below).

As to the case E = Emg or Λ = 0, it was shown in [32] (and we convey the same
calculation in appendix B) that the spectrum behaves as

ρ(λ) ≈
√
λ m > 3, (30)

ρ(λ) ≈

√
λ

| log λ| m = 3. (31)

For finite Λ, the value λ∗ ∝ Λ2, defined in equation (28), marks the crossover from the
λm−1 to the

√
λ behaviors of the spectrum. In figure 4 we display the spectrum ρ(λ)

for m = 4, p = 3 and some values of y in the range [ymg, ygs] where ymg = 1.42 578 and
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Figure 3. The prefactor A4 of stable glassy minima is smaller for better optimized
glasses. The dependence on the energy level E is very strong for high values of p:
even far from Emg this quantity varies by several orders of magnitude.

ygs = 1.94 874. In the plot, we check the scaling laws in equations (29) and (30) and
show the position of the crossover λ∗ for each value of y.

5. The eigenvectors

The statistics of eigenvectors can be obtained from the study of the resolvent. It has
been shown in [32] that the eigenvector components ψα

i corresponding to an eigenvalue
λ in the bulk of the spectrum are Gaussian variables with a variance given by

〈|ψα
i |2〉 =

m − 1

Nm|hi + f′′(1)(G0 − G(λ)) − λ|2
. (32)

where the mean is performed at a fixed value of hi [52]. Notice that the components α
are not all independent, as ψi should be perpendicular to the spin S i in the minimum
under consideration. As a result, the inverse participation ratio, IPR(λ) =

∑
iα〈(vα

i )4〉,
can be written as

IPR(λ) =
1

N
i(λ) =

3(m2 − 1)

N(m + 2)

∫
dh

P (h)

|h + f′′(1)(G0 − G(λ)) − λ|4 . (33)

In the bulk, the IPR is of order O(N−1) as it should for a dense matrix. However, close
to the edge the eigenvectors are more and more localized. The quantity i(λ) grows and
diverges at the edges. In particular, at the lower edge one can see that

i(λ) ∼ Λ3

(
λ

Λ

)−2(m−1)

, (34)
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Figure 4. (Top) The spectrum of the Hessian in log–log scale for m = 4 and p = 3.
The curves for y < ymg cross-over from a λ3 behavior to a

√
λ behavior at λ∗ marked

by colored vertical dashed lines. In the bulk of the spectrum, the spectral density
does not depend on y. (Bottom) The scaled bulk inverse participation ratio i(λ)
as a function of λ for m = 4 and p = 3 on a log–log scale. Notice the different
behavior between the stable minima and the marginal one. The curve at ymg diverges
logarithmically, while the other curves behave as λ−6 for λ→ 0.

for stable minima and

i(λ) ∝






√
| log λ|/λ m = 3

| log λ| m = 4

const m > 4

, (35)

for the marginal ones. Notice that the minimum eigenvalues λmin are of the order λmin ∼
ΛN−1/m for stable minima and λmin ∼ N−2/3 for marginal ones. It is clear that for stable
minima equation (34) cannot hold until λ ∼ ΛN−1/m, as this would imply an IPR of order
N 1−2/m, which badly violates the bound IPR ! 1. This suggest that the IPR could remain
finite for the lower eigenvalues, as we will see is the case in the next section; we shall then
refer to the IPR defined by equation (34) as bulk IPR. For marginally stable minima, the
IPR of the smallest eigenvalue vanishes in the thermodynamic limit, meaning that the
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softest modes are also delocalised; according to (35) the IPR of λmin ∼ N−2/3 goes to zero
for N →∞ as N−2/3|ln N |1/2 for m = 3, as N−1 ln(N ) for m = 4 and as N−1 for m " 5.
In figure 4, we show the rescaled bulk IPR, i(λ), for m = 4, p = 3 and some values of y:
stable minima have a rapidly diverging i(λ) ∼ λ−2(m−1), whereas at the critical point the
divergence is logarithmically slow, in accordance with equations (34) and (35). Notice
that in the case of stable minima the IPRs of lowest eigenvalues should depart from the
curves shown at a value λ∗ + Λ2.

The necessity of the presence of localised excitations in the limit λ→ 0 can be under-
stood in a more elegant way, by considering the normalisation condition of eigenvectors
given by equation (32)

1 =
1

N

∑

i

f′′(1)(m− 1)

|hi + f′′(1)[G0 − G(λ)] − λ|2
, (36)

which is valid for all λ in the support of the spectral density. If one assumes that all
sites provides a fine contribution to normalisation in the λ→ 0 limit, the normalisa-
tion condition then would be violated, since for E < Emg the replicon is positive and
equation (36) would imply 1 = (m − 1) f′′(1)

N

∑
i1/h2

i , i.e. Λ = 0. In order to correctly sat-
isfy the normalisation condition at the lower edge, it is necessary to have a condensate
component, which yields a finite weight to normalisation in the thermodynamic limit:

1 = f′′(1)(m − 1)

〈
1

h2

〉
+ |.ψC |2. (37)

This phenomenon, reminiscent of the Bose–Einstein condensation mechanism, is a very
general feature of deformed Wigner matrices [53].

5.1. The spectral edge

It is interesting to study the statistics of the minimal eigenvalues and their relations
to the low fields. This can be done using perturbation theory [54] around the diagonal
matrix, which has the fields hi as eigenvalues, which, without loss of generality we
will suppose to be ordered in increasing order. The low eigenvalues of deep minima
are associated with sites with small cavity field hi with i finite for N →∞, which for
deep minima are such that hi ∼ N−1/m and hi+1 − hi ∼ N−1/m. In fact in correspondence
with the lowest fields hi, one finds multiplets of quasi-degenerate eigenvalues λa

i , a =
1, . . . , m − 1 with a typical splitting of order N−1/2 * N−1/m. The eigenvalues can be
computed in perturbation theory around the diagonal matrix diag(µ1, . . . , µN ), which
to the leading order gives [55].

λa
i = hi + f′′(1)G0 +

f′′(1)

N

∑

j /=i

1

hi − hj
≈ Λhi. (38)

We obtain for the correspondent eigenvector
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ψa
kα =

m∑

β=1

∂∂Hαβ
ik ua

kβ

hk
k /= i, (39)

ψa
iα =

√
Λua

iα, (40)

where the m − 1 vectors ua
i are m-dimensional unit norm vectors orthogonal to S i and to

each other that at this level of accuracy in the perturbation theory are left unspecified.
Notice that the eigenfunction ψ corresponding to the eigenvalue λa

i has finite components
on the site i. The value of the condensate component is in agreement with equation (37).

6. Ultra-stable minima

Typical minima are ungapped due to localized excitations associated with sites with a
small cavity field hi. Since the number of minima is exponentially large, one can wonder
if rare minima with a gap exist and what is their nature. In order to search for gapped
minima, we need to include constraints in the computation of the complexity. Since low
energy excitations are related to low cavity fields, it is natural to impose a hole in the
distribution of the cavity field, hi > h0∀ i for some h0, which we shall call a cavity gap.

The computation of the number of gapped minima is best performed using the
Bray–Moore or Kac–Rice formalism [41, 56–58], computing

eG0(h0) =

∫

hi>h0

dSdµ e−yH
∏

i,α

δ (∂Hα
i − µiSα

i )

× |det (∂∂H − diag(µ))|. (41)

Since the cavity fields are related to the physical fields µi = |∂Hi| by the equation
µi = f ′′(1)χ+ hi, here we impose that µi > f ′′(1)χ + h0. The determinant for fixed µi

can be computed separately using self-averageness and the following representation of
the determinant:

|det (∂∂H − diag(µ))| = det (−∂∂H + diag(µ))

=

{∫
dX

(2π)
N(m−1)

2

exp

[
−1

2
XT · (−∂∂H + diag(µ))X

]}−2

.

After performing the average over the disorder and applying a Hubbard–Stratonovich
transformation, one finds the final expression

|det (∂∂H − diag(µ))| = e
Nf ′′(1)w2

2

∏

i

[µi − f′′(1)w]m−1, (42)
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where w is given by the solution of the saddle point equation

w = (m − 1)
1

N

N∑

i=1

1

µi − f′′(1)w
. (43)

Notice that by setting µi = hi + f ′′(1)w, this last equation can be rewritten for N →∞
as

w = (m − 1)

∫ ∞

h0

dh
Ph0(h)

h
, (44)

so that w is just a ‘cut’ version of the h0 = 0 susceptibility. In order to distinguish it
from this last quantity, from now on we will call (44) w ≡ χh0 . The remaining part can
be averaged separately

∫ dS e−yH
∏

k,α

δ(∂Hα
k + µk Sk) =

∫
dS dŜ exp−i

N∑

k=1

µk
.Sk · .̂Sk

× exp

[
−
(

i
∑

k,α

Ŝα
k

∂

∂Sα
k

+ y

)
H
]
,

where the Ŝ are Lagrange multipliers introduced by the Fourier representation of the
delta function. After the average over the disorder and one Hubbard–Stratonovich
transformation, this last expression becomes

[
1

Γ(m/2)f′(1)m/2

]N

exp

[
1

2
Ny2f(1) − N

f′′(1)u2

2

−
∑

i

1

2f′(1)
[yf′(1) + f′′(1)u − µi]

2

]

, (45)

with u given by the saddle point equation

u =
1

f′(1)N

N∑

i=1

[µi − yf′(1) − f′′(1)u]. (46)

Putting (42) and (45) together and defining the cavity fields hi = µi − f′′(1)χh0 , we
obtain
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G0(y ;h0) =
y2

2
[f(1) − f′(1)] − f′′(1)

2f′(1)
(χh0 − u)2

− f′′(1)y(u − χh0) −
f′′(1)

2
(u2 − χ2

h0
) + ln I(y ;h0)

I =

∫ ∞
h0

dh hm−1e−
h2

2f ′(1)
+ h

f ′(1)
[f ′′(1)(u−χh0

)+yf ′(1)]

∫∞
0 dh hm−1e−

h2

2f ′(1)

. (47)

Notice that the cavity field probability distribution

Ph0(h) =
θ(h − h0)

Z(y ;h0)
hm−1e

− h2

2f ′(1)
+

[
y+f ′′(1)

(u−χh0
)

f ′(1)

]
h
, (48)

for h0 > 0 has a finite cut on the lower edge, that is Ph0(h0) > 0, and is re-weighted

in the exponential through the coefficient y(h0) = y +
f ′′(1)(u−χh0

)

f ′(1) . Since u − χh0 > 0

(see equation (49) below), y(h0) > y and therefore gapped minima are more stable
than typical ungapped ones at the same value of y, and their energy is E(y ;h0) =
−∂G0(y ;h0)/∂y. Different families of ultra-stable minima can be studied by varying y
and h0.

If the lower integration limit is h0 = 0 it is easy to see by integration by part of
(46) that χh0 = χ = u, and one gets back (21) and (19). However, this is not the case if
h0 > 0, indeed in such case one finds

u = χh0 + Ph0(h0). (49)

In fact, equation (43), which should be verified substituting the sum by the average over
the cavity field distribution, cannot be interpreted as a saddle point condition for the
expression in equation (47). The function u is indeed the actual static linear response
function of the system inside an ultra-stable minimum: this quantity, for fixed y, is
strictly lower than the response χ of gapless minima. A more detailed discussion of the
response in ultra-stable minima can be found in appendix D.

In the remainder of this section we will discuss the spectral properties and the
complexity of ultra-stable minima. The analytical details behind the formulae we are
going to expose are provided in appendices C and E.

As we said, ultra-stable minima have a gapped spectrum, with a lower edge λ0 > 0.
It is found for small λ− λ0 and for small h0

ρ(λ) ∝
√

λ− λ0

λ0 ∝






Λh0, y > ymg

h2(m−2)
0 , m > 3, y = ymg

h2
0/| ln h0|, m = 3, y = ymg.

(50)

The linear dependence λ0 = Λh0 valid for y > ymg is easily interpreted. It tells that
equation (38) relating small eigenvalues to small fields of typical minima is just cut-off
here at the value h0. The localized modes with λ < λ0 are eliminated without much
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other effect on the spectrum. For y = ymg coherently, the induced spectral gap has a
much weaker dependence on h0.

The study of the IPR confirms that in ultrastable minima the most localized are
cut-off. In the presence of a gap h0, the integral appearing in the bulk IPR formula (33),
remains finite in the limit λ→ λ0. By expanding close to λ = λ0, it is found at leading
order






i(λ) ∼ h−2 (m−1)
0 , y > ymg

i(λ) ∼ 1/h0, y = ymg, m = 3

i(λ) ∼ ln h0, y = ymg, m = 4

i(λ) ∼ const, y = ymg, m " 5.

(51)

Details are provided in appendix E.
In the first panel of figure 5, we show the spectral density of gapless minima for

m = 4, p = 3 and y = (ygs + ymg)/2, comparing it with the spectral density of gapped
minima with h0 = 0.15, 0.25, 0.8: the square root behavior of the spectral edge of ultra-
stable minima is confirmed. The spectral density has been computed by numerically
solving the following equations

1 = (m − 1)f′′(1)

∫ ∞

h0

dh
Ph0(h)

|h + x(λ)|2

λ = f′′(1)χh0 − x0 − f′′(1)(m − 1)

〈
h + Re x

|h + x|2

〉

h0

,

(52)

where x(λ) = f′′(1)[χh0 − G(λ)] − λ. Equations (52) are respectively the imaginary and
real part of the equivalent of equation (11) when the cavity field PDF is given by
equation (48).

In the second panel of figure 5 we show, for the same m and p, the spectral gap as
a function of the cavity gap for the values of y > ymg reported in the legend of the plot,
comparing the curves with Λ(y)h0 in each case. The curves were obtained by solving
numerically equation (52) fixing λ = λ0. Finally, in the third panel of figure 5 we show
the spectral gap for the case y = ymg and m = 3, 4, 5, p = 3, showing the low cavity gap
scaling of the λ0, which is in good agreement with equation (50)

The energy and the complexity of the minima can be computed as usual from
G0(y ;h0) = −y E + Σ(E ;h0) and E = −∂G0(y ;h0)/∂y. For any value of y, Σ is a
decreasing function of h0: ultra-stable minima are exponentially small in number with
respect to gapless ones. For a small cavity gap, the leading behavior is given by

Σ = Σ0 −
[
1 + y 〈h〉0

mZ0

]
hm

0 + O(hm+1
0 ), (53)

where 〈·〉0 is the mean in the absence of gap and Z0 = 1/p0 (cfr with (23)). In figure 6
(top), we show the complexity as a function of the cavity gap h0. The complexity is a

decreasing function of h0 that vanishes linearly at a value h(max)
0 (y). The value of h(max)

0 (y)
goes to zero as y approaches its value on the ground state of the system. We have in

https://doi.org/10.1088/1742-5468/ac6518 18

https://doi.org/10.1088/1742-5468/ac6518


J.S
tat.M

ech.
(2022)053302

Linear low energy excitationsin fully-connected models of glasses

Figure 5. (Top) Spectral properties in the presence of a cavity gap h0, for the
m = 4 and p = 3 pure p-spin at y = (ygs + ymg)/2. The spectral density of gapless
minima is compared to that of minima with cavity gaps h0 = 0.15, 0.25, 0.8. The
dashed vertical line marks the position of the crossover λ∗ in equation (28). (Center)
The relation between the spectral gap and the cavity gap for the three values
of y ∈ [ymg, ygs], the dotted lines are Λ(y)h0. (Bottom) The spectral gap at the
critical point y = ymg for m = 3, 4, 5: the scaling provided in appendix E is verified.
Marginal minima develop extremely small gaps in a broad range of values of h0.

fact h(max)
0 (y) ∼ (ygs − y)1/m: in figure 6 (center), we check this behavior of the maximal

cavity gap for the values of m = 3, 4, 5.
As a consistency check, to conclude this section, we show in figure 6 (bottom) that

the energy E(y ; h0) at the maximum cavity gap h(max)
0 (y) is always greater than the
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Figure 6. (Top) The normalised complexity Σ/Σ0 for three values of y ∈ [ymg, ygs]
and m = 4: the complexity is a decreasing function of h0, vanishing at a value
h(max)

0 (y). In the inset, a plot in double log scale of ∆Σ = 1 − Σ/Σ0, which shows
that for small cavity gap at leading order ∆Σ = O(h4

0), in agreement with formula
(53). (Center) The maximal cavity gap as a function of ygs − y in double log scale,
for m = 3, 4, 5: close to y = ygs, this quantity is singular as (ygs − y)1/m. (Bottom)
The difference between the energy at the maximal cavity gap and the ground state
level as a function of y = ygs, for m = 3, 4, 5: there are no ultra-stable configurations
down to the ground state.

ground state level Egs, for any y < ygs: there cannot be ultra-stable minima at the ground
state level.
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7. Discussion

In this work, we have studied the energy minima of a p-spin glass model with m-
components vector spins interacting on a complete graph. The cases m = 1 and m →∞
reduce respectively to the familiar Ising and spherical p-spin models. Similarly to these
cases, for p > 2 the model has a 1RSB-RFOT glassy phenomenology, with an exponential
multitude of equilibrium states for temperatures between T K and T d.

We have shown that generically, that is for any 1 < m < ∞, these glassy models
with continuous variables have stable glassy minima with quasi-localized low energy
excitations. In this respect, spherical models, where stable minima are gapped and all
excitations are fully extended, appear to be the exception rather than the rule.

We studied the complexity of the typical minima, which can be either ‘stable’, i.e.
display a finite spin glass susceptibility, or marginal, with infinite spin glass susceptibil-
ity. In this paper, we concentrated on the stable minima and the lowest marginal ones
that are described by replica symmetric theories.

Typical minima at each energy level are characterized by a cavity field distribution
that extends down to zero. This in turn implies the existence of localized low energy
excitations and the absence of a spectral gap. Different from what observed for models
in physical space, the spectrum does not follow a universal ω4 law. It is still a power
law, but the power depends on m, the number of components of the vector spins. The
prefactor of this power is function of the depth of the minima in the energy landscape,
and it is smaller for lower energy. In addition to becoming less numerous, low energy
excitations become more and more localized the deeper the minima in the landscape.
Much less numerous than typical minima, rare ultrastable minima also exist where the
small fields are absent, localized excitations are suppressed and spectra have a gap.

In this paper, we did not attempt a full characterization of marginal minima. The
study of the complexity suggests the existence of marginally stable minima in some
intervals of energy above the level Emg that separates stable minima from marginal ones.
These minima are described by replica symmetry breaking and could be the continuation
of some high temperature states that undergo a Gardner transition [47, 48, 50, 56–61]
at low temperature. Without much surprise, we can expect in these minima a divergent
spin glass susceptibility, a square root spectral pseudogap and fully delocalized states.

A natural continuation of this work would be to investigate the spectral properties
of low energy excitations of vector spin glass models with finite-connectivity, such as
models on random graphs [62–68] or lattice models [15, 16]. This path would widen our
knowledge of the nature of glassy excitations.

Appendix A. Computation of the Monasson free-energy

The computation of G = −βnf + Σ follows standard paths [45]. For completeness, we
sketch here the main steps:

Zn = eNG =
∑

Sa

e−β
∑n

a=1 H(Sa)

1,n∏

a<b

δ(Sa · Sb − qN),
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where
∑
S

(·) ≡
N∏

k=1

∫
d.Sk δ(Sk − 1)(·). Performing the average and using H(S)H(S ′) =

Nf(qS,S ′) one gets

eNG = exp

{
Nβ2

2
[nf(1) + n(n − 1)f(q)]

}
ζ(q)

ζ(q) =
∑

Sa

1,n∏

a<b

δ(Sa · Sb − q).

The quantity ζ after one Hubbard–Stratonovich transformation and the integration on
spins becomes:

ζ = Stq̂

{

exp

[

−N
n(n − 1)

2
q̂q +

q̂

2

∑

a/=b

Sa · Sb

]}

= Stq̂

{

exp

[
−N

n(n − 1)

2
q̂q − N

n

2
q̂

] [∫
Dq̂

.h Y (h)n

]N
}

.

Y (h) = (2 π)m/2
Im−2

2
(h)

h
m−2

2

∫
Dq̂

.h (·) ≡
∫

d.h

(2πq̂)m/2
e−

h2

2q̂ (·).

Putting everything together and using the saddle point equation q̂ = β2f′(q), we get
(16). The physical overlap is found by extremizing G with respect to q and is given
by equation (17): when T > T d, there is only the q = 0 solution, the system is in a
paramagnetic phase with a unique equilibrium state and

βgpara =
β2f(1)

2
+ log Sm. (A1)

In the range T K < T < T d, (17) has a non-trivial solution, corresponding to a non-zero
configurational entropy: configurations inside the same state have a non-zero overlap,
whereas two configurations belonging to two different states have zero overlap. The
stability of the non-trivial q is determined by the positiveness of the replicon eigenvalue
of the replica free-energy Hessian:

Λ = 1 − β2f′′(q)

〈{
m

(βh)2

[
Y ′(βh)

Y (βh)

]2

+

{
Y ′′(βh)

Y (βh)
−

[
Y ′(βh)

Y (βh)

]2

− Y ′(βh)

(βh) Y (βh)

}2

+
2Y ′(βh)

(βh) Y (βh)
×

{
Y ′′(βh)

Y (βh)
−

[
Y ′(βh)

Y (βh)

]2

− Y ′(βh)

(βh) Y (βh)

}〉

. (A2)
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The internal free-energies of TAP states and their complexity are obtained by
equation (17) and they read

g = −β

2
[f(1) + (2n − 1)f(q) − (2n − 1)qf′(q)

− f′(q)] − 1

β
〈ln Y (βh)〉n, (A3)

Σ = −n2β2

2
[f(q) − qf′(q)] + ln ζ − n〈ln Y (βh)〉n, (A4)

where ζ is defined in (16) and 〈·〉n is an average with respect to (19).
Setting q equal to the correct physical value, one can explore different families of

metastable states by varying n at fixed T in the range [TK, T d], whereas the equi-
librium values in the same interval are computed by setting n = 1. The equilibrium
replicon vanishes at T d as (Td − T )1/2: at higher temperatures, the thermodynamic
equilibrium is completely determined by the paramagnetic state m = 0. The equilibrium
complexity vanishes at T K as T − TK: for lesser temperature, the equilibrium complexity
remains zero, meaning that the Gibbs measure is concentrated on the lowest free-energy
states.

The T = 0 limit is performed sending T and n to zero with y = n/T fixed: the result
given by equations (21) and (24) is retrieved by considering the asymptotic expansions
of Y (x), Y ′(x)/Y (x) and Y ′′(x)/Y (x):

Y (x)
x→∞∼ (2π)m/2 ex

xm/2−1

[√
1

2πx
+ O

(
1

x

)3/2
]

, (A5)

Y ′(x)

Y (x)
x→∞∼ 1 − m − 1

2x
+ O

(
1

x

)2

, (A6)

Y ′′(x)

Y (x)
x→∞∼ 1 − m − 1

x
+ O

(
1

x

)2

. (A7)

Appendix B. Spectrum of typical gapless minima

In this appendix, we will convey the analytical details concerning the spectrum of the
energy minima: the analysis is very similar to the one presented in [32].

The PDF of the cavity fields moduli at T = 0, given by (22), extends in its support
until zero field: as explained in section 4, in this situation the spectrum of the Hessian
of H is necessary gapless. Defining the quantity x(λ) ≡ f ′′(1)[G(0) − G(λ)] − λ, the real
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and imaginary parts of (11) satisfy

Re G(λ) =

〈
h + Re x(λ)

(h + Re x(λ))2 + Im x(λ)2

〉
, (B1)

1 = f′′(1)

〈
1

(h + Re x(λ))2 + Im x(λ)2

〉
. (B2)

We now wish to consider the λ→ 0 expansion of these equations: to this purpose, we
combine them and after some basic rearrangements we get

λ + Λx = −x2J − x|x|2I

J = f′′(1)(m − 1)

〈
1

h|h + x|2

〉

I = f′′(1)(m − 1)

〈
1

h2|h + x|2

〉
, (B3)

or equivalently

I|x|2 = −Λ− 2 Re xJ

λ = |x|2J
. (B4)

When Λ > 0, the only way to compensate the vanishing of x for λ→ 0 in the first of
(B4) is that I and J are divergent in such limit. For dG/dλ(0) = χSG ≡ 1−Λ

Λ , one has
Re x(λ) + − λ

Λ : if |Imx(λ)| * |Re x(λ)|, one can write Im x
(h+Re x)2+Im x2 ≈ πδ(h + Re x) and

get

J ≈ π
P̃ (|Re x|)

|Re x‖Im x|

I ≈ π
P̃ (|Re x|)

|Re x|2|Im x|

, (B5)

where P̃ = f′′(1)(m − 1)P and P is the cavity fields moduli PDF. Plugging these
expansions into (B4), we finally get

Λ = π
P̃ (|Re x|)

|Im x|
J = Λ/|Re x|

ρ(λ) =
1

m − 1
|Im x|/π = f′′(1)P (λ/Λ)/Λ ∼ λm−1/Λm

, (B6)

Equation (B6) are valid as long as |Re x| * Λ and |Imx| * |Re x|, i.e. λ/Λ *
λm−1/Λm or λ * Λ

m−1
m−2 . For m > 3, a stronger condition is found by considering only
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|Re x| * Λ: indeed, we find λ * Λ2; this is equivalent to be at λ * λ∗, with λ∗ = O(Λ2)
defined in (27).

At the energy level E = Emg, we have Λ = 0: equations (B4) become

I|x|2 = −2 Re xJ

λ = |x|2J. (B7)

Integrals I and J now, at variance with m, can be finite for λ→ 0. It is easy to see
from these last equations that |Re x| = I

2J2λ and |Im x| ≡ πρ =
√
λ/J0 + O(λ), with

J0 = f′′(1)(m − 1)
〈

1
h3

〉
: when I and J are finite, it immediately follows |Re x| * |Imx|.

Integrals I and J however are finite respectively only for m > 4 and m > 3. If m = 4,
I has a logarithmic divergence and J is finite, |Re x| ∼ λ| ln λ| * |Im x| ∼

√
λ; at m =

3, if we assume again |Re x| * |Im x|, one finds I ∼ 1/|Imx| and |Re x| ∼
√
λ| ln λ|,

|Im x| ≡ πρ ∼
√

λ/| ln λ|. Thus, for any m " 3 and Λ = 0

|Re x| * |Im x|

ρ + 1

π (m − 1)

√
λ

J0
, m > 3

ρ + 1

2π

√
f′′(1)Z0 λ

2| ln λ| , m = 3.

(B8)

Appendix C. Complexity of ultra-stable minima

In this appendix we show in greater detail all the computations concerning the com-
plexity of the ultra-stable minima of the energy. First of all, we set u − χh0 = ∆, and
rewrite (47)

G0(y ; h0) =
y2

2
[f(1) − f′(1)] − f′′(1)

2f′(1)
∆2

− yf′′(1)∆− f′′(1)

2
∆(∆ + 2χh0) + ln ζ(y ;h0)

ζ∆ =

∫∞
h0

dh hm−1e−
h2

2f′(1)
+ h

f′(1)
[f′′(1)∆+yf′(1)]

∫ ∞
0 dh hm−1e−

h2

2f′(1)

P∆(h) =
θ(h − h0)

Z(y ;∆)
hm−1e−

h2

2f′(1)
+[yf′(1)+f′′(1)∆] h

f′(1) . (C1)

By combining equations (43) and (46) and approximating the sums with integrals, we
find that ∆ satisfies the self-consistent equation

∆ =
hm−1

0 e−
h2
0

2f′(1)
+[y+f′′(1)∆]h0

∫∞
h0

dh hm−1 e−
h2

2f′(1)
+[y+f′′(1)∆]h

≡ P∆(h0). (C2)

https://doi.org/10.1088/1742-5468/ac6518 25

https://doi.org/10.1088/1742-5468/ac6518


J.S
tat.M

ech.
(2022)053302

Linear low energy excitationsin fully-connected models of glasses

In particular, for small h0 one has (Z0(y) = 1/p0 defined in equation (23))

∆ =
hm−1

0

Z0(y)
(1 + h0y) + O(hm+1

0 ). (C3)

The expression of Σ(y ; h0) is obtained by applying the definition Σ(y ;h0) =
yE(y ;h0) + G0(y ;h0), and the full expression is

Σ(y ;h0) = Σ(y ; 0) −
[
f′′(1)2

f′(1)
+ f′′(1)

]

×
[
1

2
+

yf′(1)(〈h〉∆ − h0)

f′(1) + (〈h〉∆ − h0)f′′(1)∆

]
∆2

− y[χh0 + yf′′(1)]
f′(1) (〈h〉∆ − h0)

f′(1) + (〈h〉∆ − h0)f′′(1)∆
∆− χ∆

+
yf′(1)[f′′(1)(m− 1) − χh0〈h〉∆]

f′(1) + f′′(1)(〈h〉∆ − h0)∆
∆

− yf′(1)[〈h〉∆ − 〈h〉0] − 〈h〉0(〈h〉∆ − h0)∆

f′(1) + (〈h〉∆ − h0)∆
+ ln[ζ∆(y)/ζ0(y)],

(C4)

where 〈·〉∆ is a mean according to P∆ in (C1). This nasty expression can be simplified
a lot by expanding for low cavity gap: by substituting (C3) one gets

Σ = Σ0 −
[
1 + y 〈h〉0

mZ0

]
hm

0 + O(hm+1
0 ). (C5)

For h0 = O(1), Σ becomes proportional to h(max)
0 (y) − h0, thus vanishing at a certain

maximal cavity gap. This last quantity is O(1) far from ygs; as this point is approached,
the maximal cavity gap is expected to vanish, since ultra-stable minima cannot be lower
in energy than the ground state level. Taking Σ = 0 in (53), we can consider Σ0 small
and expand it linearly in ygs − y, getting

[
1 + y 〈h〉0

m Z0

]
(hmax

0 )m + dΣ0

dy
(ygs)(ygs − y)

h(max)
0 + A (ygs − y)1/m, (C6)

A =

[
(mZ0)

Σ′
0 (y)

1 + y〈h〉0

]1/m
∣∣∣∣∣ y = ygs, (C7)

https://doi.org/10.1088/1742-5468/ac6518 26

https://doi.org/10.1088/1742-5468/ac6518


J.S
tat.M

ech.
(2022)053302

Linear low energy excitationsin fully-connected models of glasses

that is, a singularity approaching ygs.

Appendix D. Response function of ultra-stable minima

This appendix is devoted to the computation of the linear response function of the
system when perturbed in an ultra-stable configuration at zero temperature: we show
that the linear response function in this case is given by the order parameter u, which
satisfies

u = χh0 + P∆(h0).

Suppose to perturb the system with an external field .εi on each site: the static linear
response function is given by

R =
1

N

∑

i,α

Rαα
ii , (D1)

Rαβ
ij =

∂〈Sα
i 〉

∂εβj

∣∣∣∣∣
ε=0

, (D2)

where off-diagonal terms of the response matrix are neglected since their disorder average
is zero. Here, 〈·〉 is an average according to Kac–Rice–Moore measure:

PKRM ∝ e−yH
∏

i,α

δ
(
Hα′

i − µiS
α
i

)
|det (H ′′ − diag(µ))| .

Then, one has for the response

Rαα
ii = 〈(Sα

i )2〉 − 〈Sα
i 〉2 + i〈Sα

i Ŝα
i 〉

→ R =
1

N

N∑

k=1

〈.Sk · i.̂Sk〉
, (D3)

where Ŝα
i are Lagrange multipliers that ensures the S configuration is one of minimum

of H (they are obtained from the Fourier representation of the delta function in (D3)).
After performing similar passages to those explained in section 6, one finds for the
relevant part of the integrals involved in the second equation of (D3)

∏

l

∫
d.µl

∫
d.̂Sl (.Sk · i.̂Sk)e

− f ′(1)
2 Ŝ2

l −i[µl−u−yf ′(1)](.Sl · i.̂Sl)

∝ −
∫

dµ ∂ e
−
∑

l
c2l

2f ′(1)

∂ck

∫
dµ e

−
∑
l

c2l
2f ′(1)

∣∣∣∣∣∣∣∣
cl≡µl−u−yf ′(1)

=
µ − u − yf′(1)

f′(1)
.

https://doi.org/10.1088/1742-5468/ac6518 27

https://doi.org/10.1088/1742-5468/ac6518


J.S
tat.M

ech.
(2022)053302

Linear low energy excitationsin fully-connected models of glasses

The remainder of the integrals and factors cancel out with the normalization, and in
the end we get

R =
1

N

∑

k,α

Rαα
kk =

1

f′(1)
[µ − u − yf′(1)] ≡ u. (D4)

To conclude this appendix, we show that u is always smaller than the susceptibility χ
of the typical minimum configurations. From the definition of χh0 (equation (43))

χh0 = χ− (m − 1)
∫ h0

0 dh hm−2e−
h2

2f ′(1)
+[yf ′(1)+f ′′(1)∆] h

f ′(1)

∫ ∞
h0

dh hm−1e−
h2

2f ′(1)
+[yf ′(1)+f ′′(1)∆] h

f ′(1)

≡ χ− Q(h0) < χ,

one finds

u = χ− [Q(h0) − P∆(h0)].

We notice that Q(h0) = (m − 1)
∫ h0

0 dh g̃(h) and P∆(h0) = h0g̃(h0), and thus we must

determine if (m − 1)
∫ h0

0 dhg̃(h) − h0g̃(h0) > 0; this inequality is indeed always verified
for m > 2, since in this circumstance Q is a convex function: we conclude that u < χ.
In particular, for small h0 it holds

u = χ− 1

Z0
[(m − 1)(m − 2) − 1]hm−1

0 + O(hm
0 ). (D5)

Appendix E. Spectrum of ultra-stable minima

When a cavity gap h0 is present, one has a spectral gap λ0 > 0 if the quantity Re x(λ) =
f′′(1)[χh0 − GR(λ)] − λ satisfies |Re x(λ0)| < h0: in these circumstances, the spectral gap
is determined by solving

1 = (m − 1)f′′(1)

∫ ∞

h0

dh
Ph0(h)

[h + Re x(λ0)]2

λ0 = (m − 1)(Re x(λ0))
2

∫ ∞

h0

dh
Ph0(h)

h [h + Re x(λ0)]2
.

(E1)

We shall now consider the small h0 limit of these last equations and the two cases y > ymg

and y = ymg. Let us begin with y > ymg: the first integral in (E1) is dominated by the
values of h close to the cavity gap h0; here Ph0(h0) ∼ hm−1

0 , thus integrating in a small
region [h0, ch0] we get (x0 ≡ x(λ0))

1 ∼ (1 − 1/c)(−x0)(m−1)

Zh0(h0 + x0)

x0 ∼ −h0 +
(1 − 1/c)

Zh0

|x0|m−1

, (E2)
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which ensures us that |x0| < h0. Then, rearranging the second of (E1)

λ0 = f′′(1)χh0 − x0 − f′′(1)(m − 1)

〈
1

h + x0

〉

h0

,

expanding 1/(h + x0) in x0/h and simplifying:

λ0 = Λ|x0| − f′′(1)(m− 1)x2
0

〈
1

h3

〉

h0

+ O(x3
0),

and plugging into this last equation equation (E2), it is found at leading order in h0

λ0 = Λh0 + O(h2
0). (E3)

We now consider the case y = ymg, i.e. Λ = 0. Here, one finds from the first of (E1)
〈

1

h2

〉

0

=

〈
1

(h + x0)2

〉

h0

, (E4)

which after a few manipulations yields

|x0| =






hm−2
0

2 (m − 2)Z0 〈1/h3〉0
+ O(hm−1

0 ), m > 3

h0

2 | ln h0|
+ O(h2

0), m = 3
. (E5)

From the second part of (E1) expanding Λh0 , setting Λ = 0 and keeping terms up to
order x2

0, we find

λ0 =






[
f′′(1)(m − 1)

4 (m − 2)2 Z2
0 〈1/h3〉0

]
h2(m−2)

0 + O(h2(m−1)
0 ), m > 3

[
f′′(1)

2 Z0

]
h2

0

| ln h0|
+ O(h4

0), m = 3.
(E6)

We shall now consider the scaling of the spectral density and of the IPR close to λ0.
Equations (B3) are still valid if one replaces the ungapped P 0(h) with the gapped one
Ph0(h):

λ + Λh0x = −x2 Jh0 − x|x|2 Ih0

Jh0(λ) = f′′(1)(m − 1)

〈
1

h|h + x|2

〉

h0

Ih0(λ) = f′′(1)(m − 1)

〈
1

h2|h + x|2

〉

h0

.

Differently from the gapless case, here the integrals Jh0 and Ih0 are always finite in the
limit λ→ λ0, for any ymg ! y ! ygs: at λ = λ0, it follows directly from h0 + x0 > 0. For
λ > λ0, one finds h + x + h + x0 − m−3

m−2 (λ− λ0) + Im x, since dRe x(λ0)/dλ = −m−3
m−2 ; so

the integrals are well defined if and only if h0 + x0 + Im x > m−3
m−2(λ− λ0), so necessarily
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Imx 5 O(λ− λ0). In fact, one finds that the spectral density has a square root behavior
close to the spectral edge:

ρ +

√
(1 − Ch0)(λ− λ0)

Jh0

, (E7)

Ch0 = |x0|
(

m − 3

m − 2

)
[2J0 + |x0| (dJ(x0)/dx)], (E8)

Jh0 = f′′(1)(m − 1)

〈
1

h(h + x0)2

〉

h0

. (E9)

As a consequence, the related lower edge eigenvectors of ultra-stable minima are found
to be fully delocalised. Indeed, the IPR close to the spectral edge for y > ymg behaves
as

NPR(λ) ∝
∫ ∞

h0

dh Ph0(h)

|h + x|4 =

∫ ∞

h0

dh Ph0(h)

(h + x0)4

+ O(λ− λ0) ≈
|x0|m−1

3 Z0 (h0 + x0)3
∼ h−2 (m−1)

0 . (E10)

At the critical point, we find by similar manipulations

NIPR(λ0) ∼






1/h0 m = 3

ln h0, m = 4

const, m " 5.

(E11)

References
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