In this note, we present upper bounds for the variational eigenvalues of the Steklov p-Laplacian on domains of $R^n$, $ngeq 2$ . We show that for $1n$ upper bounds depend on a geometric constant $D(Omega)$, the $(n-1)$-distortion of $Omega$ which quantifies the concentration of the boundary measure. We prove that the presence of this constant is necessary in the upper estimates for $p>n$ and that the corresponding inequality is sharp, providing examples of domains with boundary measure uniformly bounded away from zero and infinity and arbitrarily large variational eigenvalues.
Upper bounds for the Steklov eigenvalues of the p‐Laplacian / Provenzano, Luigi. - In: MATHEMATIKA. - ISSN 0025-5793. - 68:1(2022), pp. 148-162. [10.1112/mtk.12119]
Upper bounds for the Steklov eigenvalues of the p‐Laplacian
Provenzano, Luigi
2022
Abstract
In this note, we present upper bounds for the variational eigenvalues of the Steklov p-Laplacian on domains of $R^n$, $ngeq 2$ . We show that for $1n$ upper bounds depend on a geometric constant $D(Omega)$, the $(n-1)$-distortion of $Omega$ which quantifies the concentration of the boundary measure. We prove that the presence of this constant is necessary in the upper estimates for $p>n$ and that the corresponding inequality is sharp, providing examples of domains with boundary measure uniformly bounded away from zero and infinity and arbitrarily large variational eigenvalues.File | Dimensione | Formato | |
---|---|---|---|
Provenzano_UpperBounds_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
380.52 kB
Formato
Adobe PDF
|
380.52 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.