We discuss the existence of entire (i.e. defined on the whole space) subsolutions of fully nonlinear degenerate elliptic equations, giving necessary and sufficient conditions on the coefficients of the lower order terms which extend the classical Keller–Osserman conditions for semilinear elliptic equations. Our analysis shows that, when the conditions of existence of entire subsolutions fail, a priori upper bounds for local subsolutions can be obtained.

Generalized Keller–Osserman Conditions for Fully Nonlinear Degenerate Elliptic Equations / Dolcetta, I. C.; Leoni, F.; Vitolo, A.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - 260:4(2022), pp. 469-479. [10.1007/s10958-022-05706-1]

Generalized Keller–Osserman Conditions for Fully Nonlinear Degenerate Elliptic Equations

Leoni F.
;
2022

Abstract

We discuss the existence of entire (i.e. defined on the whole space) subsolutions of fully nonlinear degenerate elliptic equations, giving necessary and sufficient conditions on the coefficients of the lower order terms which extend the classical Keller–Osserman conditions for semilinear elliptic equations. Our analysis shows that, when the conditions of existence of entire subsolutions fail, a priori upper bounds for local subsolutions can be obtained.
2022
Entire subsolutions; fully nonlinear equations; Keller-Osserman conditions
01 Pubblicazione su rivista::01a Articolo in rivista
Generalized Keller–Osserman Conditions for Fully Nonlinear Degenerate Elliptic Equations / Dolcetta, I. C.; Leoni, F.; Vitolo, A.. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - 260:4(2022), pp. 469-479. [10.1007/s10958-022-05706-1]
File allegati a questo prodotto
File Dimensione Formato  
CapuzzoDolcetta_Generalized-Keller-Osserman_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 236.98 kB
Formato Adobe PDF
236.98 kB Adobe PDF   Contatta l'autore
CapuzzoDolcetta_postprint_Generalized-Keller-Osserman_2022.pdf

Open Access dal 25/05/2023

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 328.41 kB
Formato Adobe PDF
328.41 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1635176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact