We discuss the existence of entire (i.e. defined on the whole space) subsolutions of fully nonlinear degenerate elliptic equations, giving necessary and sufficient conditions on the coefficients of the lower order terms which extend the classical Keller–Osserman conditions for semilinear elliptic equations. Our analysis shows that, when the conditions of existence of entire subsolutions fail, a priori upper bounds for local subsolutions can be obtained.
Generalized Keller–Osserman Conditions for Fully Nonlinear Degenerate Elliptic Equations / Dolcetta, I. C.; Leoni, F.; Vitolo, A.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - 260:4(2022), pp. 469-479. [10.1007/s10958-022-05706-1]
Generalized Keller–Osserman Conditions for Fully Nonlinear Degenerate Elliptic Equations
Leoni F.
;
2022
Abstract
We discuss the existence of entire (i.e. defined on the whole space) subsolutions of fully nonlinear degenerate elliptic equations, giving necessary and sufficient conditions on the coefficients of the lower order terms which extend the classical Keller–Osserman conditions for semilinear elliptic equations. Our analysis shows that, when the conditions of existence of entire subsolutions fail, a priori upper bounds for local subsolutions can be obtained.File | Dimensione | Formato | |
---|---|---|---|
CapuzzoDolcetta_Generalized-Keller-Osserman_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
236.98 kB
Formato
Adobe PDF
|
236.98 kB | Adobe PDF | Contatta l'autore |
CapuzzoDolcetta_postprint_Generalized-Keller-Osserman_2022.pdf
Open Access dal 25/05/2023
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
328.41 kB
Formato
Adobe PDF
|
328.41 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.