We classify all integrable triples in simple Lie algebras, up to equivalence. The importance of this problem stems from the fact that for each such equivalence class one can construct the corresponding integrable hierarchy of bi-Hamiltonian PDE. The simplest integrable triple (f, 0, e) in 2 corresponds to the KdV hierarchy, and the triple (,0,_), where f is the sum of negative simple root vectors and _ is the highest root vector of a simple Lie algebra, corresponds to the Drinfeld–Sokolov hierarchy.
Integrable triples in semisimple Lie algebras / De Sole, Alberto; Jibladze, Mamuka; Kac, Victor G.; Valeri, Daniele. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 111:5(2021). [10.1007/s11005-021-01456-4]
Integrable triples in semisimple Lie algebras
De Sole, Alberto;Valeri, Daniele
2021
Abstract
We classify all integrable triples in simple Lie algebras, up to equivalence. The importance of this problem stems from the fact that for each such equivalence class one can construct the corresponding integrable hierarchy of bi-Hamiltonian PDE. The simplest integrable triple (f, 0, e) in 2 corresponds to the KdV hierarchy, and the triple (,0,_), where f is the sum of negative simple root vectors and _ is the highest root vector of a simple Lie algebra, corresponds to the Drinfeld–Sokolov hierarchy.File | Dimensione | Formato | |
---|---|---|---|
DeSole_preprint_Integrable-triples_2021.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
676.66 kB
Formato
Adobe PDF
|
676.66 kB | Adobe PDF | |
DeSole_Integrable-triples_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
849.02 kB
Formato
Adobe PDF
|
849.02 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.