In this paper, we show that the Lipschitz-Killing Curvatures for the excursion sets of Arithmetic Random Waves (toral Gaussian eigenfunctions) are dominated, in the high-frequency regime, by a single chaotic component. The latter can be written as a simple explicit function of the threshold parameter times the centered norm of these random fields; as a consequence, these geometric functionals are fully correlated in the high-energy limit. The derived formulae show a clear analogy with related results on the round unit sphere and suggest the existence of a general formula for geometric functionals of random eigenfunctions on Riemannian manifolds.

Lipschitz-Killing Curvatures for Arithmetic Random Waves / Cammarota, Valentina; Marinucci, Domenico; Rossi, Maurizia. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - (2022), pp. 1-46.

Lipschitz-Killing Curvatures for Arithmetic Random Waves.

Valentina Cammarota
Primo
;
2022

Abstract

In this paper, we show that the Lipschitz-Killing Curvatures for the excursion sets of Arithmetic Random Waves (toral Gaussian eigenfunctions) are dominated, in the high-frequency regime, by a single chaotic component. The latter can be written as a simple explicit function of the threshold parameter times the centered norm of these random fields; as a consequence, these geometric functionals are fully correlated in the high-energy limit. The derived formulae show a clear analogy with related results on the round unit sphere and suggest the existence of a general formula for geometric functionals of random eigenfunctions on Riemannian manifolds.
2022
Lipschitz-Killing curvatures; arithmetic random waves; Wiener chaos; Gaussian kinematic formula; limit theorems.
01 Pubblicazione su rivista::01a Articolo in rivista
Lipschitz-Killing Curvatures for Arithmetic Random Waves / Cammarota, Valentina; Marinucci, Domenico; Rossi, Maurizia. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - (2022), pp. 1-46.
File allegati a questo prodotto
File Dimensione Formato  
Cammarota_Lipschitz-Killing-curvatures_2022.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 485.68 kB
Formato Adobe PDF
485.68 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1621407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact