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Given a positive integer M and a real number q ∈ (1, M +1], an expansion of a real 
number x ∈ [0,M/(q − 1)] over the alphabet A = {0, 1, . . . ,M} is a sequence (ci) ∈
AN such that x =

∑∞
i=1 ciq

−i. Generalizing many earlier results, we investigate in 
this paper the topological properties of the set Uq consisting of numbers x having 
a unique expansion of this form, and the combinatorial properties of the set U ′

q

consisting of their corresponding expansions. We also provide shorter proofs of the 
main results of Baker in [3] by adapting the method given in [12] for the case M = 1.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction and statement of the main results

Starting with a seminal paper of Rényi [22] many papers have been devoted to representations of real 
numbers x of the form
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x =
∞∑
i=1

ci
qi
,

where the base q > 1 is a given real number, and (ci) is a sequence of integers with 0 ≤ ci ≤ M (i ∈
N := Z≥1), where M is a given positive integer. The sequence (ci) is often called an expansion of x. 
Such representations of real numbers have many intimate connections to combinatorics, number theory, 
probability and ergodic theory, topology and symbolic dynamics. See, e.g., the review papers [23,15,8].

In the 1990’s, Erdős, Horváth and Joó [10] found bases q ∈ (1, 2) such that x = 1 has exactly one 
representation of the above form with digits ci belonging to {0, 1}. Following this discovery, the combinatorial 
and topological structure of (the set of) all numbers x having exactly one representation of the form 

∑∞
i=1 ci ·

q−i with digits ci ∈ {0, 1, . . . ,M} – and the corresponding set of sequences (ci) – was eventually clarified in 
[17,19,6,7] under the additional assumption that M < q ≤ M + 1. Later developments led to the necessity 
to relax this assumption. This was done in [9] for the expansions of x = 1. Building on the results of [9]
here we clarify the structure of the set of real numbers x with a unique expansion for any choice of M ≥ 1
and q > 1. Although the general research strategy is the same as in [6], some new arguments are needed 
and several new properties are uncovered.

In order to state our results we introduce some notation and terminology. In this paper we fix a positive 
integer M , and we consider the corresponding alphabet A := {0, 1, . . . ,M}. The elements of A are often 
called digits. Since M is fixed, we usually do not indicate the dependence on M of the notions we are going 
to introduce.

A sequence always means an element of the set AN ; it will often be written in the form (ci) or c1c2 · · · . 
By a block or word we mean an element of ∪k∈NAk. A block or word has length n if it belongs to An. We 
will also use the conjugate or reflection of any digit c, word c1 · · · cn or sequence (ci), defined by

c := M − c, c1 · · · cn := c1 · · · cn and c1c2 · · · := c1 c2 · · · .

Finally, if c ∈ A, then we set c+ := c + 1 if c < M , and c− := c − 1 if c > 0, so that c+ ∈ A and c− ∈ A. 
More generally, if w = c1 · · · cn is a word of length n ≥ 2, then we write

w+ = (c1 · · · cn)+ := c1 · · · cn−1c
+
n

if cn < M , and

w− = (c1 · · · cn)− := c1 · · · cn−1c
−
n

if cn > 0.
We will use systematically the lexicographical order between sequences: we write (ai) < (bi) or (bi) > (ai)

if there exists an index n ∈ N such that ai = bi for i < n, and an < bn. We also equip for each n ∈ N

the set An of blocks of length n with the lexicographical order. We apply the usual notation from symbolic 
dynamics. For example, 0∞ would indicate the sequence c with ci = 0 for all i ≥ 1, (10)∞ would indicate 
the sequence c with c2i−1 = 1 and c2i = 0 for all i ≥ 1, and so on. A sequence (ci) is called

• finite if it has a last nonzero element, and infinite otherwise;
• co-finite if its conjugate is finite, and co-infinite otherwise;
• doubly infinite if it is both infinite and co-infinite.

This unusual terminology enables us to simplify the statements of many results. Note that 0∞ does not 
have a last nonzero element and is thus infinite, hence doubly infinite. Similarly, M∞ is a doubly infinite 
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sequence. The other doubly infinite sequences are those sequences that have both infinitely many digits 
ci > 0 and infinitely many digits ci < M .

Given a real number q > 1, an expansion in base q over the alphabet A (or simply expansion in base q or 
expansion if there is no risk of confusion) of a real number x is a sequence c = (ci) satisfying the equality

πq(c) :=
∞∑
i=1

ci
qi

= x.

We sometimes write πq(c1c2 · · · ) or πq((ci)) in place of πq(c).
If q > M + 1, then there exist numbers x satisfying the inequalities

M

q2 + M

q3 + · · · < x <
1
q
, (1.1)

and they have no expansions: for any sequence (ci) we have πq(c1c2 · · · ) < x if c1 = 0, and πq(c1c2 · · · ) > x

if c1 > 0. The inequalities (1.1) also imply that each c ∈ AN is the unique expansion of πq(c). The 
topological structure of the set πq

(
AN

)
consisting of numbers with an expansion (which is always unique 

as we just observed) is in this case rather straightforward and resembles that of the classical triadic Cantor 
set C :=

{∑∞
i=1 ai · 3−i : ai ∈ {0, 2} , i ≥ 1

}
. The finite sequences in AN should be compared with the right 

endpoints of the connected components of [0, 1] \ C and the co-finite sequences with its left endpoints. 
For this reason, we restrict ourselves in the sequel of this paper to bases q ∈ (1, M + 1] in which case 
Jq := πq

(
AN

)
= [0, M/(q − 1)]; see [22,21,12,2]. Moreover, every x ∈ Jq has a lexicographically largest 

expansion b(x, q) and a lexicographically largest infinite expansion a(x, q), called the greedy and quasi-
greedy expansions of x in base q, respectively. For example, in the case of the classical binary expansions 
(so q = 2 and M = 1), the fractions x = k

2m ∈ (0, 1) with positive integers m and k have exactly two 
expansions: a finite and an infinite one; they are the greedy and quasi-greedy expansions of x, respectively. 
All other numbers x ∈ J2 = [0, 1] have a unique expansion.

Of course, whether an expansion is greedy or quasi-greedy depends on q and M . However, when q and 
M are understood from the context, we simply speak of (quasi-) greedy expansions.

Let us give some examples, by describing the expansions of 1 in various bases over the alphabet A = {0, 1}
(so M = 1); see [12,9] for details.

Examples 1.1.

(i) There exists a base 1 < q < 2 such that πq(1(10)∞) = 1. In this base 1(10)∞ is the unique expansion 
of 1, and it is doubly infinite.

(ii) In the Tribonacci base q ≈ 1.839, defined by the equation q3 = q2 + q+1, 1 has ℵ0 expansions: (110)∞, 
and the sequences

(110)k(111)0∞, k = 0, 1, . . . .

Here (110)∞ is a doubly infinite expansion, and all other expansions are finite.
(iii) In the Golden ratio base q = (1 +

√
5)/2, defined by the equation q2 = q+1, 1 has ℵ0 expansions again: 

(10)∞, and the sequences

(10)k(11)0∞ and (10)k01∞, k = 0, 1, . . . .

Here (10)∞ is a doubly infinite expansion. There are many infinite expansions, but (10)∞ is the only 
doubly infinite expansion.



4 M. de Vries et al. / Topology and its Applications 312 (2022) 108085
(iv) In every small base 1 < q < (1 +
√

5)/2, 1 has 2ℵ0 expansions; hence it has 2ℵ0 doubly infinite expansions 
as well.

The choice of the alphabet A in the examples above and in general is pertinent. For instance, if M = 2, 
then 1 in the Golden ratio base has 2ℵ0 expansions including all expansions (ci) satisfying c4k+1 · · · c4k+4 ∈
{1010, 0120} for all k ≥ 0.

In [9] we investigated the set of univoque bases

U := {q > 1 : 1 has a unique expansion in base q}

and the larger set

V := {q > 1 : 1 has a unique doubly infinite expansion in base q} .

It was shown that V is closed and that the closure U of U is a Cantor set, i.e., a nonempty closed set having 
neither interior nor isolated points. Moreover, U can be characterized as follows:

U = {q > 1 : 1 has a unique infinite expansion in base q} .

In the following table we illustrate these notions by showing the number of doubly infinite expansions, 
infinite expansions and all expansions of 1 in the above four examples:

Examples 1.1 d.i. expansions i. expansions all expansions q belongs to
(i) 1 1 1 U
(ii) 1 1 ∞ U \ U
(iii) 1 ∞ ∞ V \ U
(iv) ∞ ∞ ∞

(
1, (1 +

√
5)/2

)

The purpose of this paper is to carry out a similar study of the univoque set

Uq := {x ∈ Jq : x has a unique expansion in base q}

for each fixed base q > 1. We will prove for example that Uq is a closed set if and only if q /∈ U . In 
order to state the main topological properties of the sets Uq we introduce the related sets Vq as follows: for 
q ∈ (1, M + 1), we set

Vq := {x ∈ Jq : x has a unique doubly infinite expansion in base q} ,

and for q = M + 1 we set Vq := Jq = [0, 1]. If q = M + 1, numbers x ∈ Jq with a finite expansion have 
no doubly infinite expansion, while for 1 < q < M + 1, the quasi-greedy expansion a(x, q) is always doubly 
infinite; see Proposition 2.1 (ii). Hence,

Vq = {x ∈ Jq : x has at most one doubly infinite expansion in base q} ,

for each q ∈ (1, M + 1].

The most important relations between the sets Uq and Vq are described in the following Theorems 1.2, 
1.4 and 1.5:

Theorem 1.2.

(i) If q ∈ U , then Uq = Vq.



M. de Vries et al. / Topology and its Applications 312 (2022) 108085 5
(ii) If q ∈ U , then |Vq \ Uq| = ℵ0 and Vq \ Uq is dense in Vq.
(iii) If q ∈ U , then each element x ∈ Vq \ Uq has exactly 2 expansions.
(iv) If q ∈ U \ U , then each element x ∈ Vq \ Uq has exactly ℵ0 expansions.

The proof of Theorem 1.2 will lead to some strengthened forms of (ii), (iii) and (iv). In order to state it 
we denote by Aq and Bq the elements x of Vq \ Uq whose greedy expansions b(x, q) are finite and infinite, 
respectively, so that

Vq \ Uq = Aq ∪Bq.

Given a base q ∈ (1, M + 1], we also introduce the reflection map � : Jq → Jq, given by

�(x) = M

q − 1 − x, x ∈ Jq.

In Part (iv) of the next proposition we refer to the expansions of 1 in a given base q ∈ U \U . They are listed 
in Theorem 3.2 (vi).

Proposition 1.3. Let q ∈ (1, M + 1] and write (αi) := a(1, q).

(i) If q = M + 1, then Vq = Jq = [0, 1], Bq = ∅, and Aq = Vq \ Uq is dense in Vq.
(ii) If q ∈ U \ {M + 1}, then both Aq and Bq are dense in Vq. Moreover,

Bq = �(Aq), (1.2)

and the greedy expansion of each x ∈ Bq ends with (αi).
(iii) If q ∈ U , then every x ∈ Vq \ Uq has exactly two expansions:

(a) if x ∈ Aq and b(x, q) = b1 · · · bn0∞ with bn > 0, then (b1 · · · bn)−α1α2 · · · is the other expansion of 
x;

(b) if x ∈ Bq, then the expansions of x are the reflections of the expansions of �(x) ∈ Aq.
(iv) If q ∈ U \ U , then every x ∈ Vq \ Uq has exactly ℵ0 expansions:

(a) if x ∈ Aq and b(x, q) = b1 · · · bn0∞ with bn > 0, then the other expansions of x are of the form 
(b1 · · · bn)−dn+1dn+2 · · · , where dn+1dn+2 · · · is one of the expansions of 1 in base q;

(b) if x ∈ Bq, then the expansions of x are the reflections of the expansions of �(x) ∈ Aq.

In Part (iv) of our next theorem we refer to the expansions of 1 in a given base q ∈ V \ U . They are 
listed in Theorem 3.3 (vi). We recall that if q ∈ V \ U , then there is a smallest integer k ≥ 1 such that 
αk+1αk+2 · · · = α1α2 · · ·; see for instance Proposition 3.1. We also denote by q̃ = q̃(M) the smallest element 
of V (see Theorem 3.3 (ii)). We will use these notations in the statement of the following theorem.

Theorem 1.4. Let q ∈ V \ U .

(i) The sets Uq and Vq are closed.
(ii) |Vq \ Uq| = ℵ0 and Vq \ Uq is a discrete set, dense in Vq.
(iii) Each element x ∈ Vq \ Uq has exactly ℵ0 expansions and a finite greedy expansion.
(iv) Let x ∈ Vq \ Uq, and let bn be the last nonzero element of (bi) := b(x, q). Then x has exactly ℵ0 other 

expansions of the form

(b1 · · · bn)−dn+1dn+2 · · · ,
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where dn+1dn+2 · · · is one of the expansions of 1 in base q.
Furthermore, if q = q̃, M is even and bn ≥ 2, then b1 · · · bn−1(bn − 2)M∞ is also an expansion of x.
Finally, if

n > k, bn−k > 0 and bn−k+1 · · · bn = (α1 · · ·αk)−,

then x has one more expansion:

(b1 · · · bn−k)−M∞.

Theorem 1.5. If q ∈ (1, M + 1] \ V, then Uq = Uq = Vq.

Remarks 1.6.

(i) While U , U and V are three different sets, we infer from Theorems 1.2, 1.4 and 1.5 that at least two of 
the three sets Uq, Uq and Vq coincide for each q ∈ (1, M + 1].

(ii) The set V has Lebesgue measure zero and Hausdorff dimension one, because V \ U is countable by [9]
and U is a Lebesgue null set of Hausdorff dimension one by [11, Theorem 1] and [16, Theorem 1.6]. 
Theorem 1.5 implies that Uq = Uq = Vq except for a set of bases q ∈ (1, M + 1] of Lebesgue measure 
zero and Hausdorff dimension equal to one.

(iii) If q = M +1, then Uq = [0, 1], and Uq has Lebesgue measure one. Suppose next that q ∈ (1, M +1) is a 
non-integer. If x ∈ Uq has unique expansion (ci) 
= M∞, then there exists an index N such that (cN+i) =
cN+1cN+2 · · · is the unique expansion of a number belonging to [0, 1), whence cN+i < q for each i ≥ 1. 
It follows from Proposition 4.1 in [7] (see also [14]) that Uq can be covered by countably many sets of 
the same Hausdorff dimension less than one. Hence the sets Uq, Uq and Vq have Hausdorff dimension 
less than one and are also nowhere dense because Vq \ Uq is (at most) countable and Vq is closed. If 
q ∈ (1, M + 1) is an integer and M < 2q − 2, then the unique expansion of a number x ∈ Uq has a tail 
belonging to {0∞,M∞}∪{M − q + 1, . . . , q − 1}∞ as follows, for instance, from Lemma 4.1. Conversely, 
a sequence belonging to {M − q + 1, . . . , q − 1}∞ with no tail equal to (M − q + 1)∞ or (q − 1)∞ is 
the (unique) expansion of an element in Uq. Straightforward alterations in the usual calculation of the 
Hausdorff dimension of the triadic Cantor set C show that dimH(Uq) = log(2q−M −1)/ log(q), see for 
instance [13]. Hence, also in this case, Uq, Uq and Vq are nowhere dense and have Hausdorff dimension 
less than one. Finally, if q ∈ (1, M + 1) is an integer and M ≥ 2q − 2, then Uq = {0,M/(q − 1)}. More 
precise information about the Hausdorff dimension of Uq and the behavior of the function q �→ dimH(Uq)
on (1, M + 1], albeit at the cost of a much more elaborate analysis, can be found in [16] and [1].

We mention two corollaries of Theorems 1.2, 1.4 and 1.5:

Corollary 1.7. Let q ∈ (1, M + 1]. Then Uq is closed if and only if q /∈ U .

Corollary 1.8. Let q ∈ (1, M + 1]. The following equivalences hold:

q ∈ U ⇐⇒ 1 ∈ Uq,

q ∈ U ⇐⇒ 1 ∈ Uq,

q ∈ V ⇐⇒ 1 ∈ Vq.

Let us denote by U ′
q and V ′

q the sets of quasi-greedy expansions in base q of all numbers x ∈ Uq and 
x ∈ Vq, respectively. Note that U ′

q is simply the set of unique expansions in base q. Elements of U ′
q are 

frequently referred to as univoque sequences (in base q).
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If we endow the collection of subsets of AN with the partial order ⊆, then the maps q �→ U ′
q and q �→ V ′

q

are non-decreasing by Lemma 4.3. However, on some intervals these maps are constant. We say that an 
interval I ⊆ (1, M + 1] of bases is a stability interval for Uq (resp. for Vq) if U ′

q = U ′
r (resp. V ′

q = V ′
r) for all 

q, r ∈ I. We call a stability interval I maximal if any interval J ⊆ (1, M + 1] that properly contains I is 
not a stability interval. The following theorem completes the investigation of stability intervals started by 
Daróczy and Kátai ([4,5]):

Theorem 1.9.

(i) The maximal stability intervals for Uq are given by the singletons {q} where q ∈ U , and the intervals 
(q1, q2] where (q1, q2) is a connected component of (1, M + 1] \ V.

(ii) The maximal stability intervals for Vq are given by the singletons {q} where q ∈ U , the interval (1, q̃), 
and the intervals [q1, q2) where (q1, q2) is a connected component of (1, M + 1] \ V with q1 
= 1.

In [19,6,9] we have clarified the topological structure of the complements (1, M +1] \U and (1, M +1] \V. 
The following theorem describes the topological structure of Jq \ Uq and Jq \ Vq for all q ∈ (1, M + 1]. We 
recall that Uq = Uq = Vq if q /∈ V, and that Uq � Vq if q ∈ V. Moreover, if we write the open set (1, M+1] \V
as a disjoint union of open intervals, then the set of left and right endpoint of these intervals are given by 
{1} ∪ (V \ U) and V \ U , respectively; see Theorem 3.3 (iii).

Theorem 1.10. Let q ∈ (1, M + 1] and write (αi) := a(1, q).

(i) If q = M + 1, then Uq = Vq = Jq = [0, 1].
(ii) If q ∈ U \ {M + 1}, then Jq \ Uq = Jq \ Vq is the union of infinitely many disjoint open sets (xL, xR). 

Furthermore, xL and xR run over Aq and Bq, respectively. More precisely, if b(xL, q) = b1 · · · bn0∞
with bn > 0, then b(xR, q) = b1 · · · bnα1α2 · · ·.

(iii) If q ∈ V \U , then Jq \Uq = Jq \Uq is an open set. Furthermore, each connected component (xL, xR) of 
Jq \ Uq contains infinitely many elements of Vq, forming an increasing sequence (xk)∞k=−∞ satisfying

xk → xL as k → −∞, xk → xR as k → ∞. (1.3)

Moreover, the relation between two subsequent numbers xm and xm+1 in the sequence (xk)∞k=−∞ is 
described as follows:

if b(xm, q) = b1 · · · bn0∞ with bn > 0, then a(xm+1, q) = b1 · · · bnα1α2 · · ·. (1.4)

(iv) If q ∈ (1, q̃], then Jq \ Uq = (0, M/(q − 1)).
(v) Let (q1, q2) be a connected component of (1, M + 1] \ V with q1 
= 1 and q ∈ (q1, q2]. Then U ′

q = V ′
q1

and the open sets Jq \ Uq and Jq1 \ Vq1 are homeomorphic.

Remarks 1.11.

(i) If q ∈ V \ U and q 
= q̃, then Jq \ Uq has infinitely many connected components. Indeed, there exists 
a connected component (q1, q2) of (1, M + 1) \ V such that q1 ∈ V \ U and q = q2. Then Jq \ Uq is 
homeomorphic to Jq1 \Vq1 by Theorem 1.10 (v), and Jq1 \Vq1 has infinitely many connected components 
by Theorem 1.10 (ii) and (iii).

(ii) If q ∈ V \ U and (xL, xR) is a connected component of Jq \ Uq, then all numbers in (xL, xR) ∩ Vq

have a finite greedy expansion, according to Theorem 1.4 (iii). The greedy expansion b(xm+1, q) of the 
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number xm+1 occurring in Theorem 1.10 (iii) equals (a1(xm+1, q) · · · ak(xm+1, q))+ 0∞ where k ≥ 1 is 
the smallest index such that ak(xm+1, q) < M and (ak+i(xm+1, q)) = (αi); see Lemma 2.6 (ii).

(iii) For q ∈ (1, q̃), we provide in Examples 4.4 (ii) a short proof of the following strengthening of Theo-
rem 1.10 (iv): each x ∈ (0,M/(q − 1)) has 2ℵ0 expansions. This result was first established by Baker 
([3]) using different ideas. We extract from our proof some other results of Baker ([3]) in Examples 4.4
(iii) and (iv).

We recall that a nonempty closed set is called perfect if it has no isolated points, and that x is a 
condensation point of a set F ⊆ R if every neighborhood of x contains uncountably many elements of F . 
By the Cantor–Bendixson theorem, the condensation points of an uncountable closed set F of real numbers 
form a perfect set P , and F \P is (at most) countable. In the following theorem we determine the isolated, 
accumulation and condensation points of the sets Uq, Uq and Vq, and we list explicitly all cases where Uq, 
Uq and Vq is a Cantor set. We recall from Theorems 3.2 (iv) and 3.3 (iii) that if (q0, q∗0) is a connected 
component of (1, M + 1] \ U , then q0 ∈ {1} ∪

(
U \ U

)
, q∗0 ∈ U , and V ∩ (q0, q∗0) is formed by an increasing 

sequence q1 < q2 < · · · , converging to q∗0 . We use this notation in the following theorem. We also recall 
that if q0 = 1, then q1 = q̃ = q̃(M) and q∗0 is the Komornik–Loreti constant which we will denote by 
qKL = qKL(M); see [17,18]. The precise value of qKL(M) is given in Theorem 3.2 (ii).

Theorem 1.12.

(i) Let q ∈ U .
(a) If q = M + 1, then Vq = Uq = [0, 1] is a perfect set.
(b) If q ∈ U \ {M + 1}, then Vq = Uq is a Cantor set.

(ii) Consider the connected component (1, qKL) of (1, M + 1] \ U .
(a) If q ∈ (1, q1], then Uq is a two-point set.
(b) If q ∈ (qn, qn+1] for some n ≥ 1, then Uq is countably infinite. Furthermore, its accumulation and 

isolated points form the sets

πq(U ′
qn) and πq(V ′

qn \ U ′
qn),

respectively, and the isolated points of Uq form a dense subset of Uq.
(iii) Consider a connected component (q0, q∗0) of (1, M + 1] \ U with q0 ∈ U \ U .

(a) If q ∈ (q0, q1], then Uq = Uq is a Cantor set, and πq(V ′
q0 \ U ′

q0) is dense in Uq.
(b) If q ∈ (qn, qn+1] for some n ≥ 1, then the condensation points, further accumulation points and 

isolated points of Uq form the sets

πq(V ′
q0), πq(U ′

qn \ V ′
q0) and πq(V ′

qn \ U ′
qn),

respectively, and the isolated points of Uq form a dense subset of Uq.

We recall (see, e.g., [20]) that a set S ⊆ AN is called a shiftspace or shift if there exists a set F(S) ⊆
∪∞
k=1A

k such that a sequence (ci) ∈ AN belongs to S if and only if none of the blocks ci+1 · · · ci+n (i ≥
0, n ≥ 1) belongs to F(S). A shift S is called a shift of finite type if one can choose F(S) to be finite. We 
endow the alphabet A with the discrete topology, and the set of expansions AN with the Tychonov product 
topology, so that the corresponding convergence in AN is the coordinate-wise convergence of sequences.

Theorem 1.13. Let q > 1 be a real number. The following statements are equivalent.

(i) q ∈ (1, M + 1] \ U .
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(ii) U ′
q is a shift of finite type.

(iii) U ′
q is a shift.

(iv) U ′
q is a closed subset of AN .

Finally we consider the two-dimensional univoque set U, formed by the couples (x, q) ∈ R2 where q > 1
and x has a unique expansion in base q over the alphabet A:

U :=
{
(x, q) ∈ R2 : q ∈ (1,M + 1] and x ∈ Uq

}
.

Setting

V :=
{
(x, q) ∈ R2 : q ∈ (1,M + 1] and x ∈ Vq

}
,

we have the following result:

Theorem 1.14. The set U is not closed. Its closure U equals V ∪ {(0, 1)}.

Hence, U ∩ J = V, where the set

J := {(x, q) : q ∈ (1,M + 1] and x ∈ Jq}

consists of all couples (x, q) such that x has an expansion in base q.
The rest of the paper is organized as follows. In Sections 2 and 3 we recall various properties of the greedy 

and quasi-greedy expansions and of the sets of bases U , U and V. In Section 4 we deduce some elementary 
properties of the sets Uq and Vq and we reprove the main results in [3]. In Section 5 we prove two density 
results that will be important in the proof of our main theorems. In Section 6 we prove Theorem 1.2 and 
Proposition 1.3. Section 7 is devoted to the proof of Theorems 1.4, 1.5 and Corollaries 1.7, 1.8. We also give 
an intrinsic characterization of Uq in Theorem 7.2. Our final Theorems 1.9, 1.10, 1.12, 1.13 and 1.14 are 
proved in Section 8. For the reader’s convenience, a list of principal terminology and notations used in this 
paper is given in the final Section 9.

2. Greedy and quasi-greedy expansions

In this section we recall from [2,18,7,9] some results that we shall use very frequently in the sequel.
Given a base q ∈ (1, M + 1] and a real number x ≥ 0, we define the greedy sequence b(x, q) = (bi(x, q))

and the quasi-greedy sequence a(x, q) = (ai(x, q)) in AN as follows. If for some n ∈ N, bi(x, q) is already 
defined for every i < n (no condition if n = 1), then let bn(x, q) be the largest element of the digit set A
such that

n∑
i=1

bi(x, q)
qi

≤ x.

Similarly, if x > 0 and if for some n ∈ N, ai(x, q) is already defined for every i < n (no condition if n = 1), 
then let an(x, q) be the largest element of the digit set A such that

n∑
i=1

ai(x, q)
qi

< x.

Furthermore, we set a(0, q) := 0∞. It follows from the definitions that
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∞∑
i=1

ai(x, q)
qi

≤
∞∑
i=1

bi(x, q)
qi

≤ x

for all x ≥ 0. Moreover, (bi(x, q)) is the lexicographically largest sequence in AN satisfying

∞∑
i=1

bi(x, q)
qi

≤ x,

and (ai(x, q)) is the lexicographically largest infinite sequence in AN satisfying

∞∑
i=1

ai(x, q)
qi

≤ x.

If x ∈ Jq, then the sequences a(x, q) and b(x, q) are indeed expansions of x and are thus the quasi-greedy 
and greedy expansion of x respectively, as introduced in Section 1:

Proposition 2.1. Let (x, q) ∈ J. Then

(i) a(x, q) and b(x, q) are expansions of x, i.e.,

∞∑
i=1

ai(x, q)
qi

=
∞∑
i=1

bi(x, q)
qi

= x.

(ii) If q 
= M + 1, then a(x, q) is doubly infinite.

The expansions b(x, q) and a(x, q) have the following semi-continuity properties:

Lemma 2.2. Let (x, q) ∈ J and (yn, rn) ∈ J, n ∈ N. Then

(i) for each positive integer m there exists a neighborhood W ⊆ R2 of (x, q) such that

b1(y, r) · · · bm(y, r) ≤ b1(x, q) · · · bm(x, q) for all (y, r) ∈ W ∩ J; (2.1)

(ii) if yn ↓ x and rn ↓ q, then b(yn, rn) converges (coordinate-wise) to b(x, q).
(iii) for each positive integer m there exists a neighborhood W ⊆ R2 of (x, q) such that

a1(y, r) · · · am(y, r) ≥ a1(x, q) · · · am(x, q) for all (y, r) ∈ W ∩ J; (2.2)

(iv) if yn ↑ x and rn ↑ q, then a(yn, rn) converges (coordinate-wise) to a(x, q).

Proof. (i) By definition of b(x, q), we have the strict inequalities

n∑
i=1

bi(x, q)
qi

> x− 1
qn

whenever bn(x, q) < M.

Hence, if (y, r) ∈ J is sufficiently close to (x, q), then the finitely many inequalities

n∑ bi(x, q)
ri

> y − 1
rn

: n ≤ m and bn(x, q) < M,

i=1
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also hold. These inequalities imply (2.1). Note that the inequality (2.1) can be strict even if (y, r) is very 
close to (x, q) because it may be the case that

n∑
i=1

bi(x, q)
ri

> y

for some n ≤ m.

(ii) If yn ≥ x and rn ≥ q, we deduce from the definition of greedy sequences that

b(x, q) ≤ b(yn, rn)

for every n. Equivalently, we have

b1(x, q) · · · bm(x, q) ≤ b1(yn, rn) · · · bm(yn, rn)

for all positive integers m and n. It remains to notice that by the previous part the converse inequality also 
holds for each fixed m if n is large enough.

(iii) We may assume that x 
= 0. By definition we have

n∑
i=1

ai(x, q)
qi

< x for all n = 1, 2, . . . .

If (y, r) ∈ J is sufficiently close to (x, q), then

n∑
i=1

ai(x, q)
ri

< y, n = 1, . . . ,m.

These inequalities imply (2.2).

(iv) If yn ≤ x and rn ≤ q, we deduce from the definition of quasi-greedy sequences that

a(x, q) ≥ a(yn, rn)

for every n. Equivalently, we have

a1(x, q) · · · am(x, q) ≥ a1(yn, rn) · · · am(yn, rn)

for all positive integers m and n. It remains to notice that by the previous part the converse inequality also 
holds for each fixed m if n is large enough. �

Let q ∈ (1, M + 1]. Observe that for any fixed x ∈ Jq, the map (ci) �→ (M − ci) is a strictly decreasing 
bijection between the expansions of x and �(x). Therefore every x ∈ Jq has a lexicographically smallest 
expansion, given by (M − bi), where (bi) = b(�(x), q). We often call this expansion the lazy expansion of x.

Lemma 2.3. If q ∈ (1, M + 1], then the lazy expansion of every x ∈ Jq is infinite.

Proof. Write (αi) := a(1, q). If an expansion (ci) of x ∈ Jq has a last nonzero digit cn, then 
(c1 · · · cn)−α1α2 · · · is another expansion of x, smaller than (ci). �
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Since we will often use the greedy and quasi-greedy expansions of 1, we introduce for brevity the notation

β(q) = (βi(q)) := b(1, q) and α(q) = (αi(q)) := a(1, q).

We will often write (βi) and (αi) when the base q is known from the context. It will also be convenient to 
define

β(1) = (βi(1)) := 10∞ and α(1) = (αi(1)) := 0∞.

Proposition 2.4.

(i) The map q �→ β(q) is a strictly increasing bijection from [1, M + 1] onto the set of all sequences (βi), 
satisfying

βn+1βn+2 · · · < β1β2 · · · whenever βn < M. (2.3)

Furthermore, in case q ∈ [1, M + 1) the inequality (2.3) holds for all n ≥ 1.
(ii) The map q �→ α(q) is a strictly increasing bijection from [1, M +1] onto the set of all infinite sequences 

(αi), satisfying

αn+1αn+2 · · · ≤ α1α2 · · · whenever αn < M. (2.4)

Furthermore, the inequality (2.4) holds for all n ≥ 0.
(iii) α(q) is doubly infinite for every q ∈ [1, M + 1].

Proposition 2.5. Let q ∈ (1, M + 1], and write (αi) = α(q).

(i) The map x �→ b(x, q) is a strictly increasing bijection from Jq onto the set of all sequences (bi), 
satisfying

bn+1bn+2 · · · < α1α2 · · · whenever bn < M. (2.5)

Furthermore, the inequality (2.5) holds whenever b1 · · · bn 
= Mn.
(ii) The map x �→ a(x, q) is a strictly increasing bijection from Jq onto the set of all infinite sequences 

(ai), satisfying

an+1an+2 · · · ≤ α1α2 · · · whenever an < M. (2.6)

Furthermore, the inequality (2.6) holds whenever a1 · · · an 
= Mn.

We call a sequence (ci) periodic if (ci) = (ck+i) = ck+1ck+2 · · · for some k ≥ 1. The smallest positive 
integer k for which a periodic sequence satisfies (ck+i) = (ci) is called the smallest period of (ci).

Lemma 2.6. Let (x, q) ∈ J, and set

(bi) = b(x, q), (ai) = a(x, q), (βi) = β(q), (αi) = α(q).

(i) If b(x, q) is infinite, then a(x, q) = b(x, q).
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(ii) If (bi) has a last nonzero element bm, then

(ai) = (b1 · · · bm)−α1α2 · · · .

(iii) If (βi) is infinite, then (βi) = (αi) is periodic only for q = M + 1.
(iv) If (βi) has a last nonzero element βm, then

(αi) = ((β1 · · ·βm)−)∞,

and m is the smallest period of (αi).

Lemma 2.7. Let q ∈ (1, M + 1], and let (di) = d1d2 · · · be a greedy or quasi-greedy sequence. Then for all 
N ≥ 1 the truncated sequence d1 · · · dN0∞ is greedy.

Proof. The statement follows at once from Proposition 2.5. �
Lemma 2.8. Let q ∈ (1, M + 1], and write (αi) = α(q). Let (bi) 
= M∞ be a greedy sequence. Then

(i) There exists a sequence 1 ≤ n1 < n2 < · · · such that for each i ≥ 1,

bni
< M, and bm+1 · · · bni

< α1 · · ·αni−m if 1 ≤ m < ni and bm < M.

(ii) For every positive integer N , there exists a greedy sequence (ci) > (bi) such that

c1 · · · cN = b1 · · · bN .

Proof. (i) See [9, Theorem 2.1].

(ii) This is a consequence of Lemma 2.2 (ii). �
3. A review of the sets of bases U , U and V

In this section we recall several results from [9]. They generalized for 1 < q ≤ M+1 a number of theorems 
proved in [19] for M < q ≤ M + 1.

The three sets U , U and V (which are clearly all contained in (1, M +1]) have the following lexicographic 
characterizations (the first one was proved in [12] for M = 1):

Proposition 3.1. Let q ∈ (1, M + 1], and write (αi) = α(q), (βi) = β(q). We have

(i) q ∈ U ⇐⇒ (βn+i) < (βi) whenever βn > 0;
(ii) q ∈ U ⇐⇒ (αn+i) < (αi) whenever αn > 0;
(iii) q ∈ V ⇐⇒ (αn+i) ≤ (αi) whenever αn > 0.

Moreover, in each case the inequalities are satisfied for all n ≥ 0.

The main properties of U and U are contained in the following theorem. In its statement we use the 
Thue–Morse sequence (τi)∞i=0, defined by the formulas τ0 := 0, and

τ2N+i = 1 − τi for i = 0, . . . , 2N − 1, N = 0, 1, 2, . . . .
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We call a set X ⊆ R closed from above (below) if the limit of every bounded decreasing (increasing) sequence 
in X belongs to X. Alternatively, X ⊆ R is closed from above (below) if for each x ∈ R \X, there exists a 
δ = δ(x) > 0 such that

[x, x + δ) ∩X = ∅ ((x− δ, x] ∩X = ∅).

Theorem 3.2.

(i) The set U is closed from above but not from below.
(ii) The smallest element qKL = qKL(M) of U (called Komornik–Loreti constant) is determined by the 

formula

αi(q′) =
{
m− 1 + τi if M = 2m− 1, m = 1, 2, . . . ;
m + τi − τi−1 if M = 2m, m = 1, 2, . . . .

(iii) The closure U of U is a Cantor set. Moreover, U \ U is a countable dense set in U .
(iv) We have a disjoint union

(1,M + 1] \ U = ∪∗(q0, q∗0)

where q0 runs over {1} ∪ (U \ U) and q∗0 runs over a proper subset U∗ of U .
(v) If q ∈ U and (αi) = α(q), then there exist arbitrarily large integers m such that for all k with 0 ≤ k < m,

αk+1 · · ·αm < α1 · · ·αm−k.

(vi) If q ∈ U \ U , then (αi) = α(q) is periodic. Furthermore, all expansions of 1 are given by (αi) and the 
sequences

(α1 · · ·αk)N (α1 · · ·αk)+0∞, N = 0, 1, . . . ,

where k is the smallest period of (αi).

Next we list the main properties of the set V:

Theorem 3.3.

(i) V is compact, and V \ U is a countable dense subset of V.
(ii) The smallest element q̃ = q̃(M) of V (called generalized Golden ratio) is given by the formulas

q̃ =
{
m + 1 if M = 2m,(
m +

√
m2 + 4m

)
/2 if M = 2m− 1

for m = 1, 2, . . . . Furthermore,

{
β(q̃) = m+0∞ and α(q̃) = m∞ if M = 2m,

β(q̃) = mm0∞ and α(q̃) = (mm−)∞ if M = 2m− 1.
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(iii) The set V \ U is discrete. Moreover, we have

V ∩ (q0, q∗0) = {qn : n = 1, 2, . . .}

for each connected component (q0, q∗0) of (1, M + 1] \ U , where (qn) is a (strictly) increasing sequence 
converging to q∗0 . It follows from Theorem 3.2 (iv) that we have a disjoint union

(1,M + 1] \ V = ∪∗(r0, r∗0)

where r0 runs over {1} ∪ (V \ U) and r∗0 runs over V \ U .
(iv) Given q0 ∈ {1}∪ (U \U), the greedy expansions of the numbers qn in (iii) have the form β(qn) = sn0∞

with a sequence of words sn defined recursively as follows. If q0 ∈ U \ U , then (βi) := β(q0) has a last 
nonzero digit βm, and we define

s0 := β1 · · ·βm, and sn+1 := sns
−
n , n = 0, 1, . . . .

If q0 = 1, then q1 = q̃, and we define s0 := 1,

s1 :=
{
m+ if M = 2m,
mm if M = 2m− 1,

and

sn+1 := sns
−
n , n = 1, 2, . . . .

(v) Let q ∈ V and (αi) = α(q). If for some k ≥ 1,

αk+1 · · ·α2k = α1 · · ·αk, (3.1)

then

αk > 0 and (αi) = (α1 · · ·αkα1 · · ·αk)∞.

In particular, q ∈ V \ U . Let, moreover, n be the smallest index k in (3.1). Then 2n is the smallest 
period of (αi), except if M = 2m is even and q = m + 1 (see (ii)).

(vi) If q ∈ V\U , then (αi) = α(q) is periodic.
If M = 2m is even and q = m + 1, then all q-expansions are given by (αi) = m∞ and the sequences

mNm+0∞ and mNm−M∞, N = 0, 1, . . . .

Otherwise all q-expansions are given by (αi) and the sequences

(α1 · · ·α2n)N (α1 · · ·α2n)+0∞, N = 0, 1, . . .

and

(α1 · · ·α2n)N (α1 · · ·αn)−M∞, N = 0, 1, . . . ,

where 2n is the smallest period of (αi) (see (v)).
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4. Preliminary results on Uq and Vq

Given a base q ∈ (1, M+1], there is a very useful lexicographic characterization of U ′
q, essentially obtained 

in [21,12,18]:

Lemma 4.1. Let q ∈ (1, M + 1] and (αi) = α(q). A sequence (ci) ∈ AN belongs to U ′
q if and only if the 

following two conditions are satisfied:

cn+1cn+2 · · · < α1α2 · · · whenever cn < M, (4.1)

cn+1cn+2 · · · < α1α2 · · · whenever cn > 0. (4.2)

Furthermore, these inequalities hold whenever c1 · · · cn 
= Mn and c1 · · · cn 
= 0n, respectively.

Proof. The sequence (ci) is the unique expansion of a number x ∈ Jq if and only if it is both the greedy and 
the lazy expansion of x. Moreover, (ci) is the lazy expansion of x if and only if (ci) is the greedy expansion 
of �(x). Proposition 2.5 (i) yields at once the desired characterization of U ′

q. �
Note that sequences satisfying (4.1) and (4.2) are always doubly infinite.
Motivated by Lemma 4.1, it will be convenient to change our definition of V ′

q and Vq:

Definition 4.2. Let q ∈ (1, M + 1] and α(q) = (αi). We denote by V ′
q the set of infinite sequences (ci) ∈ AN

satisfying the following two conditions:

cn+1cn+2 · · · ≤ α1α2 · · · whenever cn < M, (4.3)

cn+1cn+2 · · · ≤ α1α2 · · · whenever cn > 0, (4.4)

and we define

Vq :=
{
πq((ci)) : (ci) ∈ V ′

q

}
.

We will show later in Theorem 7.2 that Definition 4.2 is equivalent to the former one, given in the 
introduction. Note that sequences satisfying (4.3) and (4.4) are always doubly infinite, unless q = M + 1. 
Moreover, if (ci) ∈ V ′

q, then by Proposition 2.5 (ii), the inequalities (4.3) and (4.4) hold whenever c1 · · · cn 
=
Mn and c1 · · · cn 
= 0n, respectively.

Lemma 4.3. If 1 < p < q ≤ M + 1, then

U ′
p ⊆ U ′

q, V ′
p ⊆ V ′

q and V ′
p ⊆ U ′

q.

Proof. The inclusions U ′
p ⊆ U ′

q and V ′
p ⊆ V ′

q follow from Lemma 4.1, Definition 4.2 and Proposition 2.4 (ii). 
Moreover, since the map q �→ α(q) is strictly increasing, the inclusion V ′

p ⊆ U ′
q holds as well. �

The sets U ′
p and V ′

p only have a nontrivial structure if p ∈ (q̃, M + 1) and p ∈ [q̃, M + 1) respectively. 
Here q̃ is the generalized Golden ratio whose exact value (depending on M) is given in Theorem 3.3 (ii). 
We will illustrate this in the following examples. The results of Examples 4.4 (ii), (iii) and (iv) are already 
established by Baker ([3]). We provide short alternative proofs of these results by refining an idea contained 
in the proof of Theorem 3 in [12].
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Examples 4.4.

(i) First, let M = 2m and q = m +1 = q̃ for some m ≥ 1, so that α(q) = m∞. It follows from Definition 4.2
that

V ′
q̃ = {0∞,M∞} ∪ {km∞ : 0 < k < M} ∪

{
0nlm∞,Mnlm∞ : n ≥ 1, 1 ≤ l ≤ m

}
.

If M = 2m − 1 and q = q̃ for some m ≥ 1, then α(q) = (mm−)∞. Definition 4.2 yields in this case that

V ′
q̃ = {0∞,M∞} ∪

{
k(mm−)∞, k(m−m)∞ : 0 < k < M

}
∪
{
0nl(mm−)∞, 0nr(m−m)∞ : n ≥ 1, 1 ≤ l < m, 1 ≤ r ≤ m

}
∪
{
Mnl(mm−)∞,Mnr(m−m)∞ : n ≥ 1,m− 1 ≤ l < M, m ≤ r < M

}
.

In both cases (i.e., for all M ≥ 1), we infer from Lemma 4.1 that

U ′
q̃ = {0∞,M∞} .

Hence, by Lemma 4.3, Uq = Vq = {0,M/(q − 1)} if q ∈ (1, q̃) and Vq ⊇ Uq � {0,M/(q − 1)} if 
q ∈ (q̃, M + 1].

(ii) In the remaining Parts (ii), (iii) and (iv) of this example, M ≥ 1 and q ∈ (1, q̃) are fixed but arbitrary, 
and m is defined as before: m = (M + 1)/2 if M is odd, and m = M/2 if M is even. We deduced in (i) 
that Uq = {0,M/(q − 1)}. We now strengthen this result by proving that each x in the interior of Jq
has 2ℵ0 expansions. Let x be a number in the interior of Jq. From Theorem 3.3 (ii) and (vi) we infer 
that

1 = m− 1
q̃

+
∞∑
j=2

M

q̃j
.

Hence there exists a positive integer k ≥ 2 such that

1 <
m− 1

q
+ M

q2 + · · · + M

qk
. (4.5)

Let n1, n2, n3, . . . be the strictly increasing sequence consisting of positive integers which are not mul-
tiples of k, i.e., {nr : r ≥ 1} = N \ kN. Furthermore, choose k large enough so that the inequalities

∞∑
j=1

m

qkj
≤ x and x <

∞∑
j=1

M

qnj
(4.6)

hold as well. Let (δi) = δ1δ2 · · · be an arbitrary sequence in {0,m}N , and let

x′ := x−
∞∑
j=1

δj
qkj

.

Note that x′ ≥ 0 by the first inequality of (4.6). We now define recursively an expansion (εi) = ε1ε2 · · ·
of x′ by applying a variant of the greedy algorithm as follows. If for some n ≥ 1, the digits ε1, ε2, . . . , εn−1
are already defined (no condition if n = 1) and n is not a multiple of k, then let εn be the largest digit 
in the (whole) alphabet A such that
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⎛
⎝n−1∑

j=1

εj
qj

⎞
⎠ + εn

qn
≤ x′. (4.7)

If n is a multiple of k, then let εn be the largest element in {0, . . . ,m− 1} for which (4.7) holds. By 
the second inequality of (4.6), there exists an index � which is not a multiple of k such that ε� < M . 
By (4.5), not a single block εr+1 · · · εr+k of length k in the sequence ε�+1ε�+2 · · · can be maximal, that 
is, it cannot be the case that both εr+i = m − 1 for i such that r + i is a multiple of k and εr+i = M

for the remaining indices r + i (1 ≤ i ≤ k). Hence there are infinitely many indices s such that

x′ − 1
qs

<

s∑
j=1

εj
qj

≤ x′.

Letting s → ∞ along these indices, we see that (εi) is indeed an expansion of x′. The expansion (ci)
with ci = εi if i is not a multiple of k and with ckj = δj +εkj (j ≥ 1) is an expansion of x. It remains to 
observe that distinct sequences (δi) ∈ {0,m}∞ give rise to distinct expansions (ci) of x because δj = 0
if and only if ckj < m (j ≥ 1).

(iii) Let Eq(x) be the set of all possible expansions of x ∈ Jq, and let En
q (x) be the set of all possible prefixes 

of length n (n ≥ 1) of sequences belonging to Eq(x):

En
q (x) :=

{
(c1, . . . , cn) ∈ An : ∃(cn+1, cn+2, . . .) ∈ AN so that (ci) ∈ Eq(x)

}
.

Finally, let Nn(x, q) := |En
q (x)|. The analysis of (ii) can be used to show that Nn(x, q) grows expo-

nentially fast as a function of n for x in the interior of Jq, in the rather strong sense that there exists 
a constant c = c(q, M) > 0 that does not depend on x so that for each x in the interior of Jq, the 
inequality

lim inf
n→∞

logM+1 (Nn(x, q))
n

≥ c

holds. Indeed, fix x in the interior of Jq, and let (ci) and (di) be two distinct expansions of x. Thanks 
to (ii), we can assume that (ci) and (di) do not end with M∞. If r = r(x) is the smallest index such 
that cr 
= dr, then crcr+1cr+2 · · · and drdr+1dr+2 · · · must be expansions of a number belonging to

[L,R) :=
[
1
q
,
M − 1

q
+ M

q (q − 1)

)
.

Hence, it is sufficient to show that the assertion holds for each x in [L,R). It follows from the proof 
of (ii) that one may take c = log 2/(k · log(M + 1)), where k is the smallest positive integer such that 
(4.5) and the two inequalities

∞∑
j=1

m

qkj
≤ 1

q
and M − 1

q
+ M

q (q − 1) ≤
∞∑
j=1

M

qnj
(4.8)

hold, where, as before, n1, n2, n3, . . . is the strictly increasing sequence of all positive integers which 
are not multiples of k.

(iv) The Tychonov product topology on AN is induced by the metric d defined as follows:

d((ci), (di)) :=
{

(M + 1)−n if (ci) 
= (di) and n is the first index such that cn 
= dn,

0 if (c ) = (d ).
i i
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We want to show that in the metric space 
(
AN , d

)
, the Hausdorff dimension of the subset Eq(x) is, for 

each x in the interior of Jq, bounded below by the same constant c(q, M) that we found in (iii). We 
may (and will) again assume that x belongs to the interval [L,R) that we defined in (iii).
Let k be a positive integer satisfying (4.5) and both inequalities in (4.8), and define the Lipschitz map 
f : AN → AN by

(f(ci))n :=

⎧⎪⎪⎨
⎪⎪⎩

0 if n is not a multiple of k,
0 if n is a multiple of k and cn < m,

1 if n is a multiple of k and cn ≥ m.

We have seen in Part (ii) that f (Eq(x)) = f
(
AN

)
. The bi-Lipschitz map g : f

(
AN

)
→ [0, 1] given by 

g(f(ci)) =
∑∞

n=1(f(ci))n · (M + 1)−n maps f
(
AN

)
onto the attractor of the iterated function system 

that consists of the similarities T : [0, 1] → [0, 1] and S : [0, 1] → [0, 1], defined by T (y) = y · (M + 1)−k

and S(y) = (M + 1)−k + y · (M + 1)−k, 0 ≤ y ≤ 1. By Propositions 9.6 and 9.7 in [13], the Hausdorff 
dimension of this attractor equals the solution of the equation 2 · (M + 1)−ks = 1. Hence

dimH (Eq(x)) ≥ dimH f (Eq(x)) = dimH f
(
AN

)
= dimH g

(
f
(
AN

))
= log 2

k · log(M + 1) .

We infer from Definition 4.2 the following useful characterizations of Vq which were already obtained in 
[7] in case q ∈ (M, M + 1]:

Lemma 4.5. Let (x, q) ∈ J, and write (αi) = α(q), (βi) = β(q) and (ai) = a(x, q). The following conditions 
are equivalent:

x ∈ Vq; (4.9)

an+1an+2 · · · ≤ α(q) whenever an > 0; (4.10)

an+1an+2 · · · ≤ β(q) whenever an > 0. (4.11)

Proof. Assume (4.9). If (ci) ∈ V ′
q and x = πq((ci)), then (ci) = a(x, q) by (4.3) and Proposition 2.5 (ii), and 

then (4.10) follows from (4.4).
Conversely, if a(x, q) satisfies (4.10), then (ci) := a(x, q) satisfies (4.4) by (4.10), and (4.3) by Proposi-

tion 2.5 (ii). Hence (4.9) is satisfied because a(x, q) is always infinite.
Since α(q) ≤ β(q), (4.10) implies (4.11). In order to show the converse implication, it suffices to show 

that if there exists a positive integer n such that

an > 0 and an+1an+2 · · · > α1α2 · · · ,

then there exists also a positive integer m such that

am > 0 and am+1am+2 · · · > β1β2 · · · .

If the greedy expansion (βi) is infinite, then (βi) = (αi) and we may choose m = n. If (βi) has a last nonzero 
digit βk, then (αi) = (α1 · · ·αk)∞ with α1 · · ·αk = (β1 · · ·βk)−, and thus αk < M . Since we have

an+1an+2 · · · > (α1 · · ·αk)∞

by assumption, there exists a nonnegative integer j satisfying



20 M. de Vries et al. / Topology and its Applications 312 (2022) 108085
an+1 · · · an+jk = (α1 · · ·αk)j and an+jk+1 · · · an+(j+1)k > α1 · · ·αk.

Putting m := n + jk it follows that

am > 0 and am+1 · · · am+k ≥ β1 · · ·βk.

It follows from our assumption an+1an+2 · · · > α1α2 · · · that (αi) < M∞ and (ai) < M∞. By Proposi-
tion 2.1, (ai) has no tail equal to M∞, so that am+k+1am+k+2 · · · > 0∞. We conclude that

am+1am+2 · · · > β1β2 · · · . �
Lemma 4.6. Let q ∈ (1, M + 1].

(i) We have Uq ⊆ Vq.
(ii) The sets Uq and Vq are symmetric in Jq, i.e., �(Uq) = Uq and �(Vq) = Vq.
(iii) The set Vq is closed.

Proof. (i) If x ∈ Uq, then its unique expansion (ci) is equal to a(x, q), and (4.10) follows from (4.2).

(ii) The set Uq is symmetric because (ci) is an expansion of x if and only if (M − ci) is an expansion of 
�(x).

If q ∈ (1, M +1) and x ∈ Jq, then a(x, q) is doubly infinite by Proposition 2.1 (ii), and hence the sequence 
a(x, q) is also infinite. Using (4.10) and applying Proposition 2.5 (ii) hence we infer that a(�(x), q) = a(x, q), 
and then �(x) ∈ Vq by (2.6) and (4.10). If q = M + 1, then Vq = Jq = [0, 1] is symmetric.

(iii) We prove that Vq is closed by showing that its complement in Jq is open. If (ai) is the quasi-greedy 
expansion of some x ∈ Jq \ Vq, then there exists an integer n > 0 such that

an > 0 and an+1an+2 · · · > α1α2 · · · .

Let m be such that

an+1 · · · an+m > α1 · · ·αm, (4.12)

and let

y =
n+m∑
i=1

ai
qi
.

According to Lemma 2.7 the greedy expansion of y is given by a1 · · · an+m0∞. Therefore the quasi-greedy 
expansion of each number v ∈ (y, x] starts with the block a1 · · · an+m. It follows from (4.12) that

(y, x] ∩ Vq = ∅.

Since x ∈ Jq \ Vq is arbitrary and Vq is symmetric, there also exists a number z > x such that

[x, z) ∩ Vq = ∅. �
Lemma 4.7. Let q ∈ (1, M + 1], (αi) = α(q), and let (bi) be the greedy expansion of some x ∈ Jq. Suppose 
that for some n ≥ 1,
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bn > 0 and bn+1bn+2 · · · > α1α2 · · · .

Then:

(i) there exists a number z > x such that [x, z] ∩ Uq = ∅ and (x, z] ∩ Vq = ∅;
(ii) if bj > 0 for some j > n, then there exists a number y < x such that [y, x] ∩ Uq = ∅.

Proof. (i) Choose a positive integer M > n such that

bn+1 · · · bM > α1 · · ·αM−n.

Applying Lemma 2.8 choose a greedy sequence (ci) > (bi) such that c1 · · · cM = b1 · · · bM . Then (ci) is the 
greedy expansion of some z > x. If (di) is the greedy expansion of an element in [x, z] or the quasi-greedy 
expansion of an element in (x, z], then (di) also begins with b1 · · · bM and hence

dn > 0 and dn+1 · · · dM > α1 · · ·αM−n.

The assertion follows from Lemmas 4.1 and 4.5.
(ii) Suppose that bj > 0 for some j > n. It follows from Lemma 2.7 that (ci) := b1 · · · bn0∞ is the greedy 

expansion of some y < x. If (di) is the greedy expansion of some element in [y, x], then (ci) ≤ (di) ≤ (bi)
and d1 · · · dn = b1 · · · bn. Therefore

dn > 0 and dn+1dn+2 · · · ≥ bn+1bn+2 · · · > α1α2 · · · .

Invoking Lemma 4.1 again, we conclude that [y, x] ∩ Uq = ∅. �
5. Two lemmas on density

The two results of this section are crucial for the proof of our main theorems. Their proofs are based on 
the construction of special convergent sequences, interesting in themselves.

Let q ∈ (1, M + 1] and (αi) = α(q). We recall that

αn+1αn+2 · · · ≤ α1α2 · · · for all n ≥ 0. (5.1)

Furthermore, if q ∈ U , then

αn+1αn+2 · · · < α1α2 · · · for all n ≥ 0; (5.2)

moreover, by Theorem 3.2 (v) there exist arbitrarily large integers m such that

αk+1 · · ·αm < α1 · · ·αm−k, k = 0, . . . ,m− 1. (5.3)

We recall from Section 1 that Aq denotes the set of elements Vq \ Uq having a finite greedy expansion.

Lemma 5.1. If q ∈ V, then |Aq| = ℵ0. Furthermore, for each x ∈ Uq there exists a sequence (xi) of elements 
in Aq such that xi → x and a(xi, q) → a(x, q). Moreover, one may choose the sequence (xi) to be increasing 
if x ∈ Uq \ {0}.
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Proof. Let x ∈ Uq \ {0}, and denote by (ci) the unique expansion of x. Since c1c2 · · · 
= M∞ is greedy, we 
infer from Lemma 2.8 (i) that there exists a sequence 1 ≤ n1 < n2 < · · · , such that for each i ≥ 1,

cni
> 0 and cm+1 · · · cni

< α1 · · ·αni−m if m < ni and cm > 0. (5.4)

Now consider for each i ≥ 1 the sequence (bij), given by

(bij) = c1 · · · cni
0∞,

and define the number xi by

xi =
∞∑
j=1

bij
qj

.

Since (ci) has infinitely many nonzero digits, we have xi ↑ x. According to Lemma 2.7 the sequence (bij) is 
the finite greedy expansion of the number xi, i ≥ 1. Moreover, the increasing sequence (xi)i≥1 converges to 
x as i goes to infinity. We claim that xi ∈ Aq for each i ≥ 1. Note that xi /∈ Uq because the quasi-greedy 
sequence (aij), given by

(c1 · · · cni
)−α1α2 · · · ,

is another expansion of xi. By Lemma 4.5 it remains to prove that

aij > 0 =⇒ aij+1a
i
j+2 · · · ≤ α1α2 · · · . (5.5)

If j < ni and aij > 0, then

aij+1 · · · aini
= (cj+1 · · · cni

)− ≤ α1 · · ·αni−j

by (5.4), and

aini+1a
i
ni+2 · · · = α1α2 · · · ≤ αni−j+1αni−j+2 · · ·

by Proposition 3.1. If j ≥ ni, then (5.5) follows directly from Proposition 3.1. Finally, note that q−n → 0 as 
n → ∞, and that q−n ∈ Aq for each n ∈ N because α(q−n) = 0nα(q). Since there are only countably many 
finite expansions, we conclude that |Aq| = ℵ0. �
Lemma 5.2. If q ∈ U , then for each x ∈ Aq there exists a sequence (xi) of elements in Uq such that xi ↑ x.

Proof. Let x ∈ Aq. If bn is the last nonzero element of (bi) = b(x, q), then

a(x, q) = (ai) = (b1 · · · bn)−α1α2 · · · .

Since q ∈ U by assumption, there exists a sequence 1 ≤ m1 < m2 < · · · such that (5.3) is satisfied with 
m = mi for all i ≥ 1. We may assume that m1 ≥ n and mi+1 ≥ 2mi for each i ≥ 1. Consider for each i ≥ 1
the sequence (bij), given by

(bij) = (b1 · · · bn)−(α1 · · ·αmi
α1 · · ·αmi

)∞,

and define the number xi by
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xi =
∞∑
j=1

bij
qj

.

Note that the sequence (xi) converges to x as i goes to infinity. Next we show that xi ∈ Uq for all i ≥ 1. 
According to Lemma 4.1 it suffices to verify that

bim+1b
i
m+2 · · · < α1α2 · · · whenever bim < M (5.6)

and

bim+1b
i
m+2 · · · < α1α2 · · · whenever bim > 0. (5.7)

According to (5.2) we have

αmi+1 · · ·α2mi
≤ α1 · · ·αmi

.

Note that this inequality cannot be an equality, for otherwise it would follow from Theorem 3.3 (v) that

(αi) = (α1 · · ·αmi
α1 · · ·αmi

)∞.

However, this sequence does not satisfy (5.2) for k = mi. Therefore

αmi+1 · · ·α2mi
< α1 · · ·αmi

or equivalently

α1 · · ·αmi
< αmi+1 · · ·α2mi

. (5.8)

If m ≥ n, then (5.6) and (5.7) follow from (5.1), (5.3) and (5.8). Now we verify (5.6) and (5.7) for m < n. 
Fix m < n. If bim < M , then

bim+1 · · · bin = (bm+1 · · · bn)− < bm+1 · · · bn ≤ α1 · · ·αn−m,

where the last inequality follows from the fact that (bi) is a greedy expansion and bm = bim < M . Hence

bim+1b
i
m+2 · · · < α1α2 · · · .

Suppose that bim = am > 0. Since

am+1am+2 · · · ≤ α1α2 · · ·

by Lemma 4.5, and bim+1 · · · bin = am+1 · · · an, it suffices to verify that

bin+1b
i
n+2 · · · < αn−m+1αn−m+2 · · · .

This is equivalent to

αn−m+1αn−m+2 · · · < (α1 · · ·αmi
α1 · · ·αmi

)∞. (5.9)

Since n ≤ mi for all i ≥ 1, we infer from (5.3) that
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αn−m+1 · · ·αmi
< α1 · · ·αmi−(n−m),

and (5.9) follows. It follows from (5.8) and the assumption mi+1 ≥ 2mi (i ≥ 1) that the sequence (xi) is 
strictly increasing. �
6. Proof of Theorem 1.2 and Proposition 1.3

First we prove the relation (1.2) between Aq and Bq as stated in Proposition 1.3 (ii):

Lemma 6.1. If q ∈ U \ {M + 1}, then

Bq = �(Aq),

and the greedy expansion of each x ∈ Bq ends with α(q).

Proof. First suppose that x ∈ Aq has a finite greedy expansion (bi) with a last nonzero element bn. Since 
q 
= M + 1, the sequence

(ci) := (b1 · · · bn)−α1α2 · · ·

is an infinite expansion of �(x). In order to show that (ci) is the greedy expansion of �(x), we verify that (ci)
satisfies the inequalities (2.5) of Proposition 2.5. By Proposition 3.1 it is sufficient to show that if 1 ≤ k < n

and bk > 0, then

(bk+1 · · · bn)−α1α2 · · · < α1α2 · · · .

Since x ∈ Vq and a(x, q) = (b1 · · · bn)−α1α2 · · · by Lemma 2.6 (ii), we have (see (4.10))

(bk+1 · · · bn)−α1α2 · · · ≤ α1α2 · · · .

We cannot have an equality here because it would imply αn−k+1αn−k+2 · · · = α1α2 · · · , contradicting q ∈ U
(see Proposition 3.1 again). It follows from the symmetry of Uq and Vq (see Lemma 4.6) that �(x) ∈ Bq.

Conversely, suppose that x ∈ Bq and let (bi) be its infinite greedy expansion. Since x /∈ Uq, there exists 
a smallest positive integer n for which

bn > 0 and bn+1bn+2 · · · ≥ α1α2 · · · . (6.1)

By Lemma 4.5, we have necessarily bn+1bn+2 · · · = α1α2 · · ·. We claim that

(ci) = (b1 · · · bn)−0∞

is the greedy expansion of �(x) ∈ Aq. We have to show that if 1 ≤ k < n and bk > 0, then

(bk+1 · · · bn)−0∞ < α1α2 · · · .

Since (αi) has infinitely many nonzero digits, it suffices to show that

bk+1 · · · bn < α1 · · ·αn−k.

By the minimality of n we have
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bk+1bk+2 · · · < α1α2 · · · .

Hence

bk+1 · · · bn ≤ α1 · · ·αn−k,

and it remains to exclude the equality. However, in case of equality we would obtain the impossible relations

α1α2 · · · > bk+1bk+2 · · · = α1 · · ·αn−kα1α2 · · · ≥ α1 · · ·αn−kαn−k+1αn−k+2 · · · . �
Now we are ready for the proof of Theorem 1.2. The following proof will also establish the stronger 

properties stated in Proposition 1.3.

Proof of Theorem 1.2. (i) and (ii) Suppose that q ∈ U \ {M + 1}. Since Uq ⊆ Vq and Vq is closed by 
Lemma 4.6, we have Uq ⊆ Vq. Conversely, it follows from Lemmas 5.2, 6.1 and the symmetry of Uq and Vq

that Vq \ Uq ⊆ Uq, and this implies Vq ⊆ Uq. We infer from Lemmas 5.1, 6.1 that both Aq and Bq are dense 
in Uq = Vq, and |Aq| = |Bq| = ℵ0. Therefore |Vq \ Uq| = |Aq ∪Bq| = ℵ0. If q = M + 1, the properties stated 
in Theorem 1.2 and Proposition 1.3 are well known.

(iii) and (iv) Fix q ∈ U and let (bi) be the greedy expansion of a number x ∈ Vq \ Uq. Let n be the 
smallest positive integer for which (6.1) holds and let (di) be another expansion of x. Then (di) < (bi), and 
hence there exists a smallest integer j ≥ 1 for which dj < bj . First we show that j ≥ n. Assume on the 
contrary that j < n. Then bj > 0, and by minimality of n we have

bj+1bj+2 · · · > α1α2 · · ·.

From Proposition 3.1 (ii) we know that α1α2 · · · is the greedy expansion of �(x), and thus

∞∑
i=1

dj+i

qi
= bj − dj +

∞∑
i=1

bj+i

qi
> 1 +

∞∑
i=1

αi

qi
= 1 + M

q − 1 − 1 = M

q − 1 ,

which is impossible. If j = n, then dn = b−n , for otherwise we have

2 ≤
∞∑
i=1

dn+i

qi
≤ M

q − 1 ,

which is also impossible. Indeed, the last condition would imply q ≤ (M + 2)/2, while q ∈ U implies 
q > q̃ ≥ (M + 2)/2 by Theorem 3.3 (ii). Now we distinguish between two cases.

If j = n and

bn+1bn+2 · · · > α1α2 · · · , (6.2)

then by Lemma 4.7 and (i) we have br = 0 for all r > n, from which it follows that (dn+i) is an expansion 
of 1. Hence, if q ∈ U and (6.2) holds, then the only expansion of x starting with (b1 · · · bn)− is given by 
(ci) := (b1 · · · bn)−α1α2 · · · . If q ∈ U \ U and (6.2) holds, then any expansion (ci) starting with (b1 · · · bn)−
is an expansion of x if and only if (cn+i) is one of the expansions listed in Theorem 3.2 (vi).

If j = n and

bn+1bn+2 · · · = α1α2 · · · , (6.3)
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then

∞∑
i=1

dn+i

qi
= 1 +

∞∑
i=1

bn+i

qi
=

∞∑
i=1

M

qi
.

Hence, if (6.3) holds, then the only expansion of x starting with (b1 · · · bn)− is given by (b1 · · · bn)−M∞.
Finally, if j > n, then (6.3) holds, for otherwise br = 0 for all r > n again, and dj < bj is impossible. 

Note that in this case q /∈ U , because otherwise (bn+i) is the unique expansion of 
∑∞

i=1 αiq
−i and thus 

(dn+i) = (bn+i) which is impossible due to j > n. Hence, if q ∈ U , then (bi) is the only expansion of x
starting with b1 · · · bn. If q ∈ U \ U and (6.3) holds, then any expansion (ci) starting with b1 · · · bn is an 
expansion of x if and only if (cn+i) is one of the conjugates of the expansions listed in Theorem 3.2 (vi). �
7. Proof of Theorems 1.4, 1.5 and Corollaries 1.7, 1.8

Fix q ∈ (1, M + 1] with (αi) = α(q). We recall from Proposition 2.5 that a sequence (bi) ∈ AN is greedy 
if and only if

bn+1bn+2 · · · < α1α2 · · · whenever n ≥ 1 and b1 · · · bn 
= Mn. (7.1)

We also recall from Proposition 2.4 that

αn+1αn+2 · · · ≤ α1α2 · · · for all n ≥ 0. (7.2)

Lemma 7.1. Suppose that q ∈ (1, M + 1] \ U . Then

(i) a greedy sequence (bi) cannot end with (αi);
(ii) the set Uq is closed;
(iii) each element x ∈ Vq \ Uq has a finite greedy expansion.

Proof. (i) Let q ∈ (1, M +1], and assume that there exists a greedy sequence in base q ending with α1α2 · · ·. 
Then (7.1) implies that the sequence α1α2 · · · itself is also greedy in base q, and therefore

αn+1αn+2 · · · < α1α2 · · · whenever αn > 0.

By Proposition 3.1 (ii) this implies that q ∈ U .

(ii) Let x ∈ Jq \ Uq and denote the greedy expansion of x in base q by (bi). According to Lemma 4.1
there exists a positive integer n such that

bn > 0 and bn+1bn+2 · · · ≥ α1α2 · · · .

Applying Lemma 4.7 and (i) we conclude that

[x, z] ∩ Uq = ∅

for some number z > x. It follows that Uq is closed from above. Since the set Uq is symmetric it is closed 
from below as well.

(iii) Assume on the contrary that a(x, q) = b(x, q) for some x ∈ Vq \ Uq. Then it would follow from 
Lemmas 4.1 and 4.5 that for some positive integer n,
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bn(x, q) > 0 and bn+1(x, q)bn+2(x, q) · · · = α1α2 · · · ,

contradicting (i). �
Recall from Proposition 3.1 that the set V consists of those numbers q > 1 for which the quasi-greedy 

expansion (αi) = α(q) satisfies

αn+1αn+2 · · · ≤ α1α2 · · · for all n ≥ 0. (7.3)

If q ∈ V \ U , then (αi) is of the form

(αi) = (α1 · · ·αkα1 · · ·αk)∞, (7.4)

where k is the least positive integer satisfying

αk+1αk+2 · · · = α1α2 · · · . (7.5)

In particular, such a sequence is periodic. Note that αk > 0, for otherwise it would follow from (7.3) with 
n = k − 1 and (7.4) that

M(α1 · · ·αk−1) ≤ α1 · · ·αk−10,

which is impossible, because M > 0 and αj ≤ α1 for all j ≥ 1 by Proposition 2.4 (ii). Any sequence of the 
form (Mm0m)∞, where m is a positive integer, is infinite and satisfies (7.2) and (7.3) but not (5.2). On the 
other hand, there are only countably many periodic sequences. Hence the set V \ U is countably infinite.

Now we are ready to prove Theorems 1.4 and 1.5.

Proof of Theorem 1.4. Throughout the proof q ∈ V \ U is fixed but arbitrary, and k is the least positive 
integer satisfying (7.5) with (αi) = α(q).

(i) These are the statements of Lemmas 4.6 (iii) and 7.1 (ii).

(ii) |Vq \ Uq| = |Aq| = ℵ0, by Lemmas 5.1 and 7.1 (iii). Lemma 5.1 also implies that Aq is dense in Vq. 
It remains to show that all elements of Vq \ Uq are isolated points of Vq. Since the greedy expansion b(x, q)
of a number x ∈ Vq \ Uq is finite, by Lemma 4.7 (i) there exists a number z > x such that (x, z] ∩ Vq = ∅. 
Since the sets Uq and Vq are symmetric, there also exists a number y < x satisfying

[y, x) ∩ Vq = ∅.

(iii) and (iv) We already know from Lemma 7.1 that each x ∈ Vq \ Uq has a finite greedy expansion. It 
remains to show that each element x ∈ Vq \ Uq has exactly ℵ0 expansions. Let x ∈ Vq \ Uq and let bn be the 
last nonzero element of (bi) = b(x, q). If 1 ≤ j < n and bj = aj(x, q) > 0, then

aj+1(x, q) · · · an(x, q) = (bj+1 · · · bn)− ≤ α1 · · ·αn−j

by Lemma 4.5. Therefore

bj+1 · · · bn > α1 · · ·αn−j . (7.6)

Let (di) be another expansion of x and let j be the smallest positive integer for which dj 
= bj . Since (bi)
is greedy, we have dj < bj and j ∈ {1, . . . , n}. First we show that j ∈ {n− k, n}. Assume on the contrary 
that j /∈ {n− k, n}.
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First assume that n − k < j < n. Then bj > 0 and by (7.6),

bj+1 · · · bn0∞ > α1 · · ·αn−j(αn−j+1 · · ·αk)−0∞.

Since (α1 · · ·αk)−M∞ is the smallest expansion of 1 in base q (see Theorem 3.3 (vi)), (α1 · · ·αk)−0∞ is the 
greedy expansion of M/(q − 1) − 1, and thus

∞∑
i=1

dj+i

qi
= bj − dj +

∞∑
i=1

bj+i

qi
>

M

q − 1 ,

which is impossible.
Next assume that 1 ≤ j < n − k. Rewriting (7.6) one gets

bj+1 · · · bn < α1 · · ·αn−j .

If we had

bj+1 · · · bj+k = α1 · · ·αk,

then

bj+k+1 · · · bn < αk+1 · · ·αn−j .

Hence

bj+k+1bj+k+2 · · · > αk+1αk+2 · · · = α1α2 · · · .

Since in this case bj+k = αk < M , the last inequality contradicts the fact that (bi) is a greedy sequence. 
Therefore

bj+1 · · · bj+k < α1 · · ·αk

or equivalently

bj+1 · · · bj+k ≥ (α1 · · ·αk)−.

Since n > j + k and bn > 0, it follows that

bj+1bj+2 · · · > (α1 · · ·αk)−0∞,

which leads to the same contradiction as we encountered in the case n −k < j < n. It remains to investigate 
what happens if j ∈ {n− k, n}.

If j = n − k, then it follows from (7.6) that

bn−k+1 · · · bn ≥ (α1 · · ·αk)−.

Equivalently,

bn−k+1bn−k+2 · · · = bn−k+1 · · · bn0∞ ≥ (α1 · · ·αk)−0∞,
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and thus

∞∑
i=1

dn−k+i

qi
≥ 1 +

∞∑
i=1

bn−k+i

qi
≥ M

q − 1 , (7.7)

where both inequalities in (7.7) are equalities if and only if

dn−k = b−n−k, bn−k+1 · · · bn = (α1 · · ·αk)− and dn−k+1dn−k+2 · · · = M∞.

Hence dn−k < bn−k is only possible in case bn−k > 0 and bn−k+1 · · · bn = (α1 · · ·αk)−.
If j = n and dn = b−n , then (dn+i) is one of the expansions of 1 in base q listed in Theorem 3.3 (vi). It 

follows from Theorem 3.3 (ii) that q̃ ≥ (M + 2)/2 and that q̃ = (M + 2)/2 if and only if M is even. Since 
q ≥ q̃, we have M/(q − 1) ≤ 2 and M/(q − 1) = 2 if and only if q = q̃ and M is even. Hence, if M is even, 
q = q̃ and bn ≥ 2, the number x has one more expansion, namely (b1 · · · bn−1)(bn − 2)M∞. �
Proof of Theorem 1.5. Fix q ∈ (1, M + 1] \ V. Since Uq ⊆ Uq ⊆ Vq and every x ∈ Vq \ Uq has a finite greedy 
expansion by Lemma 7.1 (iii), the required relation Uq = Uq = Vq will follow if we show that a number 
x ∈ Jq with a finite greedy expansion does not belong to Vq.

Let x ∈ Jq be an element with a finite greedy expansion. Since q /∈ V, by Proposition 3.1 (iii) there exists 
a positive integer n such that

αn > 0 and αn+1αn+2 · · · > α1α2 · · · .

Since a(x, q) ends with α1α2 · · · , x /∈ Vq by Lemma 4.5. �
We recall that in Sections 4–7 we have used Definition 4.2 of Vq and V ′

q for q ∈ (1, M + 1]. Part (iii) of 
our next theorem shows that this definition is equivalent to the earlier one given in the introduction:

Theorem 7.2. For (x, q) ∈ J we have the following equivalences:

(i) x ∈ Uq if and only if x has a unique expansion.
(ii) x ∈ Uq if and only if at least one of x and M/(q − 1) − x has a unique infinite expansion.
(iii) x ∈ Vq if and only if x has at most one doubly infinite expansion.

Proof. (i) This is the definition of Uq.

(iii) If q = M + 1, then Vq = Jq = [0, 1] and each number has a unique infinite expansion, hence at most 
one doubly infinite expansion. Henceforth we assume that q ∈ (1, M +1). Suppose that x ∈ Vq. If x ∈ Vq \Uq

and q ∈ V, then by checking the list of expansions of x in Proposition 1.3 (iii) and (iv) and Theorem 1.4 (iv) 
we see that x has precisely one doubly infinite expansion. In all other cases we have x ∈ Uq by Theorem 1.5, 
so that x has a unique expansion.

Conversely, assume that x ∈ Jq has at most one doubly infinite expansion. Since q < M + 1, by Propo-
sition 2.1 (ii) the quasi-greedy expansion (ai) := a(x, q) is doubly infinite, so that it is the unique doubly 
infinite expansion of x.

If (ai) is also the lazy expansion of x, then its reflection is a greedy sequence, so that in particular

an+1an+2 · · · ≤ α1α2 · · · whenever an > 0 (7.8)

by Proposition 2.5 (i), where (αi) = α(q). Hence x ∈ Vq by Definition 4.2.
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Otherwise, the lazy expansion (ci) of x is not doubly infinite, and, since it is infinite by Lemma 2.3, it 
has a last digit ck < M . Then

(c1 · · · ck)+α1α2 . . .

is also an expansion of x. Since this expansion ends with the reflection of (αi), it is doubly infinite by 
Proposition 2.1 (ii). By our hypothesis it coincides with (ai):

(ai) = (c1 · · · ck)+α1α2 . . .. (7.9)

(Incidentally, (7.9) implies by Proposition 2.5 (ii) and Proposition 3.1 (iii) that q ∈ V, but we do not need 
this in the sequel.) In view of Lemma 4.5 it remains to check the condition (7.8). Consider an index n such 
that an > 0.

If n < k, then cn = an > 0, and therefore (cn+i) < (αi) because (ci) is lazy. Hence cn+1 · · · ck ≤
α1 . . . αk−n, and using (7.9) the condition (7.8) follows:

an+1 . . . ak = (cn+1 · · · ck)+ < cn+1 · · · ck ≤ α1 · · ·αk−n.

The case n = k is obvious because then (an+i) = (αi). Finally, in case n > k we argue as follows:

an > 0 =⇒ αn−k > 0 =⇒ αn−k < M =⇒ (αn−k+i) ≤ (αi) =⇒ (an+i) ≤ (αi).

(ii) For q = M + 1 the equivalence follows by observing that every x ∈ Uq = Jq = [0, 1] has a unique 
infinite expansion. Henceforth we assume that q ∈ (1, M + 1).

If x ∈ Uq, then x has a unique expansion which must be infinite. If x ∈ Uq \ Uq, then q ∈ U , and the lists 
in Proposition 1.3 (iii) and (iv) show again that x has a unique infinite expansion if and only if x ∈ Aq. By 
Lemma 6.1 exactly one of the numbers x and M/(q − 1) − x has a unique infinite expansion if x ∈ Uq \ Uq.

Conversely, assume that either x or M/(q − 1) − x has a unique infinite expansion in base q (or both). 
Then x also has a unique doubly infinite expansion and therefore x ∈ Vq by the already proved Part (iii) of 
the present theorem. If q /∈ V \ U , then we conclude by noting that Uq = Vq in this case. If q ∈ V \ U , then 
x /∈ Vq \ Uq. Indeed, if q ∈ V \ U , then for every x ∈ Vq \ Uq both x and M/(q − 1) − x have infinitely many 
infinite expansions by Theorem 1.4 (iv), contradicting our assumption. Therefore x ∈ Uq = Uq. �
Proof of Corollary 1.7. If q ∈ U , then Uq is not closed by Theorem 1.2 (i), (ii). If q ∈ (1, M + 1] \ U , then 
Uq is closed by Theorems 1.4 (i) and 1.5. �
Proof of Corollary 1.8. The relation q ∈ U ⇐⇒ 1 ∈ Uq is evident and the relation q ∈ V ⇐⇒ 1 ∈ Vq follows 
from Proposition 3.1 (iii) and Lemma 4.5. It remains to prove the relation q ∈ U ⇐⇒ 1 ∈ Uq. If q ∈ U , then

αn > 0 =⇒ (αn+i) < (αi)

by Proposition 3.1 (ii). In particular, we have

αn > 0 =⇒ (αn+i) ≤ (αi),

so that 1 ∈ Vq by Lemma 4.5. We conclude by recalling from Theorem 1.2 (i) that Vq = Uq. If q ∈
(1, M + 1] \ U , then q /∈ U , hence 1 /∈ Uq and thus 1 /∈ Uq because Uq is closed by Lemma 7.1 (ii). �
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8. Proof of Theorems 1.9, 1.10, 1.12 and 1.13

We recall from Lemma 4.3 the following inclusions:

U ′
p ⊆ U ′

q, V ′
p ⊆ V ′

q and V ′
p ⊆ U ′

q for all 1 < p < q ≤ M + 1. (8.1)

In the following lemma we exhibit some cases where these inclusions are not strict. For convenience, we 
define V ′

1 := {0∞,M∞}.

Lemma 8.1. If (q1, q2) is a connected component of (1, M + 1] \ V, then

U ′
q = V ′

q1 for all q ∈ (q1, q2],

and

V ′
q = U ′

q2 for all q ∈ [q1, q2).

Proof. The case (q1, q2) = (1, q̃) follows from Examples 4.4 (i). Henceforth we assume that q1 ∈ V \ U ; see 
Theorem 3.3 (iii). Let us write

α(q2) = (α1 · · ·αkα1 · · ·αk)∞

where k is chosen to be minimal; then αk > 0 by Theorem 3.3 (v). Due to (8.1), it is sufficient to show that 
U ′
q2 ⊆ V ′

q1 . Suppose that a sequence (ci) ∈ AN is univoque in base q2, i.e.,

cn+1cn+2 · · · < (α1 · · ·αkα1 · · ·αk)∞ whenever cn < M (8.2)

and

cn+1cn+2 · · · < (α1 · · ·αkα1 · · ·αk)∞ whenever cn > 0. (8.3)

If cn < M , then by (8.2),

cn+1 · · · cn+k ≤ α1 · · ·αk.

If we had

cn+1 · · · cn+k = α1 · · ·αk,

then

cn+k+1cn+k+2 · · · < (α1 · · ·αkα1 · · ·αk)∞,

and by (8.3) (note that in this case cn+k = αk > 0),

cn+k+1cn+k+2 · · · > (α1 · · ·αkα1 · · ·αk)∞,

a contradiction. Hence

cn+1 · · · cn+k ≤ (α1 · · ·αk)−.
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Note that cn+k < M in case of equality. It follows by induction that

cn+1cn+2 · · · ≤ ((α1 · · ·αk)−)∞.

Since a sequence (ci) satisfying (8.2) and (8.3) is infinite, we conclude from Proposition 2.5 (ii) and The-
orem 3.3 (iv) and (v) that (ci) is the quasi-greedy expansion of some x in base q1. Repeating the above 
argument for the sequence c1c2 · · ·, which is also univoque in base q2, we conclude from Lemma 4.5 that 
(ci) ∈ V ′

q1 . Hence U ′
q2 ⊆ V ′

q1 . �
Proof of Theorem 1.9. It follows from Theorems 1.2 and 1.4 and the inclusions (8.1) that

V ′
s ⊆ U ′

q � V ′
q ⊆ U ′

r if q ∈ V and 1 < s < q < r ≤ M + 1.

Hence the stability intervals (q1, q2] of Lemma 8.1 for Uq and the stability intervals (1, q̃) and [q1, q2) with 
q1 ∈ V\U for Vq, are maximal. By Theorem 3.3 (iii), these stability intervals for Uq and Vq cover (1, M+1] \U
and (1, M+1] \U , respectively. We conclude the proof by recalling that U has no interior points, and therefore 
U and U do not contain any non-degenerate interval. �
Proof of Theorem 1.10. (i) This is immediate from Theorem 1.2 (i) and Proposition 1.3 (i).

(ii) Since Vq is a closed set that contains the endpoints of Jq, the components of Jq \Vq are open intervals 
(xL, xR) indeed, and their endpoints belong to Vq. By Lemmas 4.6 (ii) and 5.1 the elements of Uq cannot 
be endpoints, hence the endpoints belong to Vq \Uq = Aq ∪Bq. Note that |Aq| = |Bq| = ℵ0 by Theorem 1.2
(ii), and Proposition 1.3 (ii).

If x ∈ Aq, then x is a right isolated point of Vq by Lemma 4.7 (i), and a left accumulation point of Vq

by Lemma 5.2, so that x is a left endpoint xL but not a right endpoint xR. Applying Lemma 6.1, we infer 
that every x ∈ Bq is a right endpoint xR but not a left endpoint xL.

It remains to show that if b(xL, q) = b1 · · · bn0∞ with bn > 0, then b(xR, q) = b1 · · · bnα(q). First we 
show that (di) := b1 · · · bnα(q) is a greedy sequence that belongs to V ′

q \ U ′
q. Since the sequence ends with 

bnα(q) and bn > 0, it does not belong to U ′
q by Lemma 4.1. Since (di) is infinite, it remains to verify that 

dk < M =⇒ (dk+i) < α(q) and dk > 0 =⇒ (dk+i) ≤ α(q). These implications hold true if k ≥ n because 
q ∈ U . Suppose that 1 ≤ k < n. Assume first that dk = bk < M . Since b(xL, q) = b1 · · · bn0∞ is greedy, we 
have bk+1 · · · bn0∞ < α(q), and hence bk+1 · · · bn ≤ α1 · · ·αn−k. It remains to observe that α(q) < (αn−k+i)
by Proposition 3.1 (ii). Now assume that dk = bk > 0. Since xL ∈ Vq and a(xL, q) = (b1 · · · bn)−α(q), we have 
(bk+1 · · · bn)−α(q) ≤ α(q) by Lemma 4.5. This implies in particular the required relation bk+1 · · · bnα(q) ≤
α(q).

Since b1 · · · bnα(q) ∈ V ′
q \ U ′

q and a1(xR, q) · · · an(xR, q) ≥ b1 · · · bn, it remains to observe that if (ci) ∈ V ′
q

starts with b1 · · · bn, then (ci) ≥ b1 · · · bnα(q), which follows from (4.10) and the fact that bn > 0.

(iii) Since q /∈ U , Uq is closed and contains the endpoints of Jq, so that Jq \Uq is the union of disjoint open 
intervals (xL, xR). Since q ∈ V \ U , Vq \ Uq is a discrete set by Theorem 1.4 (ii). The relation (1.3) follows 
from Lemmas 4.6 and 5.1. The relation (1.4) is the same as the relation between b(xL, q) and b(xR, q) in 
(ii) and can also be proved along the exact same lines, except that we now have to invoke Proposition 3.1
(iii) in place of Proposition 3.1 (ii).

(iv) This follows from Examples 4.4 (i).

(v) We already know from Lemma 8.1 that U ′
q = V ′

q1 . Write the set Jq \ Uq = ∪∗(xL, xR) as a disjoint 
union of open intervals (xL, xR), and define the map h : Jq → Jq1 as follows:

{
h(x) =

∑∞
i=1 ciq

−i
1 if x =

∑∞
i=1 ciq

−i ∈ Uq,

h(x) = x−xL (h(x ) − h(x )) + h(x ) if x ∈ (x , x ).
xR−xL
R L L L R
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The map h is strictly increasing by Proposition 2.5. It is clear that h restricted to each closed interval [xL, xR]
is continuous. It remains to observe that h cannot have a jump discontinuity at an accumulation point of 
Uq by Lemmas 2.7 and 2.8. Hence h is a strictly increasing bijection (and therefore a homeomorphism) that 
maps Jq \ Uq onto Jq1 \ Vq1 . �
Lemma 8.2. Let q ∈ (1, M + 1]. The set V ′

q is a compact subset of AN if and only if q 
= M + 1.

Proof. If q 
= M + 1, then a sequence (ci) ∈ AN belongs to V ′
q if and only if (4.3) and (4.4) hold. Hence 

AN \ V ′
q is open, whence V ′

q is closed and thus compact. For n ≥ 1, the sequence 10n1∞ belongs to V ′
M+1. 

If n → ∞, then 10n1∞ converges to 10∞ which does not belong to V ′
M+1, i.e., V ′

M+1 is not closed. �
Proof of Theorem 1.12. (ia) This is the classical integer base case.

(ib) If Vq had an interior point, then by Lemma 2.7, Vq would also have an interior point with a finite 
greedy expansion, contradicting Lemma 4.7. By Theorem 1.2 (ii), Vq \Uq is dense in Vq. Hence every x ∈ Uq

is an accumulation point of Vq. Since the accumulation points of a set form a closed set, we infer that every 
x ∈ Uq = Vq is an accumulation point of Vq.

(iia) See Examples 4.4 (i); here we have q1 = q̃.

(iib) Theorem 1.4 (ii), Lemma 8.1 and induction on n show that Uq is countably infinite for each q ∈
(q̃, qKL). Suppose that q ∈ (qn, qn+1]. According to Lemma 5.1, for each element x ∈ Uqn , there is a sequence 
(xi) of elements in Vqn \Uqn such that a(xi, qn) → a(x, qn) as i → ∞. Since U ′

q = V ′
qn , all elements of πq(U ′

qn)
are accumulation points of Uq and can be approximated arbitrarily closely by elements of πq(V ′

qn \ U ′
qn). A 

number x ∈ Vqn \ Uqn is isolated in Vqn by Theorem 1.4 (ii). Lemma 2.2 implies that πq(a(x, qn)) is isolated 
in Uq because univoque sequences are in particular greedy and quasi-greedy.

(iiia) The set Vq0 is perfect by Theorem 1.2 and hence consists entirely of condensation points. Suppose 
that a sequence (ci) is univoque in base q, and let W be an arbitrary neighborhood of 

∑∞
i=1 ciq

−i. If 
N is large enough, then each sequence starting with c1 · · · cN is the expansion in base q of a number in 
W . If (ci) also belongs to U ′

q0 , then, since univoque sequences are in particular greedy and quasi-greedy, 
applying Lemma 2.2 and using the fact that V ′

q0 \ U ′
q0 is countable (see Theorem 1.2), we conclude that 

there are uncountably many sequences in U ′
q0 starting with c1 · · · cN . Since, moreover, U ′

q0 ⊆ U ′
q, each number 

belonging to πq(U ′
q0) is a condensation point of Uq. It follows easily from Lemmas 2.2, 5.2, 6.1 and 8.2 that 

U ′
q0 = V ′

q0 because q0 ∈ U \ {M + 1}. Since πq is continuous and since the condensation points of Uq form 
a closed set, each element in Uq = πq(V ′

q0) is a condensation point of Uq. The set Uq has no interior points 
because Vq has none; see the proof of (ib). Hence Uq is a Cantor set. It follows from Lemma 5.1 that 
πq(V ′

q0 \ U ′
q0) is dense in Uq.

(iiib) One shows exactly as in (iib) that elements of πq(V ′
qn \ U ′

qn) are isolated points of Uq and form a 
dense subset of Uq. Hence, elements of πq(U ′

qn) are accumulation points of Uq = πq(V ′
qn). Since πq(V ′

q0) is 
compact by Lemma 8.2, and since U ′

qn \ V ′
q0 is countable, elements of πq(U ′

qn \ V ′
q0) are not condensation 

points of Uq. Numbers belonging to πq(V ′
q0) are condensation points of Uq as follows from the reasoning in 

(iiia). �
Proof of Theorem 1.13. Since we have always (ii) =⇒ (iii) =⇒ (iv), it suffices to show that U ′

q is a shift of 
finite type for every q ∈ (1, M + 1] \ U , and that U ′

q is not closed if q ∈ U . Fix q ∈ (1, M + 1] \ U . Consider 
the connected component (q1, q2) of (1, ∞) \ V, satisfying q ∈ (q1, q2]. Let us write

α(q2) = (αi) = (α1 · · ·αkα1 · · ·αk)∞,
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where k is minimal, and set

F =
{
ja1 · · · ak ∈ Ak+1 : j < M and a1 · · · ak ≥ α1 · · ·αk

}
.

It suffices to show that a sequence (ci) ∈ AN belongs to U ′
q = U ′

q2 if and only if

cj · · · cj+k /∈ F and cj · · · cj+k /∈ F for all j ≥ 1. (8.4)

It follows from the proof of Lemma 8.1 that (ci) ∈ U ′
q2 if and only if

cj < M =⇒ cj+1 · · · cj+k ≤ (α1 · · ·αk)− and cj > 0 =⇒ cj+1 · · · cj+k ≤ (α1 · · ·αk)−,

and this is equivalent to (8.4).
Finally, if q ∈ U , then U ′

q is not closed as follows from Lemma 5.2. �
Proof of Theorem 1.14. First we show that V ⊆ U ∩ J. Fix (x, q) ∈ V. If q = M + 1, then (x, q) ∈ U
because Uq = Vq. If 1 < q < M + 1, then by Lemma 4.3, a(x, q) ∈ U ′

r for every r ∈ (q, M + 1], so that 
πr(a(x, q)) ∈ Ur. Since πr(a(x, q)) → πq(a(x, q)) = x as r ↓ q, we conclude that (x, q) ∈ U ∩ J.

Since U ⊆ V, the converse inclusion U ∩ J ⊆ V will follow if we show that V is (relatively) closed in J, 
i.e., if (x, q) ∈ J \ V, then (x′, q′) /∈ V for all (x′, q′) ∈ J close enough to (x, q).

Henceforth we assume that q ∈ (1, M + 1), and write (βi) = β(q), (β′
i) = β(q′), (ai) = a(x, q) and 

(a′i) = a(x′, q′). By Lemma 4.5 there exist two positive integers n and m such that

an > 0 and an+1 . . . an+m > β1 . . . βm. (8.5)

It follows from the definition of quasi-greedy expansions that

a1

q
+ · · · + aj−1

qj−1 +
a+
j

qj
+ 1

qj+m
> x whenever aj < M.

Hence, if (x′, q′) ∈ J is sufficiently close to (x, q), then, applying also Lemma 2.2 (i), (iii),

a1

q′
+ · · · + aj−1

(q′)j−1 +
a+
j

(q′)j + 1
(q′)j+m

> x′ whenever j ≤ n + m and aj < M, (8.6)

β′
1 . . . β

′
m ≤ β1 . . . βm and a′1 . . . a

′
n+m ≥ a1 . . . an+m. (8.7)

Now we distinguish between two cases.
If a′1 . . . a′n+m = a1 . . . an+m, then we have

a′n > 0 and a′n+1 . . . a
′
n+m > β1 . . . βm ≥ β′

1 . . . β
′
m

by (8.5) and (8.7). This proves that (x′, q′) /∈ V.
If a′1 . . . a′n+m > a1 . . . an+m, then let us consider the smallest j for which a′j > aj . It follows from (8.5), 

(8.6) and (8.7) that

a′j = a+
j > 0 and a′j+1 . . . a

′
j+m = Mm > β1 . . . βm ≥ β′

1 . . . β
′
m.

Hence (x′, q′) /∈ V again. �
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9. List of principal terminology and notations

• Page 2
– N := {1, 2, 3, . . .}
– alphabet A := {0, 1, . . . ,M}
– digit: an element of the alphabet
– sequence: an element of AN

– block or word: a finite sequence of digits
– conjugate or reflection of a digit, word, or a sequence:

ci := M − ci, c1 · · · cn := c1 · · · cn, c1c2 · · · := c1 c2 · · ·

– w+ := c1 · · · cn−1(cn + 1) if w = c1 · · · cn−1cn and cn < M

– w− := c1 · · · cn−1(cn − 1) if w = c1 · · · cn−1cn and cn > 0
– lexicographical order between words and sequences
– finite, co-finite, infinite, co-infinite and doubly infinite sequences

• Page 3
– expansion (of a number x in base q over the alphabet A):

(ci) ∈ AN satisfying x =
∞∑
i=1

ci
qi

– short notation:

πq(c) = πq(c1c2 · · · ) :=
∞∑
i=1

ci
qi
, c = (ci) ∈ AN

We assume after Page 3 and in the remainder of this list that 1 < q ≤ M + 1.
– Jq := [0, M/(q − 1)]: the set of numbers having an expansion in base q
– b(x, q): the greedy (or lexicographically largest) expansion of x in base q
– a(x, q): the quasi-greedy (or lexicographically largest infinite) expansion of x in base q

• Page 4
– U is the set of univoque bases. A base q belongs to U if x = 1 has a unique expansion in base q.
– V is the set of bases q in which x = 1 has a unique doubly infinite expansion.
– A Cantor set is a nonempty closed set having neither interior nor isolated points.
– U is the topological closure of U .
– Uq is the set of numbers x ∈ Jq having a unique expansion in base q.
– Vq is the set of numbers x ∈ Jq having at most one doubly infinite expansion in base q.
– Uq is the topological closure of Uq.

• Page 5
– Aq is the set of numbers x ∈ Vq \ Uq such that b(x, q) is finite.
– Bq is the set of numbers x ∈ Vq \ Uq such that b(x, q) is infinite.
– � : Jq → Jq is the reflection map defined by �(x) = M/(q − 1) − x.
– The number q̃ := minV is the smallest element of V; for M = 1, q̃ is the Golden ratio; see also 

Theorem 3.3.
• Page 6

– U ′
q ⊆ AN : the set of expansions of the elements of Uq

– V ′
q ⊆ AN : the set of quasi-greedy expansions of the elements of Vq
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• Page 8
– The Komornik–Loreti constant qKL := minU is the smallest element of U ; see also Theorem 3.2. For 

M = 1, qKL ≈ 1.787.
• Page 9

– The two-dimensional analogues of Uq, Vq and Jq are defined as follows.

U : =
{
(x, q) ∈ R2 : q ∈ (1,M + 1] and x ∈ Uq

}
,

V : =
{
(x, q) ∈ R2 : q ∈ (1,M + 1] and x ∈ Vq

}
,

J : =
{
(x, q) ∈ R2 : q ∈ (1,M + 1] and x ∈ Jq

}
.

• Page 12
– β(q) := b(1, q): greedy expansion of x = 1 in base q
– α(q) := a(1, q): quasi-greedy expansion of x = 1 in base q

• Page 14
– X ⊆ R is closed from above (below) if the limit of every bounded decreasing (increasing) sequence in 

X belongs to X.
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