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Abstract

In this note, we present upper bounds for the variational
eigenvalues of the Steklov p-Laplacian on domains of
R", n > 2. We show that for 1 < p < n the variational
eigenvalues Opk are bounded above in terms of k, p, n
and |0Q| only. In the case p > n upper bounds depend
on a geometric constant D(Q), the (n — 1)-distortion of
Q which quantifies the concentration of the boundary

measure. We prove that the presence of this constant is
necessary in the upper estimates for p > n and that the
corresponding inequality is sharp, providing examples
of domains with boundary measure uniformly bounded
away from zero and infinity and arbitrarily large varia-

tional eigenvalues.
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1 | INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let Q be a bounded domain (i.e., an open connected set) in R", n > 2, with Lipschitz boundary
0Q, and let p > 1. We consider the following Steklov eigenvalue problem

Apu =0, in Q,
(1D

|Vu|P_2g—’; =o|ulP~?u, onadQ,
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where A, = div(|Vu|P~2Vu) is the p-Laplacian and Z_Z is the outer normal derivative of u. When
p = 2 problem (1.1) is the classical Steklov problem for the Laplacian, introduced in [24]. Problem
(1.1) admits an increasing sequence of non-negative eigenvalues, called the variational eigenvalues,
diverging to +oo:

0= Tp1 <0po < Op3 L£:-+<0

p.k < e / +00.

A characterization of the variational eigenvalues is given by (2.5). It is not known if the variational
eigenvalues exhaust the spectrum, except in the case p = 2.

The aim of the present note is to provide geometric upper bounds for the variational eigenvalues
of problem (1.1). Actually, being the eigenvalues not scaling invariant, we will write the upper

bounds for the normalized eigenvalues, namely, for |0Q| ﬁ_—ia where |0Q| denotes the (n — 1)-
dimensional Hausdorff measure of 4.

Upper bounds for the Steklov eigenvalues of the Laplacian have been quite extensively inves-
tigated in recent years. We recall that for a bounded Lipschitz domain of R" the following bound

holds (see [4])

p:k>

6Ol 0, < C(’?_Z k. 1.2)
Q)=

where C(n) > 0 depends only on n and I(€) denotes the isoperimetric ratio of Q (see (1.7) for the
definition). In view of the Weyl’s law

lim — = , (1.3)
9]

»
7
+
§

~

I
-

n—1
n-1
we note that bound (1.2) does not show the expected behavior with respect to k, except for n = 2.
Here, by w,, we denote the volume of the unit ball in R". We remark that (1.3) holds true when

Q is a piecewise C!, Lipschitz domain. However, as highlighted in [4], a bound of the form (1.2)
involving I(Q) is not possible with a different power of k. Note also that (1.2) implies an upper
bound on o, of the form [9Q)| = oy <C (n)k% for some constant C’(n) > 0 depending only on
n. Proving upper bounds of this type but with the correct exponent ﬁ for the eigenvalue number
k is still an open question (except again for n = 2). Partial results in this direction are available in
[23] (see also [5] for upper bounds in the case of hypersurfaces of revolution in R" and [7] for upper
bounds via the intersection index). We also refer to [18] for upper bounds for the Steklov eigenval-
ues of the Laplacian in the conformal class of a given metric for domains in complete Riemannian
manifolds.

As for the variational eigenvalues of the Steklov p-Laplacian, a Weyl’s asymptotic law has not
been established (up to our knowledge). We recall that the validity of a Weyl’s law for the varia-
tional eigenvalues 4, of the p-Laplacian with Dirichlet boundary conditions on Q of the form

p
QA
kl_{rfm k—gp = Cp(p, n), (14)
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with Cpp(p, n) > 0 depending only on p and #n, has been conjectured by Friedlander in [14], who

P
. Qlna .
proved asymptotic upper and lower bounds for H—Bp’k. The conjecture seems to have been proved

kn
recently in [21]. The same discussion holds for the Neumann eigenvalues of the p-Laplacian. As
for the Steklov eigenvalues, it is natural to conjecture that

p-1
o loQfnto,
kETw Tp = Cs(p, n), 1.5)
Kt

with C¢(p, n) > 0 depending only on p and n. Asymptotic estimates (i.e., holding for k > k) in
the spirit of Friedlander have been established in [22].

It is reasonable to expect that upper bounds of the form (1.2) also hold for |6Q| %ap,k. How-
ever, quite surprisingly, this happens only when p < n. On the other hand, for p > n we show
that upper bounds of the form (1.2) do not hold in general. In Section 4, we provide examples of
domains Q; such that |[0Q;| remains uniformly bounded away from zero and infinity as j - +oo,
butlim;_, , 0,, = +o0. When p > nwe are able in any case to provide upper bounds that depend
on a geometric quantity D(Q) which we call the (n — 1)-distortion of Q (see (1.9) for the defini-
tion).

‘We state now our main result.

Theorem 1.1. Let Q be a bounded domain of R" with Lipschitz boundary. Then

-1 C
160110, < —Lo_ki, if p<n, (1.6)
I(Q)»—1
where I(Q) is the isoperimetric ratio of Q, namely,
0Q
I(Q) := | n_Jl . @.7)
1]
Moreover,
1 ’ pmn_pzl
16Q[nTay, <C,,DQ)rTkn1, if p>n, (1.8)
where D(Q) is the (n — 1)-distortion of Q, namely,
0Q N B(x,
DQ) = sup PLNBXDI (1.9)

XERM >0 wn_lrn_l

The positive constants C Cl’),n depend only on p and n.

p.n>

We note that D(Q) is a well-defined quantity for a bounded Lipschitz domain Q, in fact,

we have that lim,_ . 9208%01 — g when x ¢ 8Q, lim,_, , 220800l — g for all x € R", and
wWy_1¥ Wy
lim, ¢+ S90BCDL = C(x) for x € 90, with 0 < ¢ < C(x) < C < +00 (C(x) =1 forall x € IQifQ
n—1

is of class C1).
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‘We discuss now Theorem 1.1.

Remark 1.2 (On the case p < n). When p < n, we note that inequality (1.6) implies that a large
1

isoperimetric ratio forces the normalized eigenvalues |0Q| %op,k to be small when p < n. This
is in general not true for p = n, at least for p = 2 (see [6, Theorem 4] where the authors provide
an example of planar domains with large isoperimetric ratio and normalized Steklov eigenvalues
bounded away from zero). We also remark that the proof of (1.6) can be performed in the same way
if we substitute the ambient space R” with a complete n-dimensional Riemannian manifold (M, g)
satisfying a suitable packing property (namely, the hypothesis of Theorem 2.2, see also [4, Theorem
2.2] for p = 2). In particular, this is true, for example, if (M, g) has non-negative Ricci curvature.
In this setting it is easier to show that we can have an arbitrarily large isoperimetric ratio and
Steklov eigenvalues bounded away from zero when p = n. In fact, let Q be a bounded domain in
(M, g), a complete p-dimensional Riemannian manifold as above. Let us take a conformal metric
g’ = e? g with w = 0 in a neighborhood of Q. The operator A p 1s conformally covariant (recall
that p coincides with the space dimension); thus functions that are p-harmonic (i.e., with zero
p-Laplacian) with respect to g are p-harmonic with respect to ¢’ and vice versa. Moreover the
gradient and the normal derivative of functions along the boundary are preserved, being g = ¢’
in a neighborhood of the boundary. Therefore the Steklov eigenvalues on Q with respect to g and ¢’
coincide. Also the measure of 9Q is preserved. It is sufficient then to find a function w such that the
volume of Q with respect to the Lebesgue measure associated with g’ becomes arbitrarily small.
This is done by taking some w decaying rapidly to —C away from 0Q, where C > 0 is arbitrarily
large. Doing so, we obtain a very large isoperimetric ratio for Q (in (M, g")), while the Steklov
eigenvalues remain unchanged.

Remark 1.3 (On the case p > n). We note that the quantity D(Q) quantifies the concentration of the
(n — 1)-dimensional measure of 0Q in small regions of R”. Usually, upper bounds for the eigen-
values of Steklov-type and Neumann-type problems are not affected by the particular geometry
of the domain (for the Steklov Laplacian they depend only on k,n and |0Q|, for the Neumann
Laplacian they depend only on k,n and |Q|, etc.). Therefore at a first sight the geometric con-
stant D(Q) may result odd and unnecessary. In the case of inequality (1.8), we prove in Section 4
that the constant D(Q) is instead necessary in an upper estimate for o, , when p > n, providing
a sequence of domains Q;, j € N, with [6Q;| uniformly bounded away from zero and infinity,
0,2 2 C(p,n)jP™" as j — +oo for some constant C(p,n) > 0 only depending on p and n, and
with D(Q;) ~ j" ! as j - +oo. The example not only proves the necessity of D(Q) in (1.8), but
also shows the sharpness of the exponent of D(Q) (see Theorem 4.1).

We also remark that the quantity D(Q) already appears in some sense in the celebrated paper
[10] where the authors identify a condition on the perturbations of a domain Q under which Robin
boundary conditions for the Laplacian degenerate to Dirichlet conditions at the limit. Roughly
speaking, this happens when the surface measure goes locally to infinity. This is somehow equiv-
alent to the condition that D(Q) — +o0. This condition, expressed in a different way, also appears
in the study of Steklov-type eigenvalue problems and boundary value problems for the Lapla-
cian on domains with very rapidly oscillating boundaries (see [1, 12, 13]), where it implies spec-
tral instability and degeneration of the limit problem (which, in the case of the classical Steklov
problem, amounts to saying that all the eigenvalues converge to zero). The same results in the
spirit of [12, 13] are very likely to hold in the case of the Steklov p-Laplacian when p < n. On the
other hand, in this note we observe a somehow opposite behavior for p > n. In fact, as already
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mentioned, the domains provided in Section 4 have arbitrarily large distortion and correspond-
ingly arbitrarily large Steklov eigenvalues. Moreover, by suitably rescaling the domains, we may
also assume that the boundary measure becomes arbitrarily large, along with the distortion, and
still the eigenvalues remain uniformly bounded away from zero (see Remark 4.4).

Concerning D(Q), we should also mention the recent paper [7] where upper bounds for the
Steklov eigenvalues of the Laplacian in terms of the intersection index and the injectivity radius
of the boundary have been obtained. In some sense, these two quantities together play the same
role of D(Q) in describing how the boundary measure accumulate.

Finally, we mention that a behavior similar to that of our case p > n has been observed for
upper bounds on the Neumann eigenvalues of linear elliptic operators of order 2m, m € N and
density on Euclidean domains (see [8]) and for upper bounds on Neumann eigenvalues of the
p-Laplacian in the conformal class of a given metric in a complete Riemannian manifold (see

[9D.

Remark 1.4. In view of the conjectured Weyl’s law (1.5), for p > n the upper bounds present the

P
correct behavior with respect to k. This is somehow expected and natural since the power k=

(which we have in the bounds for p < n) is not compatible with (1.5) when p > n:in fact 5 <l

n—1
when p > n. In the case of convex domains, we have that D(Q) < :w" . Thus, when p > n, we

1

have Weyl-type upper bounds for the eigenvalues (see Corollary 3.1). "

Remark 1.5 (Lower bounds). As for lower bounds, it is possible to build, for any p > 1, a sequence
of domains Q,, ¢ € (0, 1), of fixed volume and such that o, ,(Q,) - Oase — 0. The construction
is standard for p = 2 (see, e.g., [3, Chapter III]). However, for any p > 1 it can be reproduced with
no essential modifications. Namely, one considers a sequence of dumbbell domains Q, = Int(ﬁ1 U
52 U w, ), provided that the union is connected. Here Q,, Q, are two disjoint bounded domains,
w, ~ (0,L) X B,, where L > 0 and B, is a ball of radius € in R""!, and Int denotes the interior. It is
sufficient consider the variational characterization (2.5) of o, panduseasaset of test functions the
set F = {a u; + a,u, : oy, €R, |y |P + |oy|P = 1}, where u;, i = 1, 2, are functions in WP(Q)
with ||u;llpeq) = 1, 4; = ¢ # 0in Q;, uy, u, disjointly supported. It is not hard to build such test
functions and use them as in the proof of Theorem 1.1 to obtain ¢, ,(Q;) < Ce"~! for some C > 0
independent on €.

In order to prove Theorem 1.1, we will use an approach based on a metric construction (see
[17], see also [4]). Namely, in order to bound o, We consider Ay, ..., A disjoints subsets of Q of
measure of the order of % and with |0Q N Zkl of the order of Lf', and introduce test functions
uy, ..., Uy subordinated to these sets. A clever estimate of the Rayleigh quotient of these functions
provides the upper bounds of Theorem 1.1.

The paper is organized as follows. In Section 2 we set the notation and recall some preliminary
results. In Section 3 we prove Theorem 1.1. In Section 4 we provide the examples of domains

showing the necessity of the geometric constant D(Q2) in (1.8) and the sharpness of the exponent.

2 | PRELIMINARIES AND NOTATION

By W1P(Q) we denote the Sobolev space of functions u € LP(Q) with weak first derivatives in
LP(Q). The space W1P(Q) is endowed with the norm
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[ /|Vu|P+|u|de Q1)

For u € LP(Q) we denote by |[ul|;p(q) its standard norm given by

Iy gy 1= ] lulPd, 22)

while for u € LP(0Q) we denote by ||ul| Lp(30) its standard norm given by

1l s /a upda() 23)

where do(x) denotes the (n — 1)-dimensional measure element on 6Q.

For a measurable set E of R", we denote by |E| its Lebesgue measure. For a subset E of R” which
is measurable with respect to the (n — 1)-dimensional Hausdorff measure, we shall still denote by
|E| its (n — 1)-dimensional Hausdorff measure. Therefore, for an open set Q of R" with Lipschitz
boundary, |Q| will denote its Lebesgue measure, while |dQ| will denote the (n — 1)-dimensional
measure of its boundary. By N we denote the set of positive integers.

Problem (1.1) is understood in the weak sense, namely, a couple (u, o) € WHP(Q) X R is a weak
solution to (1.1) if and only if

/ [VulP=2Vu - Vpdx = o / |ulP~2updo(x), V¢ € WHP(Q). (2.4)
Q 0Q

A sequence of eigenvalues for (2.4) can be obtained through the Ljusternik-Schnirelman prin-
ciple (see [2, 15, 19] for a more detailed discussion on the variational eigenvalues of problem (1.1)).
These eigenvalues, which form an increasing sequence of non-negative numbers diverging to +oo,
are called the variational eigenvalues as they can be characterized variationally as follows:

Opk 5=F12fk suER (u), (2.5)
ue
where
Vul|Pdx
R, () := Ja IVul (2.6)

J50 lulPda(x)
is the Rayleigh quotient of u. Here
Ty = {FCcW"P(@\ {0} : Fn{u: lullpppq) =1} compact, F symmetric, y(F) > k}, (2.7)

and y(F) denotes the Krasnoselskii genus of F, which is defined by

y(F) := min {f e N : thereexists f : F — R’ \ {0} continuous and odd}. (2.8)

We refer to [2] for the proof (see also [15, 19]).
In order to prove upper bounds for ¢, ;, we need suitable sets F, € I'; to test in (2.5). The
following lemma provides us a useful way to build such F,.
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Lemma 2.1. Letk €N, k > 1, and let u,, ...u;, € WHP(Q), with u; # 0 and with pairwise disjoint
supports Uy, ..., U. Let

k k
Fk={20(lulal€|R,Z|cxl|p=l}
i=1 i=1

Then Fk S Fk'

Proof. Clearly 0 & F;. Moreover, Fi, N{u : [[ul psq) = 1} is compact and F is symmetric. We
show now that y(F,) = k. We define a map f, : F; — R\ {0} by setting, for u € F), u =

k
Zi=1 aiU;,
k
fiw) = Z “ie,k7
i=1

where elf‘ ,i =1,...,k,denotes the standard basis of R¥. The function fkisan odd homeomorphism
between F; and Si‘)‘l ={x eRrRF: Ele |x;|P = 1}, which is the unit sphere of R¥ with respect
to the #P norm. This implies that y(F)) = y(S’;_l) (see also [25, Proposition 2.3]). Finally, by the
Borsuk-Ulam theorem, we deduce that y(SI;_l) =k. O

We recall now the main technical tools which will be used to prove upper bounds for eigenval-
ues. We denote by (X, dist, ¢) a metric measure space with a metric dist and a Borel measure ¢c. We
will call capacitor every couple (A, D) of Borel sets of X such that A C D. By an annulus in X we
mean any set A C X of the form

A=A(a,r,R)={x e X : r <dist(x,a) <R},
wherea € X and 0 < ¥ < R < +o0. By 24 we denote
2A = 2A(a,r,R) = {x eEX: g < dist(x,a) < ZR}.

The following theorem provides a decomposition of a metric measure space by disjoint capac-
itors satisfying suitable measure conditions.

Theorem 2.2 [17, Theorem 1.1]. Let (X, dist, ¢) be a metric-measure space with ¢ a non-atomic finite
Borel measure. Assume that the following properties are satisfied.

(i) There exists a constant T such that any metric ball of radius r can be covered by at most T balls
of radius 3.
(ii) All metric balls in X are precompact sets.

Then for any integer k there exists a sequence {Ai}i.‘zl of k annuli in X such that, foranyi =1, ...,k

¢(X)

s(4) > CT,

and the annuli 2A; are pairwise disjoint. The constant c depends only on the constant I in (i).
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Theorem 2.2 provides a decomposition of a metric measure space by annuli of the size at least
c%. The common idea of the proof of inequalities (1.6) and (1.8) is to build for each k € N, suit-
able test functions u; supported on 2A; and such that u; =1 on A;, and then to compute their
Rayleigh quotients.

We also state a useful (but somehow hidden in the original paper [17]) corollary of Theo-
rem 2.2 which gives a lower bound of the inner radius of the annuli of the decomposition, see
[17, Remark 3.13].

Corollary 2.3. Let the assumptions of Theorem 2.2 hold. Then each annulus A; has either internal
radius r; such that

r> %inf {reR : V() > vl (2.9)

where V(r) = sup,cx s(B(x,r)) and v, = cg(k—X) , oris a ball of radius r; satisfying (2.9).

3 | PROOF OF THE MAIN RESULT
In this section we present the proof of Theorem 1.1.

Proof of Theorem 1.1. We take the metric measure space (R",d, u), where d(x,y) = |x — y| is the
Euclidean distance and the measure y is defined by setting u(E) = /amE do(x) = |[EndQ| foran
open set E. Note that u is a non-atomic measure and u(R") = |0Q|. It follows from Theorem 2.2
that, for any k € N, there exists A, ..., A, annuli in R” with

KR _ 199
2k "2k’

:u(Al) 2 Cn (31)

and such that 24; are pairwise disjoint. The constant c,, depends only on n. By possibly re-ordering

the annuli, we have that

Q
124, N Q| < I—kl (3.2)

fori=1,...,k (in fact we cannot have more than k disjoint annuli with |[24; N Q| > %). Associ-
ated with each A; = A;(a;,7;, R;), we define a function u; by setting

1, ri<|x—al <R,
el g, Lelx-al<r,

w) =9 " (33)
2-—F, Ri<|x-a|<2R,

0, otherwise.
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In the case that A; is a ball of radius r; and center q;, the function u; is defined by setting

1, [x —a;| <71y,
u;(x) = 2—@, r < |x—a <2r, (3.4)
0, otherwise.

Note that u; € WP(Q), u; is supported on 2A4;, and u; = 1 on A;. Let us take

k k
Fk2={zalullalER,Z|al|p=l}
i=1 i=1

From (2.5) and from Lemma 2.1, we deduce that

Opi < sup R, (u), (3.5)

k
b u€elFy

which in particular implies, since u; are disjointly supported, that

Opk < E}an Rp(ui). (3.6)

Thus, in order to estimate o, it is sufficient to estimate the Rayleigh quotients R ,(u;) for i =

1, ..., k. We distinguish now the cases p < nand p > n.

Case p < n. We have, for the numerator

P 1-2
n _r Q n
/ |V, |Pdx < </ |Vui|"dx> 124; n Q| "< c}j(%) , (3.7
Q Q

where we have used (3.2) and the fact that |Vuy;| equals rl for r_2, <lx—al <1y, % forR; < |x —

a;| € 2R; (and itis rl forr; < |x — a;| < 2r; when A, is a ball). In fact, an easy computation shows
ll 1

that (/f, [Vu;["dx)n < 2nw,)n =: C,.

As for the denominator, we have

19Q|

/ juPdo(x) > / [ lPdo(x) = u(Ap) > ¢, 122, (38)
80 néQ 2k

i

where we have used the fact that 4; = 1 on 4; and (3.1). From (3.7) and (3.8) we deduce that

_b
JolViilPdx 27101 0 Cpn ki
Joa lulPdot) = en 1091 T )it jaq)is

) (3.9)

where Cp,n =2c, 1C£ . This concludes the case p < n.
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Case p > n. We estimate the Rayleigh quotient of the same functions u; used in the case p < n,
but in a different fashion (at least, for the numerator). We have

_ _ 214P—1pe
/Q [Vu;|Pdx < ||Vui||§m’(10)/Q [Vu;|"dx < annllvui”foo?g) < ,»P——”n' (3.10)

1

From Corollary 2.3 we deduce that r; > %inf{r ERV(r)> cn%

u(B(x,r)). From this and from the definition of D(Q) we deduce that

1
1( ¢,109Q] Y\t
> o L . 3.11
'i 2<2kwnD(Q) (311

}, where V(r) := sup,cgn

Since for the denominator of the Rayleigh quotient, the estimate (3.8) holds, from (3.8), (3.10), and
(3.11) we conclude that

<
-

SalVuilPdx gy (‘k >_ (3.12)
< n—1 , .
3o lwilPda(x) = P" 60|
n(2p—2n+3)—2—p _p1 .
where C;) n=2 n—1 ¢, "' nw,. This and (3.6) allow to conclude the proof. O
We note that for a convex set D(Q) < CZM" . In fact
n—1

[6Q N B(x,r)| < [0(Q N B(x,r))| < |0B(x,r)|  hw,

<X <X .
wn—lrn_l wn—lrn_1 C‘)n—lrn_l Wp—1

We have used the fact that if K, K, are convex domains with K; C K, then |0K;| < |0K,|. In this
case K; = QN B(x,r) and K, = B(x, r). Note that Q n B(x,r) is convex being the intersection of
two convex sets. We have the following corollary.

Corollary 3.1. Let Q be a bounded and convex domain of R" and let p > n. Then

—1
k \m
ap,k < Cg,n(m> , (313)

where C;”n > depends only on p and n.

S

—

4 | DOMAINS WITH FIXED SURFACE MEASURE AND
ARBITRARILY LARGE VARIATIONAL EIGENVALUES

The aim of this section is to build a sequence {Q;};cy CR" of domains which satisfy
lim;_ 10Q;| =C>0ando,,(Q j) — +oowhen p > n. Through all this section we shall denote
by 0,,,(Q j) the second variational eigenvalue of (1.1) on Q ;- The variational eigenvalue o, ,(Q j)
is actually the second eigenvalue of (1.1) (recall that op,l(Q j) = 0), and every eigenfunction asso-
ciated with ap,z(Q j) changes its sign on 0 (see [11, 20] for details).
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Let a, 8 > 0 two positive numbers satisfying 8 > n, « = 8 —n + 1 (in particular, « > 1) and
let j €N. Let Q; := (0, %)” be the n-dimensional cube in R” of side % Let now (iy,...,1,_1) €

{0, ...,m(j) — 1¥*~! with m(j) = [j#~!] + 1, where [-] denotes the integer part of a real number.
LetQ; . , be the (n —1)-dimensional cube defined by

Qi] ..... in—l . ={(x17'~- ’xn) € Rn

1 1 1
x,€|c — ,C + ,Z=1,..,n—1,and x, = = », 41
‘ <“” 2jm(j)’ " 2jm<j>> " J} D
where

1 (1 )
L = — | =+ N le,..., —1.
G = Gm(py\2 Y "

Namely, the cube Q; _;  hascenterc; ; givenby

.....

o _<c. . 1>_<;(1+i> (L >1>
Hoslnt T T T Jm(H\2 T jm(p\2 T ) )

Note that aj Nnix, = %} = U:'(J);L

upper face 5]' Nn{x, = %} of Q; as the union of m(j)*~' ~ j=DE-1 (n — 1)-dimensional cubes

—0Qi,....i,_,- Roughly speaking, we have decomposed the

. 1 1
of side m ~ J_ﬁ
Letnow P; ;  be the square pyramid with base Q; _;  and height jia such that the vertex
of P, ; is(ci,...,C ,l. + .%).We observe that
Loeees n—1 1 n—1 J J
1 1
Piy iy | = njern—Tm(jn—1 njbn—n+1’ (4.2)
2 1 1 2
P, . |—-10; ;i |=—=" . /— ~ 43
Pttt = Gryemn V7 ¥ aGmGpy ~ e 4
and

diamP _ 2 1 <\/n+4_ Vn+4 44
mPy s =\ 3Gme T S 2 g (44)

where diamD denotes the diameter of a set D.
We finally define

o omo-1
Q:=mt|Qu |J P . )

i1 5005l —1=0
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FIGURE 1 The domain Q; whenn =2

where Int denotes the interior. Roughly speaking, Q; is a n-dimensional cube of side % with

m(j)*~! ~ jn=DE=D pyramids on its upper face. By construction, Q ; is a bounded Lipschitz

domain for all j € N. From (4.2) and (4.3) we deduce that |Q;| = Jl” + o(jin) as j — +oo and
|5Qj| =2+ 0(2) as j — +oo (Figure 1).
We will prove the following theorem.
Theorem 4.1. For p > n we have
0,2(Q)) > C(p,m)jP ™, 4.5)

where C(p, n) > 0 depends only on p and n.

Before proving Theorem 4.1 we need to recall a few facts on Sobolev embeddings for p > n.
We first recall that any u € WHP(Q) belongs to C%7(Q), for some y > 0 (or, more precisely, any
u € WLP(Q) has a representative in CO’V(ﬁ)). We also recall the following lemma, the proof of
which can be carried out as in [16, Lemmas 7.12, 7.16].

Lemma 4.2. Let Q be a bounded domain of R", n > 2, and let p > n. For any convex subset D C Q
and any u € WLP(Q), we have



160 PROVENZANO

(diamD)"

lu(x) —u(®) < C'(p,n) D]

. -2
-(diamD)" ? [|VullLp(p), (4.6)

where C'(p, n) > 0 depends only on p and n.
We are ready to prove Theorem 4.1

Proof of Theorem 4.1. Lemma 4.2 says that for any x,y € I_J’i1 _____ ;

n-1’

(—B+n—1)(1—%>

JuCx) = u)| < C"(p, m)j V" - j IVullzpa,), 47

where we have used the fact that || Vul|,pp. y< Vu||Lp(Qj). The constant C"(p, n) is strictly
i1, 1

positive when p > n and depends only on p and n (it can be explicitly computed, see [16, Lemmas
7.12, 7.16]). We choose now 8 = W. We easily check that (p — n)g —n(p —n) = p(n —
—-(1-%)
p

1)%, so that 8 > n. Moreover, j*—1" . jF D075

reads

J , so that (4.7) with this choice of 8

lu(x) —uy)| < C"(p, n)j_(l_§> IVullzec,)- (4.8)

Analogously, for any x,y € 6j, Lemma 4.2 immediately implies that
4

4G — w0 < "oy H | Vall o (49)

where we have possibly re-defined the constant C”’(p, n). _
From the definition of O o and from (4.8) and (4.9), we deduce that for any x,y € Q s

() — u)] < 3" (p,my U5 IVullzeca))- (4.10)

If furthermore we assume that there exists a point x, € Q ; such that u(x,) = 0, we immediately
deduce that

—(1-2
[u(x)| < 3C"(p,n)j ( P)IIVMIIWQJ.), (4.11)

forany x € Q ;- We have proved that, forany u € wbLP(Q j) such that u(x,) = 0 for some x,, € Q j

fQ,_ [VulPdx jpn
: > .
/391 |u|Pdo(x) IGQjI3PC”(p, n)p

(4.12)

We recall that any eigenfunction associated with o, ,(Q;) changes sign on 8Q;. This fact, the
variational characterization (2.4), and (4.12) allow to deduce the validity of (4.5) with the constant
C(p,n) > 0 depending only on p and n. O
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Remark 4.3. We remark that for Q;, D(Q;) > 2 j"~1, thus proving the necessity of the constant
D(Q) in an upper bound for ¢, ; and the sharpness of the exponent of D(Q) in (1.8).

Remark 4.4. When rescaling Q; by a factor j”, we obtain
0,2(Q)) = j7P Va1 (j7Q,)).
From (4.5) we deduce
0,207Q;)) = C(p,n)j 1P~ D+p=m), (4.13)

We can choose now any 0 < 7 < I;%'; so that the right-hand side of (4.13) stays bounded away

from zero as j — +oo. Note also that |j7Q;| = j"@=D + o(j"@~D) and [8(j7Q;)| = 27"~V +
o(j7"~D)as j — +o0. Thus, j7Q ; has the boundary measure which goes to infinity everywhere on
(apart of) the boundary as j —» +00if0 <7 < 1;%'11, but the Steklov eigenvalues remain uniformly
bounded away from zero.
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