Given a positive integer M and a real number q∈(1,M+1], an expansion of a real number x∈[0,M/(q−1)] over the alphabet A={0,1,…,M} is a sequence (ci)∈AN such that x=∑i=1∞ciq−i. Generalizing many earlier results, we investigate in this paper the topological properties of the set Uq consisting of numbers x having a unique expansion of this form, and the combinatorial properties of the set Uq′ consisting of their corresponding expansions. We also provide shorter proofs of the main results of Baker in [3] by adapting the method given in [12] for the case M=1.

Topology of univoque sets in real base expansions / de Vries, M.; Komornik, V.; Loreti, P.. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - 312:(2022), p. 108085. [10.1016/j.topol.2022.108085]

Topology of univoque sets in real base expansions

Loreti P.
2022

Abstract

Given a positive integer M and a real number q∈(1,M+1], an expansion of a real number x∈[0,M/(q−1)] over the alphabet A={0,1,…,M} is a sequence (ci)∈AN such that x=∑i=1∞ciq−i. Generalizing many earlier results, we investigate in this paper the topological properties of the set Uq consisting of numbers x having a unique expansion of this form, and the combinatorial properties of the set Uq′ consisting of their corresponding expansions. We also provide shorter proofs of the main results of Baker in [3] by adapting the method given in [12] for the case M=1.
2022
Beta-expansion; Cantor set; Greedy expansion; Shift; Shift of finite type; Stable base; Thue–Morse sequence; Univoque number; Univoque sequence
01 Pubblicazione su rivista::01a Articolo in rivista
Topology of univoque sets in real base expansions / de Vries, M.; Komornik, V.; Loreti, P.. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - 312:(2022), p. 108085. [10.1016/j.topol.2022.108085]
File allegati a questo prodotto
File Dimensione Formato  
DeVries_Topology_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 654.37 kB
Formato Adobe PDF
654.37 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1629711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact