In this note, we present upper bounds for the variational eigenvalues of the Steklov p-Laplacian on domains of $R^n$, $ngeq 2$ . We show that for $1n$ upper bounds depend on a geometric constant $D(Omega)$, the $(n-1)$-distortion of $Omega$ which quantifies the concentration of the boundary measure. We prove that the presence of this constant is necessary in the upper estimates for $p>n$ and that the corresponding inequality is sharp, providing examples of domains with boundary measure uniformly bounded away from zero and infinity and arbitrarily large variational eigenvalues.

Upper bounds for the Steklov eigenvalues of the p‐Laplacian / Provenzano, Luigi. - In: MATHEMATIKA. - ISSN 0025-5793. - 68:1(2022), pp. 148-162. [10.1112/mtk.12119]

Upper bounds for the Steklov eigenvalues of the p‐Laplacian

Provenzano, Luigi
2022

Abstract

In this note, we present upper bounds for the variational eigenvalues of the Steklov p-Laplacian on domains of $R^n$, $ngeq 2$ . We show that for $1n$ upper bounds depend on a geometric constant $D(Omega)$, the $(n-1)$-distortion of $Omega$ which quantifies the concentration of the boundary measure. We prove that the presence of this constant is necessary in the upper estimates for $p>n$ and that the corresponding inequality is sharp, providing examples of domains with boundary measure uniformly bounded away from zero and infinity and arbitrarily large variational eigenvalues.
2022
p-Laplacian; Steklov; variational eigenvalues; eigenvalue bounds; distortion
01 Pubblicazione su rivista::01a Articolo in rivista
Upper bounds for the Steklov eigenvalues of the p‐Laplacian / Provenzano, Luigi. - In: MATHEMATIKA. - ISSN 0025-5793. - 68:1(2022), pp. 148-162. [10.1112/mtk.12119]
File allegati a questo prodotto
File Dimensione Formato  
Provenzano_UpperBounds_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 380.52 kB
Formato Adobe PDF
380.52 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1624434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact