In this paper, we show that the Lipschitz-Killing Curvatures for the excursion sets of Arithmetic Random Waves (toral Gaussian eigenfunctions) are dominated, in the high-frequency regime, by a single chaotic component. The latter can be written as a simple explicit function of the threshold parameter times the centered norm of these random fields; as a consequence, these geometric functionals are fully correlated in the high-energy limit. The derived formulae show a clear analogy with related results on the round unit sphere and suggest the existence of a general formula for geometric functionals of random eigenfunctions on Riemannian manifolds.
Lipschitz-Killing Curvatures for Arithmetic Random Waves / Cammarota, Valentina; Marinucci, Domenico; Rossi, Maurizia. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - (2022), pp. 1-46.
Lipschitz-Killing Curvatures for Arithmetic Random Waves.
Valentina CammarotaPrimo
;
2022
Abstract
In this paper, we show that the Lipschitz-Killing Curvatures for the excursion sets of Arithmetic Random Waves (toral Gaussian eigenfunctions) are dominated, in the high-frequency regime, by a single chaotic component. The latter can be written as a simple explicit function of the threshold parameter times the centered norm of these random fields; as a consequence, these geometric functionals are fully correlated in the high-energy limit. The derived formulae show a clear analogy with related results on the round unit sphere and suggest the existence of a general formula for geometric functionals of random eigenfunctions on Riemannian manifolds.File | Dimensione | Formato | |
---|---|---|---|
Cammarota_Lipschitz-Killing-curvatures_2022.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
485.68 kB
Formato
Adobe PDF
|
485.68 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.