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Abstract
In this note, we present upper bounds for the variational
eigenvalues of the Steklov 𝑝-Laplacian on domains of
ℝ𝑛, 𝑛 ⩾ 2. We show that for 1 < 𝑝 ⩽ 𝑛 the variational
eigenvalues 𝜎𝑝,𝑘 are bounded above in terms of 𝑘, 𝑝, 𝑛

and |𝜕Ω| only. In the case 𝑝 > 𝑛 upper bounds depend
on a geometric constant 𝐷(Ω), the (𝑛 − 1)-distortion of
Ω which quantifies the concentration of the boundary
measure. We prove that the presence of this constant is
necessary in the upper estimates for 𝑝 > 𝑛 and that the
corresponding inequality is sharp, providing examples
of domains with boundary measure uniformly bounded
away from zero and infinity and arbitrarily large varia-
tional eigenvalues.
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1 INTRODUCTION AND STATEMENT OF THEMAIN RESULTS

Let Ω be a bounded domain (i.e., an open connected set) in ℝ𝑛, 𝑛 ⩾ 2, with Lipschitz boundary
𝜕Ω, and let 𝑝 > 1. We consider the following Steklov eigenvalue problem

⎧⎪⎨⎪⎩
Δ𝑝𝑢 = 0 , in Ω,|∇𝑢|𝑝−2 𝜕𝑢

𝜕𝜈
= 𝜎|𝑢|𝑝−2𝑢 , on 𝜕Ω,

(1.1)
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where Δ𝑝 = div(|∇𝑢|𝑝−2∇𝑢) is the 𝑝-Laplacian and 𝜕𝑢

𝜕𝜈
is the outer normal derivative of 𝑢. When

𝑝 = 2 problem (1.1) is the classical Steklov problem for the Laplacian, introduced in [24]. Problem
(1.1) admits an increasing sequence of non-negative eigenvalues, called the variational eigenvalues,
diverging to +∞:

0 = 𝜎𝑝,1 < 𝜎𝑝,2 ⩽ 𝜎𝑝,3 ⩽ ⋯ ⩽ 𝜎𝑝,𝑘 ⩽ ⋯ ↗ +∞.

A characterization of the variational eigenvalues is given by (2.5). It is not known if the variational
eigenvalues exhaust the spectrum, except in the case 𝑝 = 2.
The aimof the present note is to provide geometric upper bounds for the variational eigenvalues

of problem (1.1). Actually, being the eigenvalues not scaling invariant, we will write the upper
bounds for the normalized eigenvalues, namely, for |𝜕Ω| 𝑝−1

𝑛−1 𝜎𝑝,𝑘, where |𝜕Ω| denotes the (𝑛 − 1)-
dimensional Hausdorff measure of 𝜕Ω.
Upper bounds for the Steklov eigenvalues of the Laplacian have been quite extensively inves-

tigated in recent years. We recall that for a bounded Lipschitz domain of ℝ𝑛 the following bound
holds (see [4])

|𝜕Ω| 1

𝑛−1 𝜎2,𝑘 ⩽
𝐶(𝑛)

𝐼(Ω)
𝑛−2

𝑛−1

𝑘
2

𝑛 , (1.2)

where 𝐶(𝑛) > 0 depends only on 𝑛 and 𝐼(Ω) denotes the isoperimetric ratio ofΩ (see (1.7) for the
definition). In view of the Weyl’s law

lim
𝑘→+∞

|𝜕Ω| 1

𝑛−1 𝜎2,𝑘

𝑘
1

𝑛−1

=
2𝜋

𝜔
1

𝑛−1

𝑛−1

, (1.3)

we note that bound (1.2) does not show the expected behavior with respect to 𝑘, except for 𝑛 = 2.
Here, by 𝜔𝑛 we denote the volume of the unit ball in ℝ𝑛. We remark that (1.3) holds true when
Ω is a piecewise 𝐶1, Lipschitz domain. However, as highlighted in [4], a bound of the form (1.2)
involving 𝐼(Ω) is not possible with a different power of 𝑘. Note also that (1.2) implies an upper
bound on 𝜎2,𝑘 of the form |𝜕Ω| 1

𝑛−1 𝜎2,𝑘 ⩽ 𝐶′(𝑛)𝑘
2

𝑛 for some constant 𝐶′(𝑛) > 0 depending only on
𝑛. Proving upper bounds of this type but with the correct exponent 1

𝑛−1
for the eigenvalue number

𝑘 is still an open question (except again for 𝑛 = 2). Partial results in this direction are available in
[23] (see also [5] for upper bounds in the case of hypersurfaces of revolution inℝ𝑛 and [7] for upper
bounds via the intersection index). We also refer to [18] for upper bounds for the Steklov eigenval-
ues of the Laplacian in the conformal class of a givenmetric for domains in complete Riemannian
manifolds.
As for the variational eigenvalues of the Steklov 𝑝-Laplacian, a Weyl’s asymptotic law has not

been established (up to our knowledge). We recall that the validity of a Weyl’s law for the varia-
tional eigenvalues 𝜆𝑝,𝑘 of the 𝑝-Laplacian with Dirichlet boundary conditions on Ω of the form

lim
𝑘→+∞

|Ω| 𝑝

𝑛 𝜆𝑝,𝑘

𝑘
𝑝

𝑛

= 𝐶𝐷(𝑝, 𝑛), (1.4)
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with 𝐶𝐷(𝑝, 𝑛) > 0 depending only on 𝑝 and 𝑛, has been conjectured by Friedlander in [14], who

proved asymptotic upper and lower bounds for |Ω| 𝑝𝑛 𝜆𝑝,𝑘

𝑘
𝑝
𝑛

. The conjecture seems to have been proved

recently in [21]. The same discussion holds for the Neumann eigenvalues of the 𝑝-Laplacian. As
for the Steklov eigenvalues, it is natural to conjecture that

lim
𝑘→+∞

|𝜕Ω| 𝑝−1

𝑛−1 𝜎𝑝,𝑘

𝑘
𝑝−1

𝑛−1

= 𝐶𝑆(𝑝, 𝑛), (1.5)

with 𝐶𝑆(𝑝, 𝑛) > 0 depending only on 𝑝 and 𝑛. Asymptotic estimates (i.e., holding for 𝑘 ⩾ 𝑘Ω) in
the spirit of Friedlander have been established in [22].
It is reasonable to expect that upper bounds of the form (1.2) also hold for |𝜕Ω| 𝑝−1

𝑛−1 𝜎𝑝,𝑘. How-
ever, quite surprisingly, this happens only when 𝑝 ⩽ 𝑛. On the other hand, for 𝑝 > 𝑛 we show
that upper bounds of the form (1.2) do not hold in general. In Section 4, we provide examples of
domainsΩ𝑗 such that |𝜕Ω𝑗| remains uniformly bounded away from zero and infinity as 𝑗 → +∞,
but lim𝑗→+∞ 𝜎𝑝,2 = +∞.When𝑝 > 𝑛weare able in any case to provide upper bounds that depend
on a geometric quantity 𝐷(Ω) which we call the (𝑛 − 1)-distortion of Ω (see (1.9) for the defini-
tion).
We state now our main result.

Theorem 1.1. LetΩ be a bounded domain of ℝ𝑛 with Lipschitz boundary. Then

|𝜕Ω| 𝑝−1

𝑛−1 𝜎𝑝,𝑘 ⩽
𝐶𝑝,𝑛

𝐼(Ω)
𝑛−𝑝

𝑛−1

𝑘
𝑝

𝑛 , if 𝑝 ⩽ 𝑛, (1.6)

where 𝐼(Ω) is the isoperimetric ratio ofΩ, namely,

𝐼(Ω) ∶=
|𝜕Ω||Ω| 𝑛−1

𝑛

. (1.7)

Moreover,

|𝜕Ω| 𝑝−1

𝑛−1 𝜎𝑝,𝑘 ⩽ 𝐶′
𝑝,𝑛𝐷(Ω)

𝑝−𝑛

𝑛−1 𝑘
𝑝−1

𝑛−1 , if 𝑝 > 𝑛, (1.8)

where 𝐷(Ω) is the (𝑛 − 1)-distortion ofΩ, namely,

𝐷(Ω) ∶= sup
𝑥∈ℝ𝑛,𝑟>0

|𝜕Ω ∩ 𝐵(𝑥, 𝑟)|
𝜔𝑛−1𝑟

𝑛−1
. (1.9)

The positive constants 𝐶𝑝,𝑛, 𝐶
′
𝑝,𝑛 depend only on 𝑝 and 𝑛.

We note that 𝐷(Ω) is a well-defined quantity for a bounded Lipschitz domain Ω, in fact,
we have that lim𝑟→0+

|𝜕Ω∩𝐵(𝑥,𝑟)|
𝜔𝑛−1𝑟

𝑛−1 = 0 when 𝑥 ∉ 𝜕Ω, lim𝑟→+∞
|𝜕Ω∩𝐵(𝑥,𝑟)|
𝜔𝑛−1𝑟

𝑛−1 = 0 for all 𝑥 ∈ ℝ𝑛, and

lim𝑟→0+
|𝜕Ω∩𝐵(𝑥,𝑟)|
𝜔𝑛−1𝑟

𝑛−1 = 𝐶(𝑥) for 𝑥 ∈ 𝜕Ω, with 0 < 𝑐 ⩽ 𝐶(𝑥) ⩽ 𝐶 < +∞ (𝐶(𝑥) = 1 for all 𝑥 ∈ 𝜕Ω ifΩ
is of class 𝐶1).
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We discuss now Theorem 1.1.

Remark 1.2 (On the case 𝑝 ⩽ 𝑛). When 𝑝 ⩽ 𝑛, we note that inequality (1.6) implies that a large
isoperimetric ratio forces the normalized eigenvalues |𝜕Ω| 𝑝−1

𝑛−1 𝜎𝑝,𝑘 to be small when 𝑝 < 𝑛. This
is in general not true for 𝑝 = 𝑛, at least for 𝑝 = 2 (see [6, Theorem 4] where the authors provide
an example of planar domains with large isoperimetric ratio and normalized Steklov eigenvalues
bounded away from zero). We also remark that the proof of (1.6) can be performed in the sameway
ifwe substitute the ambient spaceℝ𝑛 with a complete𝑛-dimensional Riemannianmanifold (𝑀, g)
satisfying a suitable packing property (namely, the hypothesis of Theorem2.2, see also [4, Theorem
2.2] for 𝑝 = 2). In particular, this is true, for example, if (𝑀, g) has non-negative Ricci curvature.
In this setting it is easier to show that we can have an arbitrarily large isoperimetric ratio and
Steklov eigenvalues bounded away from zero when 𝑝 = 𝑛. In fact, let Ω be a bounded domain in
(𝑀, g), a complete 𝑝-dimensional Riemannian manifold as above. Let us take a conformal metric
g ′ = 𝑒𝑤g with 𝑤 ≡ 0 in a neighborhood of 𝜕Ω. The operator Δ𝑝 is conformally covariant (recall
that 𝑝 coincides with the space dimension); thus functions that are 𝑝-harmonic (i.e., with zero
𝑝-Laplacian) with respect to g are 𝑝-harmonic with respect to g ′ and vice versa. Moreover the
gradient and the normal derivative of functions along the boundary are preserved, being g = g ′

in a neighborhood of the boundary. Therefore the Steklov eigenvalues onΩwith respect to g and g ′

coincide. Also themeasure of 𝜕Ω is preserved. It is sufficient then to find a function𝑤 such that the
volume of Ω with respect to the Lebesgue measure associated with g ′ becomes arbitrarily small.
This is done by taking some 𝑤 decaying rapidly to −𝐶 away from 𝜕Ω, where 𝐶 > 0 is arbitrarily
large. Doing so, we obtain a very large isoperimetric ratio for Ω (in (𝑀, g ′)), while the Steklov
eigenvalues remain unchanged.

Remark 1.3 (On the case𝑝 > 𝑛).We note that the quantity𝐷(Ω) quantifies the concentration of the
(𝑛 − 1)-dimensional measure of 𝜕Ω in small regions of ℝ𝑛. Usually, upper bounds for the eigen-
values of Steklov-type and Neumann-type problems are not affected by the particular geometry
of the domain (for the Steklov Laplacian they depend only on 𝑘, 𝑛 and |𝜕Ω|, for the Neumann
Laplacian they depend only on 𝑘, 𝑛 and |Ω|, etc.). Therefore at a first sight the geometric con-
stant 𝐷(Ω)may result odd and unnecessary. In the case of inequality (1.8), we prove in Section 4
that the constant 𝐷(Ω) is instead necessary in an upper estimate for 𝜎𝑝,𝑘 when 𝑝 > 𝑛, providing
a sequence of domains Ω𝑗 , 𝑗 ∈ ℕ, with |𝜕Ω𝑗| uniformly bounded away from zero and infinity,
𝜎𝑝,2 ⩾ 𝐶(𝑝, 𝑛)𝑗𝑝−𝑛 as 𝑗 → +∞ for some constant 𝐶(𝑝, 𝑛) > 0 only depending on 𝑝 and 𝑛, and
with 𝐷(Ω𝑗) ∼ 𝑗𝑛−1 as 𝑗 → +∞. The example not only proves the necessity of 𝐷(Ω) in (1.8), but
also shows the sharpness of the exponent of 𝐷(Ω) (see Theorem 4.1).
We also remark that the quantity 𝐷(Ω) already appears in some sense in the celebrated paper

[10]where the authors identify a condition on the perturbations of a domainΩunderwhichRobin
boundary conditions for the Laplacian degenerate to Dirichlet conditions at the limit. Roughly
speaking, this happens when the surface measure goes locally to infinity. This is somehow equiv-
alent to the condition that𝐷(Ω) → +∞. This condition, expressed in a different way, also appears
in the study of Steklov-type eigenvalue problems and boundary value problems for the Lapla-
cian on domains with very rapidly oscillating boundaries (see [1, 12, 13]), where it implies spec-
tral instability and degeneration of the limit problem (which, in the case of the classical Steklov
problem, amounts to saying that all the eigenvalues converge to zero). The same results in the
spirit of [12, 13] are very likely to hold in the case of the Steklov 𝑝-Laplacian when 𝑝 ⩽ 𝑛. On the
other hand, in this note we observe a somehow opposite behavior for 𝑝 > 𝑛. In fact, as already
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mentioned, the domains provided in Section 4 have arbitrarily large distortion and correspond-
ingly arbitrarily large Steklov eigenvalues. Moreover, by suitably rescaling the domains, we may
also assume that the boundary measure becomes arbitrarily large, along with the distortion, and
still the eigenvalues remain uniformly bounded away from zero (see Remark 4.4).
Concerning 𝐷(Ω), we should also mention the recent paper [7] where upper bounds for the

Steklov eigenvalues of the Laplacian in terms of the intersection index and the injectivity radius
of the boundary have been obtained. In some sense, these two quantities together play the same
role of 𝐷(Ω) in describing how the boundary measure accumulate.
Finally, we mention that a behavior similar to that of our case 𝑝 > 𝑛 has been observed for

upper bounds on the Neumann eigenvalues of linear elliptic operators of order 2𝑚, 𝑚 ∈ ℕ and
density on Euclidean domains (see [8]) and for upper bounds on Neumann eigenvalues of the
𝑝-Laplacian in the conformal class of a given metric in a complete Riemannian manifold (see
[9]).

Remark 1.4. In view of the conjectured Weyl’s law (1.5), for 𝑝 > 𝑛 the upper bounds present the
correct behavior with respect to 𝑘. This is somehow expected and natural since the power 𝑘

𝑝

𝑛

(which we have in the bounds for 𝑝 ⩽ 𝑛) is not compatible with (1.5) when 𝑝 > 𝑛: in fact 𝑝

𝑛
<

𝑝−1

𝑛−1

when 𝑝 > 𝑛. In the case of convex domains, we have that 𝐷(Ω) ⩽
𝑛𝜔𝑛

𝜔𝑛−1
. Thus, when 𝑝 > 𝑛, we

have Weyl-type upper bounds for the eigenvalues (see Corollary 3.1).

Remark 1.5 (Lower bounds). As for lower bounds, it is possible to build, for any 𝑝 > 1, a sequence
of domainsΩ𝜀, 𝜀 ∈ (0, 1), of fixed volume and such that 𝜎𝑝,2(Ω𝜀) → 0 as 𝜀 → 0+. The construction
is standard for 𝑝 = 2 (see, e.g., [3, Chapter III]). However, for any 𝑝 > 1 it can be reproduced with
no essentialmodifications.Namely, one considers a sequence of dumbbell domainsΩ𝜀 = Int(Ω1 ∪

Ω2 ∪ 𝜔𝜀), provided that the union is connected. Here Ω1,Ω2 are two disjoint bounded domains,
𝜔𝜀 ∼ (0, 𝐿) × 𝐵𝜀, where 𝐿 > 0 and 𝐵𝜀 is a ball of radius 𝜀 in ℝ𝑛−1, and Int denotes the interior. It is
sufficient consider the variational characterization (2.5) of𝜎2,𝑝 and use as a set of test functions the
set 𝐹 = {𝛼1𝑢1 + 𝛼2𝑢2 ∶ 𝛼1, 𝛼2 ∈ ℝ, |𝛼1|𝑝 + |𝛼2|𝑝 = 1}, where 𝑢𝑖 , 𝑖 = 1, 2, are functions in𝑊1,𝑝(Ω)

with ‖𝑢𝑖‖𝐿𝑝(𝜕Ω) = 1, 𝑢𝑖 ≡ 𝑐𝑖 ≠ 0 in Ω𝑖 , 𝑢1, 𝑢2 disjointly supported. It is not hard to build such test
functions and use them as in the proof of Theorem 1.1 to obtain 𝜎𝑝,2(Ω𝜀) ⩽ 𝐶𝜀𝑛−1 for some 𝐶 > 0

independent on 𝜀.

In order to prove Theorem 1.1, we will use an approach based on a metric construction (see
[17], see also [4]). Namely, in order to bound 𝜎𝑝,𝑘 we consider 𝐴1,… ,𝐴𝑘 disjoints subsets of Ω of
measure of the order of |Ω|

𝑘
, and with |𝜕Ω ∩ 𝐴𝑘| of the order of |𝜕Ω|

𝑘
, and introduce test functions

𝑢1, … , 𝑢𝑘 subordinated to these sets. A clever estimate of the Rayleigh quotient of these functions
provides the upper bounds of Theorem 1.1.
The paper is organized as follows. In Section 2 we set the notation and recall some preliminary

results. In Section 3 we prove Theorem 1.1. In Section 4 we provide the examples of domains
showing the necessity of the geometric constant 𝐷(Ω) in (1.8) and the sharpness of the exponent.

2 PRELIMINARIES AND NOTATION

By 𝑊1,𝑝(Ω) we denote the Sobolev space of functions 𝑢 ∈ 𝐿𝑝(Ω) with weak first derivatives in
𝐿𝑝(Ω). The space𝑊1,𝑝(Ω) is endowed with the norm
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‖𝑢‖𝑝

𝑊1,𝑝(Ω)
∶= ∫Ω

|∇𝑢|𝑝 + |𝑢|𝑝𝑑𝑥, (2.1)

For 𝑢 ∈ 𝐿𝑝(Ω) we denote by ‖𝑢‖𝐿𝑝(Ω) its standard norm given by

‖𝑢‖𝑝

𝐿𝑝(Ω)
∶= ∫Ω

|𝑢|𝑝𝑑𝑥, (2.2)

while for 𝑢 ∈ 𝐿𝑝(𝜕Ω) we denote by ‖𝑢‖𝐿𝑝(𝜕Ω) its standard norm given by

‖𝑢‖𝑝

𝐿𝑝(𝜕Ω)
∶= ∫𝜕Ω

|𝑢|𝑝𝑑𝜎(𝑥), (2.3)

where 𝑑𝜎(𝑥) denotes the (𝑛 − 1)-dimensional measure element on 𝜕Ω.
For ameasurable set𝐸 ofℝ𝑛, we denote by |𝐸| its Lebesguemeasure. For a subset𝐸 ofℝ𝑛 which

is measurable with respect to the (𝑛 − 1)-dimensional Hausdorff measure, we shall still denote by|𝐸| its (𝑛 − 1)-dimensional Hausdorff measure. Therefore, for an open setΩ of ℝ𝑛 with Lipschitz
boundary, |Ω| will denote its Lebesgue measure, while |𝜕Ω| will denote the (𝑛 − 1)-dimensional
measure of its boundary. By ℕ we denote the set of positive integers.
Problem (1.1) is understood in the weak sense, namely, a couple (𝑢, 𝜎) ∈ 𝑊1,𝑝(Ω) × ℝ is a weak

solution to (1.1) if and only if

∫Ω

|∇𝑢|𝑝−2∇𝑢 ⋅∇𝜙𝑑𝑥 = 𝜎 ∫𝜕Ω

|𝑢|𝑝−2𝑢𝜙𝑑𝜎(𝑥) , ∀𝜙 ∈ 𝑊1,𝑝(Ω). (2.4)

A sequence of eigenvalues for (2.4) can be obtained through the Ljusternik-Schnirelman prin-
ciple (see [2, 15, 19] for a more detailed discussion on the variational eigenvalues of problem (1.1)).
These eigenvalues, which form an increasing sequence of non-negative numbers diverging to+∞,
are called the variational eigenvalues as they can be characterized variationally as follows:

𝜎𝑝,𝑘 ∶= inf
𝐹∈Γ𝑘

sup
𝑢∈𝐹

𝑝(𝑢), (2.5)

where

𝑝(𝑢) ∶=
∫
Ω |∇𝑢|𝑝𝑑𝑥

∫
𝜕Ω |𝑢|𝑝𝑑𝜎(𝑥) (2.6)

is the Rayleigh quotient of 𝑢. Here

Γ𝑘 ∶=
{
𝐹 ⊂ 𝑊1,𝑝(Ω) ⧵ {0} ∶ 𝐹 ∩

{
𝑢 ∶ ‖𝑢‖𝐿𝑝(𝜕Ω) = 1

}
compact, 𝐹 symmetric, 𝛾(𝐹) ⩾ 𝑘

}
, (2.7)

and 𝛾(𝐹) denotes the Krasnoselskii genus of 𝐹, which is defined by

𝛾(𝐹) ∶= min
{
𝓁 ∈ ℕ ∶ there exists 𝑓 ∶ 𝐹 → ℝ𝓁 ⧵ {0} continuous and odd

}
. (2.8)

We refer to [2] for the proof (see also [15, 19]).
In order to prove upper bounds for 𝜎𝑝,𝑘, we need suitable sets 𝐹𝑘 ∈ Γ𝑘 to test in (2.5). The

following lemma provides us a useful way to build such 𝐹𝑘.
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Lemma 2.1. Let 𝑘 ∈ ℕ, 𝑘 ⩾ 1, and let 𝑢1, … 𝑢𝑘 ∈ 𝑊1,𝑝(Ω), with 𝑢𝑖 ≠ 0 and with pairwise disjoint
supports𝑈1,… ,𝑈𝑘 . Let

𝐹𝑘 ∶=

{
𝑘∑

𝑖=1

𝛼𝑖𝑢𝑖 ∶ 𝛼𝑖 ∈ ℝ,

𝑘∑
𝑖=1

|𝛼𝑖|𝑝 = 1

}
.

Then 𝐹𝑘 ∈ Γ𝑘 .

Proof. Clearly 0 ∉ 𝐹𝑘. Moreover, 𝐹𝑘 ∩ {𝑢 ∶ ‖𝑢‖𝐿𝑝(𝜕Ω) = 1} is compact and 𝐹𝑘 is symmetric. We
show now that 𝛾(𝐹𝑘) = 𝑘. We define a map 𝑓𝑘 ∶ 𝐹𝑘 → ℝ𝑘 ⧵ {0} by setting, for 𝑢 ∈ 𝐹𝑘, 𝑢 =∑𝑘

𝑖=1 𝛼𝑖𝑢𝑖 ,

𝑓𝑘(𝑢) =

𝑘∑
𝑖=1

𝛼𝑖𝑒
𝑘
𝑖
,

where 𝑒𝑘
𝑖
, 𝑖 = 1, … , 𝑘, denotes the standard basis ofℝ𝑘. The function𝑓𝑘 is an odd homeomorphism

between 𝐹𝑘 and 𝕊𝑘−1
𝑝 ∶= {𝑥 ∈ ℝ𝑘 ∶

∑𝑘
𝑖=1 |𝑥𝑖|𝑝 = 1}, which is the unit sphere of ℝ𝑘 with respect

to the 𝓁𝑝 norm. This implies that 𝛾(𝐹𝑘) = 𝛾(𝕊𝑘−1
𝑝 ) (see also [25, Proposition 2.3]). Finally, by the

Borsuk–Ulam theorem, we deduce that 𝛾(𝕊𝑘−1
𝑝 ) = 𝑘. □

We recall now the main technical tools which will be used to prove upper bounds for eigenval-
ues. We denote by (𝑋, dist, 𝜍) a metric measure space with a metric dist and a Borel measure 𝜍. We
will call capacitor every couple (𝐴, 𝐷) of Borel sets of 𝑋 such that 𝐴 ⊂ 𝐷. By an annulus in 𝑋 we
mean any set 𝐴 ⊂ 𝑋 of the form

𝐴 = 𝐴(𝑎, 𝑟, 𝑅) = {𝑥 ∈ 𝑋 ∶ 𝑟 < dist(𝑥, 𝑎) < 𝑅},

where 𝑎 ∈ 𝑋 and 0 ⩽ 𝑟 < 𝑅 < +∞. By 2𝐴 we denote

2𝐴 = 2𝐴(𝑎, 𝑟, 𝑅) =
{
𝑥 ∈ 𝑋 ∶

𝑟

2
< dist(𝑥, 𝑎) < 2𝑅

}
.

The following theorem provides a decomposition of a metric measure space by disjoint capac-
itors satisfying suitable measure conditions.

Theorem 2.2 [17, Theorem 1.1]. Let (𝑋, dist, 𝜍) be ametric-measure space with 𝜍 a non-atomic finite
Borel measure. Assume that the following properties are satisfied.

(i) There exists a constant Γ such that any metric ball of radius 𝑟 can be covered by at most Γ balls
of radius 𝑟

2
.

(ii) All metric balls in 𝑋 are precompact sets.

Then for any integer 𝑘 there exists a sequence {𝐴𝑖}
𝑘
𝑖=1

of 𝑘 annuli in 𝑋 such that, for any 𝑖 = 1, … , 𝑘

𝜍(𝐴𝑖) ⩾ 𝑐
𝜍(𝑋)

𝑘
,

and the annuli 2𝐴𝑖 are pairwise disjoint. The constant 𝑐 depends only on the constant Γ in (i).
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Theorem 2.2 provides a decomposition of a metric measure space by annuli of the size at least
𝑐
𝜍(𝑋)

𝑘
. The common idea of the proof of inequalities (1.6) and (1.8) is to build for each 𝑘 ∈ ℕ, suit-

able test functions 𝑢𝑖 supported on 2𝐴𝑖 and such that 𝑢𝑖 ≡ 1 on 𝐴𝑖 , and then to compute their
Rayleigh quotients.
We also state a useful (but somehow hidden in the original paper [17]) corollary of Theo-

rem 2.2 which gives a lower bound of the inner radius of the annuli of the decomposition, see
[17, Remark 3.13].

Corollary 2.3. Let the assumptions of Theorem 2.2 hold. Then each annulus 𝐴𝑖 has either internal
radius 𝑟𝑖 such that

𝑟𝑖 ⩾
1

2
inf {𝑟 ∈ ℝ ∶ 𝑉(𝑟) ⩾ 𝑣𝑘}, (2.9)

where 𝑉(𝑟) ∶= sup𝑥∈𝑋 𝜍(𝐵(𝑥, 𝑟)) and 𝑣𝑘 = 𝑐
𝜍(𝑋)

𝑘
, or is a ball of radius 𝑟𝑖 satisfying (2.9).

3 PROOF OF THEMAIN RESULT

In this section we present the proof of Theorem 1.1.

Proof of Theorem 1.1. We take the metric measure space (ℝ𝑛, 𝑑, 𝜇), where 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| is the
Euclidean distance and themeasure 𝜇 is defined by setting 𝜇(𝐸) = ∫

𝜕Ω∩𝐸 𝑑𝜎(𝑥) = |𝐸 ∩ 𝜕Ω| for an
open set 𝐸. Note that 𝜇 is a non-atomic measure and 𝜇(ℝ𝑛) = |𝜕Ω|. It follows from Theorem 2.2
that, for any 𝑘 ∈ ℕ, there exists 𝐴1,… ,𝐴2𝑘 annuli in ℝ𝑛 with

𝜇(𝐴𝑖) ⩾ 𝑐𝑛
𝜇(ℝ𝑛)

2𝑘
= 𝑐𝑛

|𝜕Ω|
2𝑘

, (3.1)

and such that 2𝐴𝑖 are pairwise disjoint. The constant 𝑐𝑛 depends only on 𝑛. By possibly re-ordering
the annuli, we have that

|2𝐴𝑖 ∩ Ω| ⩽ |Ω|
𝑘

(3.2)

for 𝑖 = 1, … , 𝑘 (in fact we cannot have more than 𝑘 disjoint annuli with |2𝐴𝑖 ∩ Ω| ⩾ |Ω|
𝑘
). Associ-

ated with each 𝐴𝑖 = 𝐴𝑖(𝑎𝑖, 𝑟𝑖, 𝑅𝑖), we define a function 𝑢𝑖 by setting

𝑢𝑖(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 , 𝑟𝑖 ⩽ |𝑥 − 𝑎𝑖| ⩽ 𝑅𝑖,

2|𝑥−𝑎𝑖|
𝑟𝑖

− 1 ,
𝑟𝑖
2

⩽ |𝑥 − 𝑎𝑖| ⩽ 𝑟𝑖 ,

2 −
|𝑥−𝑎𝑖|

𝑅𝑖
, 𝑅𝑖 ⩽ |𝑥 − 𝑎𝑖| ⩽ 2𝑅𝑖 ,

0 , otherwise.

(3.3)
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In the case that 𝐴𝑖 is a ball of radius 𝑟𝑖 and center 𝑎𝑖 , the function 𝑢𝑖 is defined by setting

𝑢𝑖(𝑥) =

⎧⎪⎨⎪⎩
1 , |𝑥 − 𝑎𝑖| ⩽ 𝑟𝑖,

2 −
|𝑥−𝑎𝑖|

𝑟𝑖
, 𝑟𝑖 ⩽ |𝑥 − 𝑎𝑖| ⩽ 2𝑟𝑖 ,

0 , otherwise.

(3.4)

Note that 𝑢𝑖 ∈ 𝑊1,𝑝(Ω), 𝑢𝑖 is supported on 2𝐴𝑖 , and 𝑢𝑖 ≡ 1 on 𝐴𝑖 . Let us take

𝐹𝑘 ∶=

{
𝑘∑

𝑖=1

𝛼𝑖𝑢𝑖 ∶ 𝛼𝑖 ∈ ℝ,

𝑘∑
𝑖=1

|𝛼𝑖|𝑝 = 1

}
.

From (2.5) and from Lemma 2.1, we deduce that

𝜎𝑝,𝑘 ⩽ sup
𝑢∈𝐹𝑘

𝑝(𝑢), (3.5)

which in particular implies, since 𝑢𝑖 are disjointly supported, that

𝜎𝑝,𝑘 ⩽ max
𝑖=1,…,𝑘

𝑝(𝑢𝑖). (3.6)

Thus, in order to estimate 𝜎𝑝,𝑘, it is sufficient to estimate the Rayleigh quotients 𝑝(𝑢𝑖) for 𝑖 =
1, … , 𝑘. We distinguish now the cases 𝑝 ⩽ 𝑛 and 𝑝 > 𝑛.

Case 𝑝 ⩽ 𝑛. We have, for the numerator

∫Ω

|∇𝑢𝑖|𝑝𝑑𝑥 ⩽

(
∫Ω

|∇𝑢𝑖|𝑛𝑑𝑥) 𝑝

𝑛 |2𝐴𝑖 ∩ Ω|1−𝑝

𝑛 ⩽ 𝐶
𝑝
𝑛

(|Ω|
𝑘

)1−
𝑝

𝑛

, (3.7)

where we have used (3.2) and the fact that |∇𝑢𝑖| equals 2

𝑟𝑖
for 𝑟𝑖

2
⩽ |𝑥 − 𝑎𝑖| ⩽ 𝑟𝑖 ,

1

𝑅𝑖
for 𝑅𝑖 ⩽ |𝑥 −

𝑎𝑖| ⩽ 2𝑅𝑖 (and it is
1

𝑟𝑖
for 𝑟𝑖 ⩽ |𝑥 − 𝑎𝑖| ⩽ 2𝑟𝑖 when 𝐴𝑖 is a ball). In fact, an easy computation shows

that (∫Ω |∇𝑢𝑖|𝑛𝑑𝑥) 1

𝑛 ⩽ (2𝑛𝜔𝑛)
1

𝑛 =∶ 𝐶𝑛.
As for the denominator, we have

∫𝜕Ω

|𝑢𝑖|𝑝𝑑𝜎(𝑥) ⩾ ∫𝐴𝑖∩𝜕Ω

|𝑢𝑖|𝑝𝑑𝜎(𝑥) = 𝜇(𝐴𝑖) ⩾ 𝑐𝑛
|𝜕Ω|
2𝑘

, (3.8)

where we have used the fact that 𝑢𝑖 ≡ 1 on 𝐴𝑖 and (3.1). From (3.7) and (3.8) we deduce that

∫
Ω |∇𝑢𝑖|𝑝𝑑𝑥

∫
𝜕Ω |𝑢𝑖|𝑝𝑑𝜎(𝑥) ⩽

2𝐶
𝑝
𝑛

𝑐𝑛

|Ω|1−𝑝

𝑛|𝜕Ω| 𝑘
𝑝

𝑛 ⩽
𝐶𝑝,𝑛

𝐼(Ω)
𝑛−𝑝

𝑛−1

𝑘
𝑝

𝑛|𝜕Ω| 𝑝−1

𝑛−1

, (3.9)

where 𝐶𝑝,𝑛 = 2𝑐−1
𝑛 𝐶

𝑝
𝑛 . This concludes the case 𝑝 ⩽ 𝑛.
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Case 𝑝 > 𝑛. We estimate the Rayleigh quotient of the same functions 𝑢𝑖 used in the case 𝑝 ⩽ 𝑛,
but in a different fashion (at least, for the numerator). We have

∫Ω

|∇𝑢𝑖|𝑝𝑑𝑥 ⩽ ‖∇𝑢𝑖‖𝑝−𝑛

𝐿∞(Ω) ∫Ω

|∇𝑢𝑖|𝑛𝑑𝑥 ⩽ 2𝑛𝜔𝑛‖∇𝑢𝑖‖𝑝−𝑛

𝐿∞(Ω)
⩽

21+𝑝−𝑛𝑛𝜔𝑛

𝑟
𝑝−𝑛

𝑖

. (3.10)

From Corollary 2.3 we deduce that 𝑟𝑖 ⩾
1

2
inf {𝑟 ∈ ℝ 𝑉(𝑟) ⩾ 𝑐𝑛

|𝜕Ω|
2𝑘

}, where 𝑉(𝑟) ∶= sup𝑥∈ℝ𝑛

𝜇(𝐵(𝑥, 𝑟)). From this and from the definition of 𝐷(Ω) we deduce that

𝑟𝑖 ⩾
1

2

(
𝑐𝑛|𝜕Ω|

2𝑘𝜔𝑛𝐷(Ω)

) 1
𝑛−1

. (3.11)

Since for the denominator of the Rayleigh quotient, the estimate (3.8) holds, from (3.8), (3.10), and
(3.11) we conclude that

∫
Ω |∇𝑢𝑖|𝑝𝑑𝑥

∫
𝜕Ω |𝑢𝑖|𝑝𝑑𝜎(𝑥) ⩽ 𝐶′

𝑝,𝑛𝐷(Ω)
𝑝−𝑛

𝑛−1

(
𝑘|𝜕Ω|

) 𝑝−1

𝑛−1

, (3.12)

where 𝐶′
𝑝,𝑛 = 2

𝑛(2𝑝−2𝑛+3)−2−𝑝

𝑛−1 𝑐
−

𝑝−1

𝑛−1
𝑛 𝑛𝜔𝑛. This and (3.6) allow to conclude the proof. □

We note that for a convex set(Ω) ⩽
𝑛𝜔𝑛

𝜔𝑛−1
. In fact

|𝜕Ω ∩ 𝐵(𝑥, 𝑟)|
𝜔𝑛−1𝑟

𝑛−1
⩽

|𝜕(Ω ∩ 𝐵(𝑥, 𝑟))|
𝜔𝑛−1𝑟

𝑛−1
⩽

|𝜕𝐵(𝑥, 𝑟)|
𝜔𝑛−1𝑟

𝑛−1
=

𝑛𝜔𝑛

𝜔𝑛−1

.

We have used the fact that if 𝐾1, 𝐾2 are convex domains with 𝐾1 ⊆ 𝐾2, then |𝜕𝐾1| ⩽ |𝜕𝐾2|. In this
case 𝐾1 = Ω ∩ 𝐵(𝑥, 𝑟) and 𝐾2 = 𝐵(𝑥, 𝑟). Note that Ω ∩ 𝐵(𝑥, 𝑟) is convex being the intersection of
two convex sets. We have the following corollary.

Corollary 3.1. LetΩ be a bounded and convex domain of ℝ𝑛 and let 𝑝 > 𝑛. Then

𝜎𝑝,𝑘 ⩽ 𝐶′′
𝑝,𝑛

(
𝑘|𝜕Ω|

) 𝑝−1

𝑛−1

, (3.13)

where 𝐶′′
𝑝,𝑛 > depends only on 𝑝 and 𝑛.

4 DOMAINSWITH FIXED SURFACEMEASURE AND
ARBITRARILY LARGE VARIATIONAL EIGENVALUES

The aim of this section is to build a sequence {Ω𝑗}𝑗∈ℕ ⊂ ℝ𝑛 of domains which satisfy
lim𝑗→+∞ |𝜕Ω𝑗| = 𝐶 > 0 and𝜎𝑝,2(Ω𝑗) → +∞when𝑝 > 𝑛. Through all this sectionwe shall denote
by 𝜎𝑝,2(Ω𝑗) the second variational eigenvalue of (1.1) on Ω𝑗 . The variational eigenvalue 𝜎𝑝,2(Ω𝑗)

is actually the second eigenvalue of (1.1) (recall that 𝜎𝑝,1(Ω𝑗) = 0), and every eigenfunction asso-
ciated with 𝜎𝑝,2(Ω𝑗) changes its sign on 𝜕Ω (see [11, 20] for details).
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Let 𝛼, 𝛽 > 0 two positive numbers satisfying 𝛽 > 𝑛, 𝛼 = 𝛽 − 𝑛 + 1 (in particular, 𝛼 > 1) and
let 𝑗 ∈ ℕ. Let 𝑄𝑗 ∶= (0,

1

𝑗
)𝑛 be the 𝑛-dimensional cube in ℝ𝑛 of side 1

𝑗
. Let now (𝑖1, … , 𝑖𝑛−1) ∈

{0, … ,𝑚(𝑗) − 1}𝑛−1 with 𝑚(𝑗) = [𝑗𝛽−1] + 1, where [⋅] denotes the integer part of a real number.
Let 𝑄𝑖1,…,𝑖𝑛−1

be the (𝑛 − 1)-dimensional cube defined by

𝑄𝑖1,…,𝑖𝑛−1
∶=

{
(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛

∶ 𝑥𝓁 ∈

(
𝑐𝑖𝓁 −

1

2𝑗𝑚(𝑗)
, 𝑐𝑖𝓁 +

1

2𝑗𝑚(𝑗)

)
,𝓁 = 1,… , 𝑛 − 1, and 𝑥𝑛 =

1

𝑗

}
, (4.1)

where

𝑐𝑖𝓁 =
1

𝑗𝑚(𝑗)

(
1

2
+ 𝑖𝓁

)
, 𝓁 = 1,… , 𝑛 − 1.

Namely, the cube 𝑄11,…,𝑖𝑛−1
has center 𝑐𝑖1,…,𝑖𝑛−1

given by

𝑐𝑖1,…,𝑖𝑛−1
=

(
𝑐𝑖1 , … , 𝑐𝑖𝑛−1

,
1

𝑗

)
=

(
1

𝑗𝑚(𝑗)

(
1

2
+ 𝑖1

)
, … ,

1

𝑗𝑚(𝑗)

(
1

2
+ 𝑖𝑛−1

)
,
1

𝑗

)
.

Note that 𝑄𝑗 ∩ {𝑥𝑛 = 1

𝑗
} =

⋃𝑚(𝑗)−1

𝑖1,…,𝑖𝑛−1=0
𝑄𝑖1,…,𝑖𝑛−1

. Roughly speaking, we have decomposed the

upper face 𝑄𝑗 ∩ {𝑥𝑛 = 1

𝑗
} of 𝑄𝑗 as the union of 𝑚(𝑗)𝑛−1 ∼ 𝑗(𝑛−1)(𝛽−1) (𝑛 − 1)-dimensional cubes

of side 1

𝑗𝑚(𝑗)
∼

1

𝑗𝛽
.

Let now 𝑃𝑖1,…,𝑖𝑛−1
be the square pyramid with base 𝑄𝑖1,…,𝑖𝑛−1

and height 1

𝑗𝛼
such that the vertex

of 𝑃𝑖1,…,𝑖𝑛−1
is (𝑐𝑖1 , … , 𝑐𝑖𝑛−1

, 1

𝑗
+ 1

𝑗𝛼
). We observe that

|𝑃𝑖1,…,𝑖𝑛−1
| = 1

𝑛𝑗𝛼+𝑛−1𝑚(𝑗)𝑛−1
∼

1

𝑛𝑗𝛽𝑛−𝑛+1
, (4.2)

|𝜕𝑃𝑖1,…,𝑖𝑛−1
| − |𝑄𝑖1,…,𝑖𝑛−1

| = 2

(𝑗𝑚(𝑗))(𝑛−2)
⋅
√

1

𝑗2𝛼
+

1

4(𝑗𝑚(𝑗))2
∼

2

𝑗(𝛽−1)(𝑛−1)
(4.3)

and

diam𝑃𝑖1,…,𝑖𝑛−1
=

√
2

4(𝑗𝑚(𝑗))2
+

1

𝑗2𝛼
⩽

√
𝑛 + 4

2𝑗𝛼
=

√
𝑛 + 4

2𝑗𝛽−𝑛+1
, (4.4)

where diam𝐷 denotes the diameter of a set 𝐷.
We finally define

Ω𝑗 ∶= Int

(
𝑄𝑗 ∪

𝑚(𝑗)−1⋃
𝑖1,…,𝑖𝑛−1=0

𝑃𝑖1,…,𝑖𝑛−1

)
,



UPPER BOUNDS FOR THE STEKLOV EIGENVALUES 159

F IGURE 1 The domain Ω𝑗 when 𝑛 = 2

where Int denotes the interior. Roughly speaking, Ω𝑗 is a 𝑛-dimensional cube of side 1

𝑗
with

𝑚(𝑗)𝑛−1 ∼ 𝑗(𝑛−1)(𝛽−1) pyramids on its upper face. By construction, Ω𝑗 is a bounded Lipschitz
domain for all 𝑗 ∈ ℕ. From (4.2) and (4.3) we deduce that |Ω𝑗| = 1

𝑗𝑛
+ 𝑜( 1

𝑗𝑛
) as 𝑗 → +∞ and|𝜕Ω𝑗| = 2 + 𝑜(2) as 𝑗 → +∞ (Figure 1).

We will prove the following theorem.

Theorem 4.1. For 𝑝 > 𝑛 we have

𝜎𝑝,2(Ω𝑗) ⩾ 𝐶(𝑝, 𝑛)𝑗𝑝−𝑛, (4.5)

where 𝐶(𝑝, 𝑛) > 0 depends only on 𝑝 and 𝑛.

Before proving Theorem 4.1 we need to recall a few facts on Sobolev embeddings for 𝑝 > 𝑛.
We first recall that any 𝑢 ∈ 𝑊1,𝑝(Ω) belongs to 𝐶0,𝛾(Ω), for some 𝛾 > 0 (or, more precisely, any
𝑢 ∈ 𝑊1,𝑝(Ω) has a representative in 𝐶0,𝛾(Ω)). We also recall the following lemma, the proof of
which can be carried out as in [16, Lemmas 7.12, 7.16].

Lemma 4.2. LetΩ be a bounded domain of ℝ𝑛, 𝑛 ⩾ 2, and let 𝑝 > 𝑛. For any convex subset 𝐷 ⊂ Ω

and any 𝑢 ∈ 𝑊1,𝑝(Ω), we have
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|𝑢(𝑥) − 𝑢(𝑦)| ⩽ 𝐶′(𝑝, 𝑛)
(diam𝐷)𝑛|𝐷| ⋅ (diam𝐷)

1− 𝑛
𝑝 ‖∇𝑢‖𝐿𝑝(𝐷), (4.6)

where 𝐶′(𝑝, 𝑛) > 0 depends only on 𝑝 and 𝑛.

We are ready to prove Theorem 4.1

Proof of Theorem 4.1. Lemma 4.2 says that for any 𝑥, 𝑦 ∈ 𝑃𝑖1,…,𝑖𝑛−1
,

|𝑢(𝑥) − 𝑢(𝑦)| ⩽ 𝐶′′(𝑝, 𝑛)𝑗(𝑛−1)2 ⋅ 𝑗
(−𝛽+𝑛−1)

(
1−

𝑛

𝑝

)‖∇𝑢‖𝐿𝑝(Ω𝑗)
, (4.7)

where we have used the fact that ‖∇𝑢‖𝐿𝑝(𝑃𝑖1,…,𝑖𝑛−1
) ⩽ ‖∇𝑢‖𝐿𝑝(Ω𝑗)

. The constant 𝐶′′(𝑝, 𝑛) is strictly
positive when 𝑝 > 𝑛 and depends only on 𝑝 and 𝑛 (it can be explicitly computed, see [16, Lemmas
7.12, 7.16]). We choose now 𝛽 =

𝑝−𝑛(𝑛+𝑝−𝑛𝑝)

𝑝−𝑛
. We easily check that (𝑝 − 𝑛)𝛽 − 𝑛(𝑝 − 𝑛) = 𝑝(𝑛 −

1)2, so that 𝛽 > 𝑛. Moreover, 𝑗(𝑛−1)2 ⋅ 𝑗
(−𝛽+𝑛−1)(1− 𝑛

𝑝
)
= 𝑗

−(1− 𝑛

𝑝
), so that (4.7) with this choice of 𝛽

reads

|𝑢(𝑥) − 𝑢(𝑦)| ⩽ 𝐶′′(𝑝, 𝑛)𝑗
−
(
1−

𝑛

𝑝

)‖∇𝑢‖𝐿𝑝(Ω𝑗)
. (4.8)

Analogously, for any 𝑥, 𝑦 ∈ 𝑄𝑗 , Lemma 4.2 immediately implies that

|𝑢(𝑥) − 𝑢(𝑦)| ⩽ 𝐶′′(𝑝, 𝑛)𝑗
−
(
1−

𝑛
𝑝

)‖∇𝑢‖𝐿𝑝(Ω𝑗)
, (4.9)

where we have possibly re-defined the constant 𝐶′′(𝑝, 𝑛).
From the definition of Ω𝑗, and from (4.8) and (4.9), we deduce that for any 𝑥, 𝑦 ∈ Ω𝑗 ,

|𝑢(𝑥) − 𝑢(𝑦)| ⩽ 3𝐶′′(𝑝, 𝑛)𝑗
−
(
1−

𝑛
𝑝

)‖∇𝑢‖𝐿𝑝(Ω𝑗)
. (4.10)

If furthermore we assume that there exists a point 𝑥0 ∈ Ω𝑗 such that 𝑢(𝑥0) = 0, we immediately
deduce that

|𝑢(𝑥)| ⩽ 3𝐶′′(𝑝, 𝑛)𝑗
−
(
1−

𝑛
𝑝

)‖∇𝑢‖𝐿𝑝(Ω𝑗)
, (4.11)

for any 𝑥 ∈ Ω𝑗 . We have proved that, for any 𝑢 ∈ 𝑊1,𝑝(Ω𝑗) such that 𝑢(𝑥0) = 0 for some 𝑥0 ∈ Ω𝑗

∫
Ω𝑗

|∇𝑢|𝑝𝑑𝑥
∫
𝜕Ω𝑗

|𝑢|𝑝𝑑𝜎(𝑥) ⩾
𝑗𝑝−𝑛|𝜕Ω𝑗|3𝑝𝐶′′(𝑝, 𝑛)𝑝

. (4.12)

We recall that any eigenfunction associated with 𝜎𝑝,2(Ω𝑗) changes sign on 𝜕Ω𝑗 . This fact, the
variational characterization (2.4), and (4.12) allow to deduce the validity of (4.5) with the constant
𝐶(𝑝, 𝑛) > 0 depending only on 𝑝 and 𝑛. □
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Remark 4.3. We remark that for Ω𝑗 , 𝐷(Ω𝑗) ⩾ 2𝑗𝑛−1, thus proving the necessity of the constant
𝐷(Ω) in an upper bound for 𝜎𝑝,𝑘 and the sharpness of the exponent of 𝐷(Ω) in (1.8).

Remark 4.4. When rescaling Ω𝑗 by a factor 𝑗𝜂, we obtain

𝜎𝑝,2(Ω𝑗) = 𝑗𝜂(𝑝−1)𝜎𝑝,2(𝑗
𝜂Ω𝑗).

From (4.5) we deduce

𝜎𝑝,2(𝑗
𝜂Ω𝑗) ⩾ 𝐶(𝑝, 𝑛)𝑗−𝜂(𝑝−1)+(𝑝−𝑛). (4.13)

We can choose now any 0 < 𝜂 ⩽
𝑝−𝑛

𝑝−1
so that the right-hand side of (4.13) stays bounded away

from zero as 𝑗 → +∞. Note also that |𝑗𝜂Ω𝑗| = 𝑗𝑛(𝜂−1) + 𝑜(𝑗𝑛(𝜂−1)) and |𝜕(𝑗𝜂Ω𝑗)| = 2𝑗𝜂(𝑛−1) +

𝑜(𝑗𝜂(𝑛−1)) as 𝑗 → +∞. Thus, 𝑗𝜂Ω𝑗 has the boundarymeasurewhich goes to infinity everywhere on
(a part of) the boundary as 𝑗 → +∞ if 0 < 𝜂 ⩽

𝑝−𝑛

𝑝−1
, but the Steklov eigenvalues remain uniformly

bounded away from zero.
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