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1. INTRODUCTION

The present paper is a continuation of our paper [DSJKV20], where we studied integrability of W-
algebras. Namely, we showed that, for the classical affine W-algebra W(g, f) attached to a simple Lie
algebra g and its non-zero nilpotent element f, the Lie algebra W(g, f)/0W(g, f) contains an infinite-
dimensional abelian subalgebra, except, possibly, for the following f (in the notation of [CMG93]): 4A4,
2A5 +2A1, 2A3, A4+ As and A7 in Eg; Xg + A7 in Fy; Kl in Go. Consequently, for all these W-algebras
(with the seven exceptions above) one constructs an integrable hierarchy of bi-Hamiltonian PDE, the
simplest being the KdV hierarchy, constructed for W(sls, f).

The proof of this theorem consists of the following ingredients. First, it is the Drinfeld-Sokolov [DS85]
(abbreviated DS) method of constructing integrals of motion in involution in the case when f is a principal
nilpotent element of g, which has been extended to the case when f is a nilpotent element of semisimple
type for g in [DSKV13].

Second, we showed in [DSJKV20] that a simple modification of the DS method works also for f of
non-nilpotent type, which covers all nilpotent elements of even depth.

Third, in the same paper we showed that for f of nilpotent type this modification works as well, except
for the seven nilpotent conjugacy classes mentioned above.

Let us now introduce the relevant definitions. By the Jacobson-Morozov theorem, any non-zero nilpo-
tent f of a simple Lie algebra g can be included in an sly-triple s = {e, f, h}. This produces a Z-grading

of g by eigenspaces of ad h:
s=Pa; (1.1)

JEL
which, up to conjugation, is independent of the choice of the sls-triple. The maximal j > 0 for which
g; # 0 is denoted by d, and is called the depth of f.

An element of the form f+ F, where E is a non-zero element of gg4, is called a cyclic element associated
to f. The key tool in the DS method is Kostant’s theorem that for the principal nilpotent f all the
associated cyclic elements are semisimple. The main result of [DSKV13] extends the DS method in
the framework of Poisson vertex algebras, to arbitrary f, which admits an associated semisimple cyclic
element. Such f is called a nilpotent element of semisimple type [EKV13].
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If all cyclic elements, associated to f, are nilpotent, then f is called a nilpotent element of nilpotent
type. It is proved in [EKV13, Theorem 1.1] that f is of nilpotent type if and only if its depth is an odd
integer. As has been mentioned above, the DS method works for f of non-nilpotent type.

In the case of f of nilpotent type, i. e. of odd depth d, we introduced in [DSJKV20] the notion of
a quasi-cyclic element f + F, associated to f. It requires E to be a non-zero element of gy_1 with the
additional requirement that the centralizer of E in g, is coisotropic with respect to the symplectic form
w on g1, defined by

w(a,b) = (f|[a,b]), a,b€g. (1.2)

Hereafter (- | ) is a fixed non-degenerate symmetric invariant bilinear form on g.

We show in [DSJKV20] that the DS method works for f of nilpotent type, provided that there exists
a non-nilpotent quasi-cyclic element, associated to f. Moreover, such an element exists if and only if f
is not one of the seven nilpotent elements of odd depth mentioned above. In the present paper we study
quasi-cyclic elements, associated to arbitrary non-zero nilpotent elements in simple Lie algebras.

The main tool of the proof of the Integrability Theorem of [DSJKV20] is the notion of an integrable
triple associated to the nilpotent element f. It is a triple of elements (f1, fo, ), where fi1, fo € g_o,
E € g; with j > 1, such that

(1) f=fi+ frand [fi, fo] =0;

(I2) [E,g>2] = 0 and the centralizer [+ of E in g; is coisotropic with respect to the symplectic form w,
defined by (1.2);

(I3) f1+ E is semisimple and [f2, E] = 0.

The coisotropy condition (12) is important for the construction of the corresponding to f classical affine
W-algebra, and condition (I3) is used for the construction of integrals of motion in involution.

Note that for an integrable triple (f1, f2, F) the decomposition f + E = (f; + F) + fo is the Jordan
decomposition, and that E commutes with the subalgebra n := [+ + g=.

It turns out that for j < d — 1 there are no integrable triples (Proposition 3.5). Obviously, for an
integrable triple (f1, f2, E), associated to f, the element f + E = f; + fo + E is a cyclic (resp. quasi-
cyclic) element, associated to f, if j = d (resp. j = d — 1). Such a cyclic (resp. quasi-cyclic) element
is called integrable. In this case the element E € g; is called integrable for f. Conversely, given a cyclic
or quasi-cyclic element f 4+ E, we can obtain an integrable triple associated to f, by taking the Jordan
decomposition of f + F, provided that E is integrable for f. One of the main problems is when such an
integrable triple exists.

In [DSJKV20] we have established existence of integrable triples, associated to any nilpotent element
f, except for the seven cases mentioned above. In the present paper we give a complete solution to this
problem. Namely, we find all integrable cyclic and quasi-cyclic elements f+ E, up to equivalence, for each
non-zero nilpotent element f in a simple Lie algebra g. Two integrable cyclic or quasi-cyclic elements
f+ E and f+ E’ are called equivalent if E’ is proportional to an element from the orbit Z(s)(FE), where
Z(s) stands for the centralizer of the sl-triple s in the adjoint group G of g. The importance of this
problem stems from the fact that, as established in [DSJKV20], for each equivalence class of integrable
triples one can construct the associated integrable hierarchy of bi-Hamiltonian PDE.

A partial solution to this problem was given in [EJK20], where all semisimple cyclic elements have been
classified (the corresponding integrable triple has the form (f,0, F)). The key observation there (checked
by case-wise verification) was that the linear reductive group Z(s)|gq is polar. Polar linear groups were
introduced in [DK85] as reductive linear groups, having properties, similar to the adjoint group (see
Section 2.1 for the precise definition). This observation allows one to reduce considerations to the case
E € C, a Cartan subspace of g4, since it was proved in [EKV13], Proposition 2.2(a), that for semisimple
cyclic element f + E, the orbit Z(s)(E) must be closed.

In the present paper we find that, remarkably, the linear reductive group Z(s)|gq—1 is polar as well!
This is Theorem 2.8. Unfortunately we still need a case-wise analysis in its proof. However Remark 2.9
explains why Z(s)|g; should be polar for j = d and d — 1. Note that Z(s)|g; is not polar in general for
1<j<d-1

Our first main result is Theorem 3.6, which states that a cyclic element f + E is not nilpotent if and
only if the Zariski closure of the orbit Z(s)(E) does not contain 0. Our second main result is Theorem



4 INTEGRABLE TRIPLES IN SEMISIMPLE LIE ALGEBRAS

3.15, which states that a cyclic element f + F is integrable if and only if the orbit Z(s)(F) is closed. Such
E are classified by a Cartan subspace of Z(s)|gq. A similar result holds for a quasi-cyclic element f + F,
where E € g4—1 and d is odd; in the case of even d we were able to prove only the “only if” part of this
result (see Theorem 3.16).

These results allow us to classify completely all integrable cyclic and quasi-cyclic elements in all simple
Lie algebras. As has been mentioned above, this is equivalent to the classification of integrable triples.
For exceptional g this is done using the GAP package SLA by W. de Graaf [SLA], and the results are
listed in Table 5 and Tables 3, 4, which represent the cases of d odd and even respectively. For classical g
this is done by explicit calculations in the standard representation of sly, sp and sop. In particular, we
have the following results on existence of integrable cyclic and quasi-cyclic elements in simple Lie algebras
g, associated to non-zero nilpotent elements f € g.

Theorem 1.1. (a) An integrable cyclic element, associated to f, exists if and only if its depth d is even.
(b) An integrable quasi-cyclic element, associated to f, exists in precisely the following cases:
(i) [ has odd depth and is of the following type in exceptional g:
3A; in Eg and Eg; 3A/1 in Er; 2A0 + Ay in Eg, E7, Eg; 4A1 in E7; A + Al in Fy,
(ii) [ has even depth and is of the following type in exceptional g:
Ay in all exceptional g; 2A; in Eg; As + Ay in Eg, E7, Eg; Ay + Aq in Eg, E7, Eg;
Ay +2A, in Eg; D7(a2) in Eg,
(iii) oll f of odd depth in classical g, which happens only for g = soy, and the partition, corresponding
to f, has odd largest part p1 of multiplicity 1 and the next part po = p; — 1,
(iv) the following f of even depth, corresponding to the partition (pgﬁ) pgh), ...) in classical g:
g=sly:r <ro; g=s0N:p1 iSeven, 11 =2, po=p1 — 1, ro = 2.

Many statements in the paper are established by a case-wise verification. It would be very interesting
to find more conceptual proofs. Here are some of these statements.
(1) The linear groups Z(s)|g; for j = d and d — 1 are polar.
(2) There exists at most one, up to equivalence, quasi-cyclic element for each nilpotent element f of
even depth.
(3) There are no integrable triples (fi, f2, E) with E € g;, where j < d — 1.

Throughout the paper the base field F is an algebraically closed field of characteristic 0. Though the
theory of polar linear groups was developed in [DK85] over C, all results hold over F by the Lefschetz
principle.
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2. POLAR LINEAR GROUPS AND GRADINGS FOR NILPOTENT ELEMENTS

2.1. Review of polar linear groups. Let G be a reductive algebraic group, acting linearly and faithfully
on a finite-dimensional vector space V', which will be denoted by G|V. It is well known that the subalgebra
F[V]€ of G-invariant polynomials is finitely generated, hence the inclusion F[V]¢ — F[V] induces the map
of the corresponding affine varieties

7V = V)G, (2.1)
where V//G := Spec F[V]%. It is well known that the map 7 is surjective and that each of the fibers of
contains a unique closed G-orbit (the orbit of minimal dimension in the fiber). The fiber over 7(0), called
the zero fiber, consists of elements v € V, such that the Zariski closure of the orbit G(v) of v contains 0.
Such elements are called nilpotent elements of the linear group G|V. Elements v € V, such that G(v) is
closed, are called semisimple elements of G|V. This terminology is motivated by the well-known fact that
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for the adjoint linear group G|g an element is semisimple (resp. nilpotent) if and only if it is a semisimple
(resp. nilpotent) element of the Lie algebra g.

An efficient way of constructing semisimple elements for a reductive linear group G is given by the
following

Proposition 2.1 ([DKS85]). Let P be a set of weights of the g-module V' from its irreducible components
with the following properties:

i) A\i —A; is not a root of g if i # j and \;, \; € P are weights of the same irreducible component of V;
j J
(ii) zero is an interior point of the convex hull of P.

Let vy,, A € P, be linearly independent weight vectors from irreducible components of V.. Then the vector
> U, is semisimple.

Proof. The proposition is slightly stronger than Proposition 1.2 from [DKS85], but its proof is the same. [
Corollary 2.2 (Kostant theorem). Any vector from the zero weight space of V is semisimple.

Now we turn to the discussion of the especially nice class of reductive linear groups G|V, called polar
linear groups, which were introduced in [DK85]. Let v € V be a semisimple element, and let

Co={zeV]g(x) Ca(v)} (2.2)
Then [DK85]
dim C, < dimV//G. (2.3)
The reductive linear group G|V is called polar if there exists a semisimple v € V', such that
dim C, = dim V)G, (2.4)

and in this case C, is called a Cartan subspace of V.

Note that the Cartan subalgebra § of the Lie algebra g of G is a Cartan subspace for the adjoint linear
group G|g, since for a regular v € b its G-orbit is closed and (2.4) holds because dim C,, = dimV//G =
rank g.

More generally, we have the following

Proposition 2.3 ([EJK20]). Let G|V be a reductive linear group and let C' be its zero weight space. Then
dim C < dim VG, (2.5)
and in the case of equality the linear group G|V is polar.

Proof. By Corollary 2.2, any element v € C is semisimple. Let g° = {g € g | g(C) = 0}. Then there
exists v € C, such that {g € g | g(v) = 0} = g°, and hence we have g(v) = g(C). It follows that
{zr € C | g(x) C g(v)} = C, hence, if equality holds in (2.5), C is a Cartan subspace. By the same
argument, we have inequality (2.5), due to the inequality (2.3). O

Remark 2.4. By the definition, G|V is polar if dim V/G =1, or dim V/G = 0. Note also that the direct
sum (G1 X G2)|(V1 @ V2) of polar linear groups G;|V;, i = 1,2, is polar.

The following theorem shows that a Cartan subspace of a polar linear group G|V has the same basic
properties as a Cartan subalgebra of g.

Theorem 2.5. Let G|V be a polar linear group and let C C V be a Cartan subspace.
(a) ([DK85, Theorem 2.8]). Let

N={geG|g(C)=C}, Z={g9geN|glc)=cforallceC}, W =N/Z

Then G(C) consists of all semisimple elements of V', and for any semisimple v € V, the orbit G(v)
intersects C by a (non-empty) orbit of W.

(b) ([DK85, Theorem 2.3]). If C' C V is another Cartan subspace, then g(C') = C for some g € G.

(c¢) ([DK85, Theorem 2.10]). If G is connected, then VJ/G is an affine space (of dimension dim C').

Recall that a linear reductive group G|V is called stable if V' has a non-empty Zariski open subset,
consisting of closed G-orbits. The following proposition is very useful in verifying that a stable linear
reductive group G|V is polar.
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Proposition 2.6 ([DKII]). Let G|V be a stable reductive linear group. Let C C V be a subspace, such
that
V=g(ChaC (2.6)
and
dim € = dim V//G. (2.7)
Then G|V is polar and C is a Cartan subspace.

Proof. Due to (2.6), G(C) contains a Zariski open subset, and, due to stability, it contains a Zariski open
subset ) consisting of closed G-orbits of maximal dimension. Let C° = C' N, and let v € C°. Then
the tangent space T, to G(v) at v lies in g(C), and, due to (2.6) and (2.7), actually T, = g(C'). Since
this holds for all v € C°, we obtain that C,, = C. Hence, by (2.7), G|V is polar and C is a Cartan
subspace. O

Remark 2.7. (a) It follows from Theorem 2.5 (a) that conditions (2.6) and (2.7) are also necessary for a
reductive linear group to be stable polar.

(b) By Popov’s stability theorem [Po70], for a semisimple algebraic group G stability of a linear group
G|V is equivalent to the condition that there exists v € V whose stabilizer G, is reductive and

dimV — dim G(v) = dim V//G. (2.8)

(In general, LHS(2.8) > RHS(2.8).)

(c) The following example, provided by J. Dadok, shows that condition (2.6) alone is not sufficient.
Let g be a simple Lie algebra and G|(g @ g) the action of the adjoint group on the direct sum of 2 copies
of g. Let C be the sum of Cartan subalgebras in each copy. Then (2.6) holds, but this linear group is not
polar.

2.2. Nilpotent elements and polar linear groups. Let f be a non-zero element of a simple Lie
algebra, included in an sly-triple s, and let (1.1) be the corresponding Z-grading of g. Let d be the depth
of this grading. Then each g;, |j| < d, is a go-module. Since 3(s), the centralizer of s in g, is a subalgebra
of go, each g; is a 3(s)-module. Since 3(s) is a reductive subalgebra of g, we obtain a reductive linear Lie
algebra 3(s)|g; by taking the image of 3(s) in End g;. Recall that Z(s) is the centralizer of s in the adjoint
group G of g.

Theorem 2.8. All linear groups Z(s)|g; for j =d or d—1 are polar.

Proof. We do not know a proof of this remarkable fact without the case-wise verification. For j = d it
was pointed out in [EJK20] that this fact follows from Tables there for d even and Remark 2.1 for d odd.
For j = d — 1, when d is odd, this follows from Table 1 of [DSJKV20], where all these groups are listed,
and from Table 1 of [DKS85], where all polar linear groups of simple Lie algebras are listed. Finally, for
j = d — 1, where d is even, this fact follows from Tables 2, 3 and 4 of this paper. Indeed, looking at
Table 1 of [DK85], one can see that, apart from theta groups, all examples that occur in these tables are
polar, except, possibly, for the linear reductive groups Spin, ® st(SO2) and Sping ® st(SLs). (Hereafter
Spin (resp. st) denotes the spinor (resp. standard) representation.) For both of them dim V)G = 2. It is
shown in the examples below that both are polar. O

Remark 2.9. We tried to prove polarity of Z(s)|g; for j = d or d — 1 along the following lines.

Let ¢ = e%, where j = d or d — 1, and consider the automorphism o of g, defined by ol|g, = €°I,
s € Z. Then the fixed point set of o is go and the e ?-eigenspace of o is V := g_5 + g;. Let G° be the
algebraic subgroup of the adjoint group G, corresponding to the subalgebra go of g. Then we get a theta
group G°|V. By [DK85], [EJK20, Theorem 6(c)] this representation is polar.

Let SG° = G°NSL(g_s), and consider the linear group SG°|g_». By Proposition 1.1 from [K80] there
exists an SG-invariant polynomial P on g_s, such that P(a) # 0 for a # 0 if and only if the orbit SG°(a)
is closed; moreover such an orbit contains a non-zero multiple of f. Since 3(s) = go N g/ and the group
Z(s)|g_o is orthogonal, we obtain that Z(s) C SG° and Z(s) = (SGo). Let sg, = go N sl(g_2) and
consider the slice representation Z(s)| Ny, where Ny = V/[sgy, f]. Then by the Luna slice theorem [L72]

dim(V/SG®) = dim(g; /Z(s)) + 1.
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Therefore, since dim(V/G°) > dim(V//SGo) + 1, we obtain that
dim(V/G°) > dim(g; /Z(s)). (2.9)
Let v € V be such that G°(v) is a closed orbit of maximal dimension. Since G°|V is polar,
Co={v" €V |go(v') C go(v)}

is a Cartan subspace. Let m : V — g; be the projection. Since no nonzero GC-orbit in g_s is closed, we
conclude that 7 is injective on C,. Moreover we think that 7(C,) C Cy(,) but we were unable to prove
this.
But if this is true, then
dim Cv < dim Cﬂ(v)- (2.10)
Comparing (2.9) and (2.10), we conclude that dim Cr,) > dim(g;/Z(s)). But by (2.3), the LHS cannot
be greater than the RHS, hence dim Cr(,) = dim(g;/Z(s)) and the linear group Z(s)|g; is polar.

Example 2.10. G|V = Spin; ® st(SO2). This is a direct sum of two irreducible modules V =Vt @&V,
which are 8-dimensional spin modules for SO7; SOy acts on V* by multiplication by t=!, ¢ € F*. The
set of weights of the g-module V is

1
5(:&61 + 1<) :|:€3) + 5,

the highest weights of V* being A* = 1(e1 + &5 +e3) £ 6, and lowest weights being —A%. Let v* be the
corresponding highest weight vectors and v4 lowest weight vectors. Let

U1 :v++v_, V2 =V + Vgt

Then, by Proposition 2.1, all vectors from C := span{vi,v2} are semisimple. It is easy to see that g(C)
is the tangent space to the orbit G(v) at a generic point v € C. It follows that C is a Cartan subspace.

Example 2.11. G|V = Sping ®st(SLsy). It is an irreducible 32-dimensional g-module with the set of
weights
%(:I:&:l tegtegtey) L4,
the highest weight being A = %(51 +egtesgteyg)+ 0. Welet
V1 = UA FV_A;, V2 =€C_g1€gy—ggUN T €¢) Cepte VA

As in Example 2.10, it is easy to check that C' = span{v;, vy} is a Cartan subspace.

Theorem 2.12.

(a) All linear groups Z(s)|g; for j even (resp. odd) preserve a symmetric (resp. skew-symmetric) non-
degenerate invariant bilinear form.

(b) All linear groups Z(s)|g; for j =d or d—1 are stable, except for all cases when j = d is odd, and also
when j =d—1 is odd and Z(s)|ga—1 either is isomorphic to st(so,) ® st(sp,,) with n odd, n < m, or
has finitely many orbits.

Proof. (a) can be found in [Pa99] or [EJK20]. By (a), the stability follows when j is even from [L72].
When d is even and j = d — 1, the stability is established by a case-wise verification, by checking that
[3(s), C] = g; where C' is a Cartan subspace (which exists by Theorem 2.8). O

Remark 2.13. It follows from Tables 2, 3, 4 that for an odd nilpotent the Dynkin characteristic contains
2 only if Z(s)|gq—1 has finitely many orbits. Moreover, the Dynkin characteristic contains 2 if g; = 0 for
some 1 < j < d — 1; this follows from the observation that when the Dynkin characteristic contains only
0 or 1, the go-module g; is generated by gf.

Remark 2.14. For all nilpotent elements of odd depth in Table 5 the linear group Z(s)|g; is not polar,
except for the last one.
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3. GENERALIZED CYCLIC ELEMENTS AND INTEGRABLE TRIPLES

In this section g is a semisimple Lie algebra. The following notion generalizes both notions of cyclic
and quasi-cyclic elements, introduced in the Introduction, for j = d and j = d — 1 respectively.

Definition 3.1. A generalized cyclic element, attached to a nilpotent element f of g is an element of the
form f + E, where E € g; with j > 1, E # 0, [E, g»2] = 0 and the centralizer of E in g, is coisotropic
with respect to the symplectic form w, defined by (1.2). Two generalized cyclic elements f+ F and f+ E’
are called equivalent if E' is proportional to an element from the orbit Z(s)(E).

Recall the notion of an integrable triple, associated to f, which is defined by properties (I1) — (I3) in
the Introduction.

Proposition 3.2.
(a) If (f1, f2, E) is an integrable triple, associated to f, then the element

a=fi+ fo+E (3.1)

s a non-nilpotent generalized cyclic element, associated to f.
(b) The element a, defined by (3.1), determines the integrable triple uniquely.

Proof. By the definition, a = (f1 + E) + f2 is the Jordan decomposition of a, where f; + E and fs are its
semisimple and nilpotent parts. Since f; + E is a non-zero semisimple element, we conclude that a is not
nilpotent. By the definition, a is a generalized cyclic element, proving (a).

Due to uniqueness of the Jordan decomposition, a determines f; + E and f,, hence it determines
fi=f—foand E =a— f, proving (b). O

Definition 3.3. A generalized cyclic element f+ F is called integrable if it is obtained from an integrable
triple as in (3.1). In this case the element E € g; is called integrable for f.

Note that a generalized cyclic element is integrable if and only if the nilpotent part of its Jordan
decomposition lies in g_s, and also that a generalised cyclic element cannot be nilpotent. Also, of course,
any semisimple generalized cyclic element is integrable.

Lemma 3.4. If E € g;, j > 1, is a nilpotent element of the Z(s)-module g;, then the element f+ E is a
nilpotent element of g.

Proof. Clearly the Zariski closure of Z(s)(f + E) contains f. Hence G(f + E) D Gf > 0 since f is a
nilpotent element of g. (]

Proposition 3.5. An integrable generalized cyclic element f + E, associated to a nilpotent element f of
depth d, where F/ € g;, exists only when j =d —1 ord.

Proof. In most of the cases the center of the subalgebra m := @k>2 g liesin gq_1+9gq- In a few cases this
center has non-zero elements E in g4_o, but it turns out that if the coisotropy condition in (I12) is satisfied,
then f + F is nilpotent, thus not integrable. For exceptional g the only f for which the center of m is
larger than g4—1 + gq are of type Ay + A in Eg, E7, Eg of depth 4, but the elements from m\ (g4—1 + ga)
are not integrable. This is checked by a case-wise verification, with the aid of computer. The proposition
is proved by direct computations in the standard representation for classical g. It would be interesting to
find a general proof. O

The following theorem classifies the non-nilpotent cyclic elements.

Theorem 3.6. Let f be a non-zero nilpotent element of g and let E € g4. Then the cyclic element f+ E
is not nilpotent if and only if the element E of the Z(s)-module g4 is not nilpotent.

Proof. Tt follows from Lemma 3.4 that f + E is nilpotent if E is a nilpotent element of the Z(s)-module
9d-

Conversely, suppose E is not a nilpotent element of the Z(s)-module gq. Then Z(s)(E) contains a
non-zero semisimple element Fy of the Z(s)-module g4, and by Theorem 2.5 (a) we may assume that
FEy € C, a Cartan subspace. Hence, we have to prove that f + Ej is not a nilpotent element of g. For
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that, by results of [EKV13], it suffices to prove that f5+ Ej is not a nilpotent element of g. By the results
of [EJK20], we may assume that f® is an irreducible nilpotent element of g, in which case g4 = C, and
the set Sy(f) = {F € C | f + E is semisimple} is a complement in C' of a union of W hyperplanes,
where m = dim gg4. In the case when m = 1 this means that Sy(f) = C'\ {0}, and we are done.

The remaining cases are the following ones from [EJK20, Table 1]: 451, m =2; 7, m = 2; 11, m = 3;
16, m = 2; 17, m = 2; 18, m = 4. For all but the first one, g is an exceptional Lie algebra, and the case
can be checked on a computer. In [EJK20], singular sets (complements to Sg(f)) for these cases have
been described as unions of certain subspaces. Using GAP package SLA, one checks that f + F is not
nilpotent for generic elements E in all possible intersections of these subspaces. In the first case g = soyy,
and f corresponds to the partition (2k + 1,2k — 1). This case is treated in Example 3.7 below. ([l

Example 3.7. Let f be a nilpotent in a simple Lie algebra of type Dsg corresponding to the parti-
tion (2k + 1,2k — 1). By definition, this means that the standard representation of so4; has a basis
Tk, T (k—1)s s L1y TOy T1y ooy Thim1y Thy Yo (k1) -+ Y15 Y05 Y15 .-y Yk—1, With h acting by hz; = 2jx;,
hy; = 2jy;, and f acting by

T AT (h=1) 4 -+ A T_1 <1 T <A L1 4 -+ < Th—1 <1 T}

Yo(k—1) - <A Y=-1 <A Y0 <YL = -+ < Yk—1

We recall from [EJK20, Case 4;] (reversing everything there) that there is a basis (E1, E2) of gq with
Evrx_(p—1) = xk, B1v_p = z)1, Eoy_(i—1) = —Tk, Box_p = yi_1,

and all other actions of Ey, Fs are zero. (Explicitly, one can take Ey = %, Ey = %)

Pictorially,

T «—— T—(k-1) T—1 Zo T Tk—1 T

As calculated in [EJK20, Case 4], the cyclic element f + A\ E; + A2E5 is not semisimple only when
either Ao = 0 or Ay = £

Consider first the case Ay = 0, so that E = AFE;. We then define f*, f® by declaring that f° acts only
on the basis elements x; and f" only on the basis elements y;. Thus the corresponding picture is then
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fS fS fS fS fS fS fS fS

Tk «—— T—(k-1) T—1 Zo T Tk—1 Tk

Y—(k-1) — — Y1 — Yo - Y1 — — Yk—1
! f f I I f

Then clearly f*+ f™ = f and f* commutes both with f% and with E. Moreover both f% and f™ are homo-
geneous of degree —2 since they both act on the standard representation lowering degree by 2. Moreover
f°® 4+ FE is semisimple since the characteristic polynomial of its action in the standard representation is

t(t2k — \).
Next consider the case Ao = £A1, so that E = A\(E; + E3). Switch to the following basis:
_ kg Fh—dy; ,  ziEy; . Ty
Zp = Tp, 25 = ok = o (—k<j<k), t_gx= T

In this basis, the non-zero actions of f and E are as follows:
fti=tj1 (=(k=1)<j
fri=zia+tia (=(k=1) <
fe_(e—1) =tk

< k),
| < k),
and
Et k= Mk—1, Fz_(—1) = A\zk-
In this basis, let us define f* and f™ by the non-zero actions
fPzj=zj1 (=(k=1) <j <k),
fiti=tia (=(k=1)<j<k),
fPzj=tj—1 (=(k—1) <j<k).
Then again both f* and f™ are in g_o, f*+ f® = f, f* commutes with both f°* and F, and f* + F is
semisimple. Note also that f*+ E is not regular, having double eigenvalues. Its characteristic polynomial

in the standard representation is (t2* — X\)? (the minimal polynomial being t2¥ — \).
All this is completely obvious from the following diagram of actions:

E

tk(—t k

\”\ \\

- (—Z(k —2) Zk

w

E
Thus in both cases (f1, f2, E) with f; = f5 and fo = f™ are integrable triples.
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Example 3.8. According to [EJK20, Table 1], there are three irreducible nilpotent orbits of rank 2 in
exceptional Lie algebras: the one with label Fy(as) in F4 and the orbits with labels Eg(as) and Eg(ag)
in Eg. For all of them there are exactly three lines in g4 such that f + E is semisimple if and only if
E € g4 does not belong to any of these lines. Direct calculations with the GAP package SLA show that
E remains integrable along these lines too. We provide more detailed description using specific choices of
representatives for these orbits as follows.

In Fy, take for the representative of F4(as) the element

f = fi100 + for20 + foo11 + fooo1-

In Eg, take for the representative of Eg(as) the element
f = fUUOOgUl + fUUUUgl] + fOOUUilO + fUUOliUU + fOUUl[l)lO + fUOl](]}UO + fU]llgUU + fllUUgOO
and for the representative of Eg(ag) the element

f = fUUUO(l]]l + fOOUUill + fU[)llilU + fOUUO(l)OU + fOOOl(I}UO + fUUll(l]UU + fOlllgOO + fllOOgUO'

Then, for these choices of f, gq has basis E;, F5 consisting of the highest root vector and the next to
the highest root vector. The cyclic element f + x1FE; + z2Fs is semisimple except when 1 = 0, x5 =0
or 1 = 3. In these three singular cases, Jordan decomposition of f 4+ E is (f* 4+ E) + f® with f* € g_o,
where
for E = x1E, or E = x5 FE5, we have the following cases:

if fis F4(a2), then f* has label Bs and f™ has label As,

if f is Eg(as), then f° has label Eg and f™ has label Dy,
while for £ = z(E; + E»),

if f is F4(az), then f® has label C3 and f™ has label Ay,

if f is Eg(as), then f* has label D7 and f™ has label 2A;,
and if f is Eg(ag), then for E on any of the three singular lines f* has label Dg and f™ has label As.

Note also that the subalgebra a generated by f and F, which is the whole g if E does not lie in the
union of singular lines, is the direct sum of the semisimple [a,a] and the center spanned by f*, where
[a, a] has the following type:
for E = l‘lEl or £ = .Z‘QEQ, it is

Go, when f is Fy(a2),

Fy4, when f is Eg(as),
and for F = z(E; + E»), it is

Cs, when f is Fy(as),

Bg, when f is Eg(as),
while if f is Eg(ag), then for E from any of the three singular lines, this subalgebra has type Bs.

Example 3.9. For the nilpotent with label E7(a5) in E7, depth is 10, with g19 3-dimensional. We take
f = flOOgUO + fllUgOO + flllgUO + fOlliDO + fUOl(l]lU + fﬂOlilO + fUOO(l)ll;

then gy¢ is spanned by E; = Cing, Ey = Erzag31 and F3 = Crzagan- The singular set, i. e. the subset of those
E € g1 with f+ E not semisimple, is the union of six 2-dimensional subspaces: (Es, Ej) and (E;, E;+ Ey),
with {4, 7, k} = {1, 2,3}. Their pairwise intersections produce the following seven 1-dimensional subspaces:
<Ei>, <Ez + E]’> and <E1 + Es + E3>.

It is also possible to describe this set without mentioning semisimplicity of f 4+ E: it is the set of all
those vectors which have nontrivial stabilizer with respect to the action Z(s)|g10 which is the permutation
representation of the symmetric group on three letters.

All these subspaces are exactly all those subspaces V' of g9 with the following property: the Lie
subalgebra a generated by V and f is the direct sum of the semisimple subalgebra q = [a,a] and the
1-dimensional center 3(a) C g_o; 3(a) is spanned by an element f™ such that f5 = f — f* is of semisimple
type in q; f° has the same depth 10 in q as f in g; and q10 = V.

In all these cases, taking any E € q19 = V which does not lie in a smaller subspace from the singular
set, f% 4+ E is semisimple, so that one obtains an integrable triple (f1, f2, E) = (f%, f*, E).

The corresponding subspaces and nilpotent types are as follows:
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|4 I It g [ffing
(Ei, Ej + Ex)  Dg(az) Ay Dg¢ (7,5
(Ei, Ej) Eg(a3) 3AY F,  Fulaz)
(Ei) Dy (As+A;)” Gy principal
(E; + Ej) Al 4A4 Csz principal
(E1 + Ey + E3) AY A, Cs principal

Example 3.10. For the nilpotent with label Eg(a7) in Eg, depth is 10, with g;9 4-dimensional. We take
f = .ﬁ]lllg()[) + .f(]()lll})(](] + j‘[)Ull}[)[) + fllllél() —"_ fU(]Ol%l(] + Lf()[)lltljll + .f(]()()l?ll + f‘[)()ll}ll + .ﬁ)lll}ll'
Then g0 is spanned by £y = 61235g427 Ey = 61245g427 E; = 61345342 and By = €2345642-

The singular set in this case is the union of ten 3-dimensional subspaces (E;, E;, Ey) and (E;, E;, B, +
Epy, {i,j,k, 0} = {1,2,3,4}, forming a single orbit under the action Z(s)|g10, which is the action of the
component group S5 on its 4-dimensional irreducible representation.

As in the Example 3.9, this set consists precisely of those vectors which have nontrivial stabilizer with
respect to the action of the component group of Z(s)|g10.

All of the possible intersections of these 3-dimensional subspaces produce twenty five 2-dimensional
subspaces forming two orbits, one containing all (E;, E;) and all (E;, E;+ Ey+ E;) and another containing
all (E;, Ej + Ey) and all (E; + E;, E, + Ey), and fifteen 1-dimensional subspaces forming two orbits, one
containing all (F;) and (E; + E5 + E3+ Ej), and another containing all (E; + E;) and all (E; + E; + Ey).

All these 10 + 25 + 15 = 50 subspaces are also exactly all those subspaces V' of gig with the following
property: the Lie subalgebra a generated by V and f is the direct sum of the semisimple (in fact, simple)
subalgebra q = [a, a] and the 1-dimensional center 3(a) C g_»; 3(a) is spanned by an element f™ such that
f5=f— f™is of semisimple type (in fact, irreducible) in g; f* has the same depth 10 in q as f in g; and
quo=V.

In all these cases, taking any E € q19 = V which does not lie in a smaller subspace from the singular
set, f° + E is semisimple, so that one obtains an integrable triple (f1, f2, E) = (f%, /™, E).

The subspaces, their generic stabilizers in S5, the corresponding subalgebras and nilpotent orbit labels
are as follows:

v generic stabilizer f® m q fSing
<Ei,Ej,Ek>, <E7;,Ej,Ek + Ez> SQ E7(a5) A1 E7 E7(a5)
<E7;, E]’ + Ek>, <El + Ej, E + E@> Sy X So D6(CL2) 2A4 Dsg (7, 5)
<Ei, EJ>, <El, EJ + Ek + E@> 53 E6(a3) AQ F4 F4(a2)
<Ei + Ej>, <Ez + Ej + Ek> Sy X S3 As As + Ay C3 principal
(E;), (E1+ FEy+ E3+ Ey) Sy Dy Dy4(a;) Go principal

The following lemma helps to establish non-existence of non-nilpotent quasi-cyclic elements.

Lemma 3.11. Let C C gq—1 be a Cartan subspace of the Z(s)-module gq—1, and suppose that C' contains
no elements E, for which f + E is quasi-cyclic. Then gq—1 contains no elements E, for which f + E is
non-nilpotent quasi-cyclic.

Proof. If f 4+ E is not nilpotent quasi-cyclic, then, by Lemma 3.4, F is not a nilpotent element for the
Z(s)-module g4—1. Then, as in the proof of Theorem 3.6, Z(s)E N C contains an element Fy, such that
f + Ep is quasi-cyclic. O

In order to prove the next proposition, we will need the following simple lemma.

Lemma 3.12. Leta € g. Then (Kerada)® = Imad a, where the orthogonal is with respect to the bilinear
form (- | -). In particular, if a € gy, then (Keradalg,)t =Imadal,_, ,.

Proof. The inclusion Imada C (Kerada)* is immediate by the invariance of the bilinear form. On the
other hand

dim(Imada) = dim(g) — dim(Kerad a) = dim ((Kerad a)l) ,
since the bilinear form is non-degenerate. Hence, (Kerada)® = Imada. The second part of the lemma
follows from the fact that (g |ge) = 0 if k # —£. O
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Proposition 3.13. Let E € g;, j > 0. The following statements are equivalent:

(a) the centralizer of E in g1 is coisotropic with respect to the bilinear form (1.2);
(b) the map ad Eo (ad f)~' cad E|g_,_, is zero.

Proof. The coisotropy condition (a) can be rephrased by saying that the orthogonal complement of g
with respect to w is contained in g¥. This, by definition (1.2) of w, is equivalent to the following condition:

(a') if a € g1 is such that [f,a] € (Kerad E|g,)*, then a € Kerad E|g, .

(Here the orthocomplement is with respect to the bilinear form (- | ) of g.) On the other hand, the
statement in b) can be equivalently rephrased as follows:

(b") if x € g_p—1 is such that [E,z] = [f, a], for some a € g;, then a € Kerad E|,,
or, equivalently,
(b") if @ € g1 is such that [f,a] € Imad E|y_,_,, then a € Kerad Elg,.
By Lemma 3.12, (Kerad E|g,)* =Imad E|,_,_,, thus (a’) and (b”) are equivalent. O

An important problem is when a (non-nilpotent) generalized cyclic element f + E of a semisimple Lie
algebra g is integrable. For the solution of this problem the following lemma is important.

Lemma 3.14. Let f be a non-zero nilpotent of g and let (1.1) be the corresponding Z-grading of depth d.
Letj=d ord—1 and let E € g; be a non-zero element. If the nilpotent part of the Jordan decomposition
of f+ E lies in g_o, then E is a semisimple element of the Z(s)-module g;.

Proof. Consider the theta group Go|(g—2 + g;), constructed in Remark 2.9. Then the element f + E €
g_2 + g, is a semisimple element of g if and only if the orbit Go(f + E) is closed. We have (cf. [EKV13],
proof of Proposition 2.2(a)):

f+2Z(s)(E)=Go(f+E)N(f+g) (3.2)
If the nilpotent part of the Jordan decomposition of f + E lies in g_o, we have: f = f1 + fo, f1 + E is
semisimple, fo € g_o, and [fa, f1 + E] = 0. Since Go(f2) C g—2, we deduce from (3.2) that it still holds
if f is replaced by f1. Since f; + F is semisimple, the orbit Go(f1 + E) is closed, hence f; + Z(s)F is a
closed subset, and E is a semisimple element of Z(s)|g,. O

The following theorem describes all integrable cyclic elements, up to conjugation by Z(s).

Theorem 3.15. Let f be a non-zero nilpotent element of g of even depth d, and let E € gq be a non-zero
element. Then the cyclic element f + E is integrable if and only if E is a semisimple element of the
Z(s)-module gg4.

Proof. If f 4 FE is integrable, then E is a semisimple element of Z(s)|gqs by Lemma 3.14.

Conversely, let E be a non-zero semisimple element of Z(s)|g4s. Then the argument as in the proof of
Theorem 3.6 reduces the proof to the case when f is an irreducible nilpotent element with dim g4 > 1 and
E ¢ Sy(f). Again, the cases when g is an exceptional Lie algebra are checked on the computer using GAP
[SLA], by computing Jordan decompositions of f + F for E generic in all possible nonzero intersections of
subspaces constituting the complement of Sy(f) as described in [EJK20] (see Examples 3.8, 3.9 and 3.10),
while the case g = so41, with f corresponding to the partition (2k 4+ 1,2k — 1) is treated as in Example
3.7. O

Theorem 3.16.

(a) Theorem 3.15 holds for d odd and for E € gq—1 such that f + E is a quasi-cyclic element.
(b) The “only if” part of Theorem 3.15 holds for d even and for E € gq—1 such that f+ E is a quasi-cyclic
element.

Proof. (a) Replacing g with geven = €D ;<7 825, the proof is the same as of Theorem 3.15. (b) follows from
Lemma 3.14. 0

Example 3.17. A non-nilpotent quasi-cyclic element does not necessarily give rise to an integrable triple.
For f with label 2A5 + A; in Eg, take

f = 2f00%11 + 2][:Ul(l]ll + 2fll{UO + 2fll(l]l() Jr fOl%lO'
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The depth of f is 5 and g4 is 4-dimensional, spanned by €151, €121, €1201; AN €155
1 1 1 1
The coisotropy condition on a generic element x1€,15,, + T2€110 + T3€12011 + T4€15001 Of gy is
1 1 1 1

4.1711‘4 = (1’2 + 1‘3)2.

It follows that for
E= 611%11 + e11%21 - 612%11

f+ FE is a quasi-cyclic element. Its Jordan decomposition has semisimple part
2 2
fl + E - 2f00||| + 2f0|11| + 2f11|00 + 2f||110 + 7(fm||| - fllllu) + €211 + €11221 — €211
1 0 1 0 3 1 1 3 1 1 i

and nilpotent part

2 1
f2 = fm%m - g(fm%u - fniw) + geu%ny

This is not an integrable triple because fo ¢ g_o.

4. INTEGRABLE CYCLIC AND QUASI-CYCLIC ELEMENTS ASSOCIATED TO NILPOTENT ELEMENTS OF
EVEN DEPTH

4.1. Integrable cyclic elements for nilpotent elements of even depth. Let f be a non-zero nilpo-
tent element of even depth d in a simple Lie algebra g. Recall that f is included in an sls-triple s, and
that, by Theorem 2.8, the linear group Z(s)|gq is polar. All these linear groups are listed in [EKV13].
Let C' C g4 be a Cartan subspace. By Theorem 3.15, any cyclic element f 4+ E, where F € C' is non-zero,
is integrable. Hence, up to conjugation by Z(s), the integrable cyclic elements are classified by non-zero
elements of C, up to conjugation by its Weyl group, and rescaling.

Recall also by [EKV13] that the set of non-zero nilpotent elements in g (up to conjugation) is partitioned
in bushes, such that each bush contains a unique nilpotent element f* of semisimple type, and all other
nilpotent elements in the same bush have the same depth d and the same Cartan subspace.

Below we give a more explicit description of Z(s)|gq (rather their unity components) for all classical
simple Lie algebras g. As in [DSJKV20], throughout the paper, we use the following notation: st(a) denotes
the standard representation of the Lie algebra a, 1 stands for the trivial 1-dimensional representation, &
stands for the direct sum of linear reductive groups, rank = dim gq/Z(s).

4.1.1. g =sly, N > 2. Non-zero nilpotent elements f, up to conjugation, are parametrized by partitions

p=0" Py, ), N= ", (4.1)

where the p; are distinct and have multiplicities r;: p; > --- > ps =2 1, p; > 1. Then the associated to
a partition p nilpotent element f = f;, is of semisimple type if and only if

p=(p{"™, 102)). (4.2)

The bush containing this partition consists of all partitions with the same p; and r;. All these partitions
have the same depth d = 2p; — 2, and the same gq = Mat,, «,, and the action of Z(s)|g4 is the action of
SL,, on Mat,, «,, by conjugation. A Cartan subspace C' is the subspace of all diagonal matrices.

4.1.2. g = spy, N > 2 even. Non-zero nilpotent elements f, up to conjugation, are parametrized by
partitions p, whose odd parts have even multiplicity. Then again f = f, is of semisimple type if and only
if (4.2) holds. The bush containing f, consists of all partitions (whose odd parts have even multiplicities)
with the same p; and 1 as p. All have the same depth d = 2p; — 2, and the same linear group Z(s)|gq,
which depends on whether p; is even or odd:

Z(s)|ga = S*st(SO,.,) if p1 is even, Z(s)|gqa = S*st(Sp,,) = ad(Spy,) if p1 is odd (then 7} is even).

For the bilinear form with matrix I, defining SO,,, S*st(SO,.,) is identified with the space of all sym-
metric matrices, and we can choose for C' the subspace, consisting of diagonal matrices, while g2 st(Spr,)
is the adjoint representation of Sp,,, so that C' is any Cartan subalgebra.
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1

5

3, N # 4. Non-zero nilpotent elements fj, up to conjugation, are parametrized by

partitions p, whose even parts have even multiplicity. There are five types of elements f, of semisimple

type:

() 3,102)); d

(b

()
(d) p
(e

=2;

Cartan subspaces are as follows:
(a) C =Fv®F, where (vjv) = 1;

= 9d;

if the bilinear form, defining Sp,,, is (

(a) st(SOm) & 1;

(b) 1

(c) ]l 69 1;

(d) /\ st(Spr, );

(e) A?st(SO,,) = ad(S0,,).
(b) and (¢) C
(@) C=
(e) C=

p1,p1 —2,10%)), py > 5 0dd; d = 2py — 4;

(r1) ,102)) py > 2 even, ry > 2 even; d = 2p; — 2;
yp=(p Yl), 102)) p; >3 odd, 11 > 2 even; d = 2p; — 2.
The linear groups Z(s)|gq for the types (a) —

p=3,

) p= (pl 102)) py > 5 0dd; d = 2p; — 4;
p=(
= (1

the Cartan subalgebra.

(e) are as follows:

the subspace of diagonal matrices in gg4

98);

0

Bushes containing these f of semisimple type correspond to the following partitions (with all even parts
having even multiplicities):

(a) partition itself;
(b) all partitions with the same p; and r; = 1 satisfying ps < p; —
(c) all partitions with the same p1, 71 = 1 and py = p; — 2;

(d) and (e) all partitions with the same p; with multiplicity r; or r; + 1.

2;

The group Z(s)|gq is the same for the nilpotent elements from the bush, except for the following two

cases:

(b) partitions (p (”), ...), where r; > 1 is odd, in which case Z(s)|gq = ad(SO,.,);

(¢) partitions (p1, (p1 — 2)"2), ...

), where p; > 3 is odd, in which case Z(s)|gq = st(SO,,) @ 1.

The information about Lie algebra actions of centralizers of slo-triples can be summarized in the

following table.

g | partition | d  |rank | 3(s)|ga
sl
@, ) ‘ 2py —2 ‘ ! \ ad(sl,,)® 1
SPpN
(P}, ), preven | 2p; —2| r | S?st(so,,)
(™, ..), prodd | 2py —2| & ad(sp,.)
507
(py"), ), preven |2p1 —2 | 2 | A’st(sp,,)
(™), r>1pyodd | 2p —2 | [2] | ad(so,,)
(p1, (p1 — 1)), .. prodd | 2p;1 —3 | O st(sp,.,)
(p1, (1 —2)1"2), .. prodd | 2py—4 | 2 |st(so,,) @1
(p1,(pr —m)"), ), m>2 podd | 2p, —4 | 1 1

TABLE 1. Actions of centralizers of slo-triples of nilpotent elements in simple Lie algebras

g of classical types on gq
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4.2. Integrable triples in g = gl and sly.

4.2.1. Setup and preliminary results. Let g = gl or sly. Let f be a nilpotent element of g in Jordan
form and let p be the associated partition (4.1) of N, given by the sizes of the blocks of the Jordan form.
We associate to p a symmetric (with respect to the y-axis) pyramid, with boxes of size 2 x 2 indexed
by the set I = {1,2,..., N} (say starting from right to left and bottom to top). For example, for the
partition (9,7,4()) of 24, we have the pyramid in Figure 1.

2412312221

2019 |18 |17

16 {15 (14 (13 |12 | 11| 10

8 6 -4 -2 0 2 4 6 8 z

FIGURE 1. Symmetric pyramid for the partition (9,7,4(?)) of 24

Let V be the N-dimensional vector space over F with basis {es}aecs. The Lie algebra g = gl(V') has
a basis consisting of the elementary matrices E, 3, a, 8 € I. The elementary matrix F, g in g can be
depicted by an arrow going from the center of the box S to the center of the box «. In particular, f is
the “shift to the left” operator. It is depicted as the sum of all the arrows pointing from each box to the

next one on the left
f = Z Eaﬁa (43)

a+pB
where the sum is over all adjacent boxes (on the same row) «,5 € I. Let us also denote by fT the
transpose of the matrix f defined in (4.3). It is the “shift to the right” operator.
Let h € g be the diagonal endomorphism of V' whose eigenvalue on e, is the z-coordinate of the
center of the box labeled by « (see Figure 1) which we denote by z,. We then have the corresponding
h-eigenspace decomposition of V/

D
V= VK], V[kl={veV|h()=kv}, (4.4)
k=—D
where D = p; — 1 is the maximal eigenvalue of h.
We note that the elements f and h belong to a slo-triple s = {e, h, f}, where e = Zm—ﬁ cgEg o, with
cg = »_ &~, where the sum is over all boxes  at the right and in the same row of the box 3, including it.
The elementary matrices F, g are eigenvectors with respect to the adjoint action of h:
(adh)Eap = (ta — 7p)Eap .
This defines a Z-grading of g, given by the ad h-eigenspaces as in (1.1):
gr = Spang{Esp | to — 2 =k}, k € Z. (4.5)
The depth of this grading is d = 2D = 2p; — 2.

Next, consider the subspaces V_ = Ker f and V, = Ker fT of V. We thus have the direct sums
decompositions

V=V_aefilV=V,8fV. (4.6)
Let D; = p; — 1, for i = 1,...,s (in particular D; = D). Throughout the paper we will use the
decompositions Vi = @;_, Vi ;, where

Vo,=VonfPve, Vii=Vin(MmPve, i=1,...,s, (4.7)
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and V = @;_, Vi, where
D;
Vi=@ v, i=1,...,s. (4.8)
k=0
Representing the basis elements of V' as boxes of the pyramid as in Figure 1, V; corresponds to the i-th

rectangle counting from the bottom, and V4 ; correspond to the right/left most boxes of the i-th rectangle.
With a picture:

V_s Vs Vis

V_a Vo Vie

Vo1 Vi Via

FIGURE 2. The spaces V; and V5 ;

For the pyramid in Figure 2 the subspaces V_ and V correspond, respectively, to the boxes colored in
orange and blue (note that they may have nontrivial intersection); the subspaces V;, i = 1,2, 3, correspond
to the rectangles of the pyramid, and V4 ; is the intersection of the rectangle V; with V.

Throughout the paper, given a subspace U C V, together with a “natural” splitting V = U & W
(usually associated with the grading of V'), we shall denote, with a slight abuse of notation, by 1y both
the identity map U — U, the inclusion map U < V, and the projection map (with kernel W) V — U;
the correct meaning of 1y should then be clear from the context.

Using the above notation, we clearly have (recall the splitting (4.6))

ffT = ]]-V — ]lv+ = ]]-fV and fo = ]lV — ]]-V, = ]lf-rv . (49)
The following result will be used in the sequel.

Lemma 4.1. Let x € g{2, the centralizer of f in g_o. For every i =1,...,s there exists t; € End(V} 1)

such that
D;—1

Lyzly, = Y f"(m)".

k=0

Proof. By the direct sum (4.8) we can write 1y, a1y, = ZkD;;l xg, where ), € Hom(f*V, ;, fFH1V, ,).
The condition [z, f] = 0 gives

foy = zper f € Hom(f*Vy i, A2V, ), (4.10)
for every k =0,..., D; — 2. Multiplying both sides of (4.10) on the right by fT and using (4.9) we get
JarfT =azp1lyy = Tpqa,
for k=0,...,D; — 2. A recursive solution to these equations is
zp = fRao(fT)*, k=1,...,D;—1.
Letting ¢; = fTxg € End(V; ;) we get the claim. O

In order to apply, in the following sections, Proposition 3.13 we need the following result.
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Lemma 4.2. Let z € g_; and assume that 0 # = € Hom(V},V;). Then
SOUMHart, i<y,
ad f)lz = { "€ 4.11
(ed ) =3 fRa(mFt, i (10
kEZ
(Note that, since x € g_1, it must be i # j.)
Proof. Without loss of generality, let us assume that z € Hom(f*/ V. i f iV, ;). Note that, since x € g_1,
we have
D; — 2k =D; —2k; — 1. (4.12)
In particular, if 4 < j, then D; > D; and therefore k; > k;. Conversely, if ¢ > j, then D; < D; and
k; < kj. 1\/[OI'GOV€I'7 Dj — kj > D; —k;.
First, let us assume that ¢ < j. Applying ad f to the RHS of equation (4.11) we get

ST et = > (M a st f

kEZy kEZy
=z— 1y, Z (FIFafr =2 — (fT)kiafh .
kEZy

In the first equality we used the first equation in (4.9), while, for the second equality, the operator Ly,
on the left forces k = k;. Since ¢ < j, by the observation after equation (4.12) we have k; > k;. Hence,
xf¥ = 0 thus proving (4.11) in this case.

Next, let us assume that ¢ > j and let us apply ad f to the RHS of equation (4.11):

_ Z FrEa(fT)R 4 Z Fra(fmFy
keZ., vz
=z 3 a1y = v fP ()P
=

In the first equality we used the second equation in (4.9), while, for the second equality, the operator
1y on the right forces k = D; — k;. Since ¢ > j, by the observation after equation (4.12) we have
Dj —k; > D; — k;. Hence, fPi=%iz = 0. This completes the proof. O

The next result will be used in Sections 4.2.3 and 4.4.2.

Lemma 4.3. Let U € Hom(V[D],V[-D]) and E = A+ B, where A € Hom(V[-D + 1],V[D]) and
B € Hom(V[-D],V[D —1]). Then, ad Eo (ad f)~' oad E(U) = 0 if and only if

[AfPTIBEP, (fF1)PUT = 0.

Proof. We have that [E,U] = UA— BU. Since UA € Hom(Vs, V1) and BU € Hom(V1, V2), using Lemma
4.2 we have that

(adEo(ad f) "' oad E) (U) = > [E,(fM)FMUAF* + f*BU(fT)F]

keZ
= AfPTIBU(FMP — (fMPUAPTIB.
The claim follows from the fact that (f7)? : V[—-D] — V[D] is an isomorphism with inverse f. O

The next result will be used in Sections 4.2.3 and 5.1.

Lemma 4.4. Let U = X +Y, where X € Hom(V[D],V[-D +1]), Y € Hom(V[D — 1], V[-D]), and let

E=A+B+C, where A € Hom(V[-D|,V[D —2]), B € Hom(V[-D +2|,V[D]) and C € Hom(V[-D +

1),V[D —1]). Then, ad Eo (ad )"t oad E(U) = 0 if and only if
(fMHPYCfPIC = (fTlyy A+ Blyy fT)YC + Bly fP7%1y, AY,

CIPICX(TP = CX([T A+ Bl (1) + (P XBLy P14,
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Proof. Writing A = 1y, A+ 15y A and B = By,, + Bljry, we have that [E,U] = 1y, AY + BX —
XB]lf-rv—l—]lvaY—YB—XB]lvf. Since ]]_V+AY+BX_XB]lfTV € Di=1,2 HOH](‘/;7 Vi-&-l) and ]].vaY—
YB - XBly_ € ®;=1,2Hom(V;;1,V;), using Lemma 4.2 we have that

(adf)"'oadE) (U) = Y (SN (1y, AY + CX — XBlsry) f*
k€Z,

=Y A AY —=YC - XBLy_)(f).
kEZy

(4.14)

Finally, applying ad E to both side of equation (4.14) we get
(adEo(ad f) "' oad E) (U) = —Blry fTYC — Bly_ fP7 11y, AY (f7)P71
— CfPTICX(fM)P + CXBlprv fT+ (f7)P ' XB1y_ fP%1y, A (4.15)
— Tl AYC + (fMHPYCPIC+ CX fTlvA.

Note that
Blyry fTYB + Bly_ fP7'1y, Ay (fT)P!
+fT1 vy AYC — (fMPYCFP~1C € Hom(V[-D + 1], V(D))
and
CfP1CX(fM)P — CXBlpy T — (f7)P'XBly_ P71y, A
—CX fT € Hom(V[-D],V[D —1)).
Hence, the RHS of (4.15) vanishes if and only if equation (4.13) holds. O

Finally, the last result of this section will be used in Section 4.5.2..

Lemma 4.5. Let U = X +Y, where X € Hom(V[D],V[-D +2]), Y € Hom(V[D — 2], V[-D]), and let
E = A+ B, where A € Hom(V[-D],V[D — 3]), B € Hom(V[—D + 3], V[D]). Let us assume that

I;yA=0, Blsy =0. (4.16)
Then, ad E o (ad f)~' oad E(U) = 0 if and only if
(/P2 XBfPA = BfP P AY (TP =0,
Proof. Note that [E,U] = AY — X B. Using the first equation in (4.16) and (4.11) we have that
(ad /)7 (AY) = = 3 FRAY(fT)"H,
k€L,
while using the second equation in (4.16) and (4.11) we have that
(ad )HXB) == > (/) IXBE.
keZy
Hence, by a straightforward computation we get
adEo(ad f) tad E(U) = —BfP2AY (f1)P~2 4+ (f1)P2XBfP—3A.
Equation (4.16) follows since BfP=3AY (f7)P=2 € Hom(V[-D + 2],V[D]) and (fT)P2XBfP—3A4 €
Hom(V[-D],V[D —2]). O

4.2.2. The centralizer 3(g>2). From (4.5) we have that a homogeneous element E € g, k € Z, has the
form

E= Y capFap, cap€F. (4.17)

To—rg=k

The goal of this section is to describe the centralizer 3(g>2) of g>2 in g.
Lemma 4.6. If [E,g>2] =0, then E € g4 & ga—1 & W & Fly, where
W =Hom(V[-D +1],V[D — 1]) C g4-2 -
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Proof. Since the adjoint action of e € go is injective on g<g, we obviously have 3(g>2) C g>o. Let afel
be such that 25 = D and z53 < D — 2 (i. e. the box f§ is completely at the left of the box &). Then
Es5 € 9>2. Hence, letting I € gj, be as in equation (4.17), we have

0=[E;3.El= > caplBspBapl= > caaBas— > caaB,ps- (4.18)
To—xg=k wﬁfa:[g:k To—D=k

If k£ > 1, then the condition z, — D = k > 1 implies that z, > 1 + D thus the second sum in (4.18) is
empty. Hence, from equation (4.18) we have that cog = 0 if 2, < D — 2. If k = 0, then equation (4.18)

becomes
Y. capBas— D caaBaj,
To=D

from which follows that, for z,,23 # D — 1, we have co g = 5a5A for some A € F. Similarly, letting
@, € I be such that 5 = —D and zz 2 —-D+2 (i. e. the box J is completely at the right of the box

@), the condition [E’E&B] = 0 implies, for £ > 1, that cop = 0if 23 > —D + 2 and, for & = 0, that
Ca,p = O0apA for xq,xg # —D + 1. This proves that

E € Spang{lv,Esp | 2a 2D - 1,2 < —D+1} =g4 D ga—1 W & F1y .

Proposition 4.7. The centralizer of g>2 in g is 3(g>2) = 84 ® ga—1 ® W & Fly.

Proof. By degree consideration and the fact that the identity is a central element we clearly have g4 &
ga—1 DF1y C 3(g>2). Let T € Hom(V[-D + 1], V[D —1]), and let E,p € g>2, with 2, — 23 > 2. In
particular, z, > g +2 > —D + 1, and 23 < o —2 < D — 1. Hence, Im(E,3) N V[-D + 1] = 0, so
that TE,g = 0. Similarly, Im(T") C Ker(E,g), so that E,3T = 0. Hence, T € 5(922) This, combined to
Lemma 4.6, completes the proof. (I

Recalling the definition of integrable triples given in the Introduction, if E is an integrable element for
[, then E € (W@ gq—1®ga) Ng>1 (note that gq—1 ® gqg C g1 for p1 > 2, and W C g3 for p; > 3).

4.2.3. The coisotropy condition. An element E € g4_1 can be uniquely decomposed as E = a(fT)P~! +
b(fT)P, where
a € Hom(V[D —1],V[D]) and b€ Hom(V[D],V[D —1]). (4.19)
Proposition 4.8. Let E = a(fT)P~1 + b(fT)P € ga_1. The subspace g¥ is coisotropic with respect to
the bilinear form (1.2) if and only if
ab = >\]1V[D] , AeF. (4.20)

Proof. By Lemma 4.3 with A = a(fT)P~! and B = b(fT)? we have that ad Eo (ad f) ' ocad E|, , =0
if and only if

[ab, (f7)PU] =0, (4.21)
for every U € g_,4. Note that (fT)Pg_, = End(V[D]). Hence, equation (4.21) implies that ab is a scalar.
The claim follows from Proposition 3.13. (]

An element E € W C g4_5 can be uniquely written as E = ¢(fT)P~1, where
c € End(V[D - 1)). (4.22)

Proposition 4.9. Let E = c(fT)P~1 € W. The subspace g¥ is coisotropic with respect to the bilinear
form (1.2) if and only if ¢ = 0.

Proof. By Lemma 4.4 with A = B =0 and C = ¢(fT)P?~! we have that ad Eo (ad f) " 'oad E|y_,,, = 0 if
and only if 2(fT)P~1X(fT)P = 0, for every X € Hom(V[D],V[-D + 1]). Since (fT)? : V[-D] — V[D]
and (fT)P~1:V[-D +1] — V[D — 1] are isomorphisms, this condition is the same as ¢ = 0. The claim
follows from Proposition 3.13. O
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4.2.4. Integrable E € gq. Let E € gq. In this section we will use the decomposition (see (4.8))
V=Vie Vs, Wh@I‘QV)QZ@V;.
i=2

Note that (f + E)ly,, = fly,,. Hence, (f + E)ly., is nilpotent. Furthermore, note that £ can be
uniquely written as £ = u(fT)?, where u € End(V[D]). Let

U:@fklmucvl, U:@kaerqul.
k=0 k=0
Lemma 4.10. Let E = u(fT)? € gq. If u is semisimple, then the nilpotent part of f + E is (f + E), =
f]lﬁ@VZQ :
Proof. Recall that Vi 1 = V[D] (see (4.7) and Figure 2). Since u is semisimple, we have that V[D] =
Keru @ Im u. This implies, by (4.8), Vi=U@®U.

Clearly, (f + E)]lU@V22 = flggy,, and (f+ E)U C U. Denote A = (f + E)1y. Clearly, Since A
commutes with fﬂU@V>2 and f+F = A+f]lg@v>2. We claim that A is semisimple so that the semisimple
part of f+ Eis (f+ E)s = Aand (f + E), = f]lﬁeav>2
which has distinct non-zero roots in F, since u is semisimple. Let §(z) = ¢(«P*) which has also distinct
roots. Note that, if v € Imu, then A*P1 fhy = fhuFv, for every h, k € Z, . Hence, G(A) fhv = q(AP*) fhv =
f"q(u)v = 0. This implies that the minimal polynomial of A divides §(x). Since §(x) has distinct roots,
A is semisimple, as claimed. (I

. Let ¢g(z) be the minimal polynomial of ulyy,,,

Lemma 4.11. If E = u(fT)P € g4 is integrable for f, then u is semisimple.

Proof. Note that fly-, is nilpotent and commutes with f1y, + E = (f + E)1y,. Hence, for the Jordan
decomposition of f + FE we have

(f+E)s=(fly, + E)s and (f+E)y=(flv, + E)n + 1y, .
Since, by assumptions, f + FE is integrable, we then have

(fly, +E)s=fi+E and (fly, + E), = f> € ¢/, NEnd(V3),
with fi + fo = f1y,. By Lemma 4.1, we have that

D-1
fo=Y " RO, (4.23)
k=0

for some ¢ € End(V[D]). Moreover, by Definition (I3) we have that [E, fo] = Efy — ng = 0. Since
Efy € Hom(V[-D + 2],V[D]) and foE € Hom(V[-D],V[D — 2]), we have that Ef, = foll = 0.
Explicitly, using equation (4.23) we get Efy = EfPt(fT)P~! = ut(fT)P~! = 0, which implies

ut = 0. (4.24)

Let A= fi+F and let v € V[D]. We have, by equation (4.23), Av = (f+E— fo)v = fv— fov = f(1—t)v,
and repeating the same computation k times,

Afy = fF1—t)», 0<k<D. (4.25)
Letting k = D = p; — 1 in (4.25), and applying A one more time, we get
APy = (fi +E)fP(1 - t)Pv=ul —t)Pv=uv. (4.26)

For the last equality we used (4.24). Since A is semisimple, AP! is semisimple as well. Moreover, from
equation (4.26) we have that AP*V[D] C V[D] and AP*1yp) = u. As a consequence, u is semisimple,
proving the claim. ([

Combining Lemmas 4.10 and 4.11 we get the following result.

Proposition 4.12. E = u(fT)P € gg is integrable for f if and only if u is semisimple.
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Remark 4.13. Proposition 4.12 is in accordance with Theorem 3.15 and the results of Section 4.1.1: it
is well-known that the closed orbits for the action of SL,, on Mat,, x,, by conjugation are indeed the
semisimple elements of Mat,., x, .

4.2.5. Integrable E € gq—1. In this subsection we will use the decomposition (see (4.8)) V = Vo @ V>3,
where ng = ‘/1 > V2 and V>3 = @?:3 V;

Let, as in (4.19), E = a(fM)P~! + b(f")P € g4_1, where a € Hom(V[D — 1],V[D]) and b €
Hom(V[D],V[D — 1]). Since V[D] C Vi and V[D — 1] C Vi, we have (f + E)ly., = fly.,, which
is nilpotent. Let us also denote by

U=V & (@f’“lmb) CVer and U=(P f'KeracVs.

k=0 k=0
Proposition 4.14. An element E = a(fT)P~1 +b(fT)P € g4_1 is integrable for f if and only if ab =
Ay p), A #0.

Proof. First, assume that ab = Alyp), with A # 0. Let u € V[D — 1] = V 5 (see (4.7) and Figure 2).
Clearly, u = %bau + (u— %bau) € Imb + Kera. Moreover, if u € Imb N Kera, then au=0 and v = bw,
for some w € V[D], so that 0 = au = abw = Aw which implies w = 0, and hence uw = 0. This shows that
V[D —1] = Imb® Kera and, by (4.8), that Veo = U@ U. Clearly, f + E = (f + E)ly + (f + E)lggy,,-
If v € VID] C U, then

(f+E)YPv=fPv, (f+E)P T v=EfPv=0b(f")PfPv=0bv,
(f+E)?Pv= P, (f+E)*P v =EfP v =a(fT)P"1fP v = abv = \v.

Similarly, one can check that for every v € U we have (f + E)?P*1y = \v. Since A # 0, (f + E)ly =
fly + E is semisimple. Furthermore, we clearly have

(f + E)]lfj@v23 = f]l[']@v>3 s
which is nilpotent and commutes with (f + E)1y. Hence, the Jordan decomposition of f + E is
(f+E)s:f]lU+E7 (f+E)n:f]ll7€BV>3v

which omplies that f + F is integrable.

Conversely, if f + E is integrable, in particular g¥ must be coisotropic. Hence, by Proposition 4.8,
ab = Alyp), for some A € F. On the other hand, it must be A # 0 otherwise, as one can easily check,
f + FE is nilpotent. ]

The next result will be used in Section 4.5.1. We state and prove it here since we need the notation
introduced here.

Lemma 4.15. Let E = a(fT)P~1 +b(fT)P € g4_1. Assume that f + E is not nilpotent and that its
nilpotent part lies in g—_2. Then ab € End(V[D]) is a non-zero semisimple element.

Proof. Note that fly., is nilpotent and commutes with fly_, + E = (f + E)1ly_,. Hence, for the Jordan
decomposition of f + F we have

(f+E)s=(fly, +E)s and (f+ E)n = (fly, + E)n+ fly,,.

By assumption, fo = (fly_, + E)n € g—2. In particular, fo € gfg N (End(V1) @ End(V3)). Hence, by
Lemma 4.1, we have that
D-1
fo= 0 e+ ) (M), (4.27)
k=0
for some ¢ € End(V[D]) and s € End(V[D — 1]). Moreover, by Definition (I3) we have that [E fa] =
(@(fMP+0(fT)P) fo = f2 (alfT)P~ +6(fT)P)) = 0. Since a(fT)P~'fo € Hom(V[-D + 3], V[D]),
b(fT)P fo € Hom(V[-D +2], V[D —1]), foa € Hom(V[D — 1], V[D —2]) and fob € Hom(V[D], V[D — 3]),
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we have a(fT)P=1fy = b(fT)P fy = foa = fob = 0. Explicitly, using equation (4.27) we get b(fT)P fo =
bt(fT)P~1 =0, which implies

bt=0. (4.28)
Moreover, using again equation (4.27) we get fob = fsb = 0, which implies
sb=0. (4.29)

Next, let A= (f + E), and let v € V[D]. We have, by equation (4.27),

Av=(f4+E— fo)Jv=fo— foo=f(1—-t).
Repeating the same computation D times, we get (cf. equation (4.25)) APv = fPv, and applying A one
more time we get

APty = BEfP(1 - t)Pu=b(1 —t)Pv=1bv. (4.30)
For the last equality we used (4.28). By equations (4.27) and (4.30) we have

APT2y = (f + E — fo)bv = fbv — fsbv = f(1 — s)bv = fbu,
where in the last equality we used (4.29). Repeating the same computation D — 1 times we get
APy = P 1py .
Applying A again, we finally get
APy = BfP=1hy = abw . (4.31)

Since A is non-zero semisimple, A?P*+1 is non-zero semisimple as well. Moreover, from equation (4.31)
we have that A2PT'V[D] C V[D] and A?2P+!1yp; = ab thus showing that ab is non-zero semisimple and
concluding the proof. O

4.2.6. No integrable elements for f in W. In this subsection we will use the decomposition

V=V,®Vs, whereVy=EPV. (4.32)
i#£2

Proposition 4.16. There are no integrable elements for f in W.

Proof. By contradiction, let E = ¢(fT)P~! € W, where c is as in (4.22), be integrable for f. Since g¥ is

coisotropic, by Proposition 4.9 we have ¢ = 0. Clearly, f + E = (f + E)1y, + (f + E)ly,,, and f + E

preserves the direct sum decomposition (4.32). Note that (f + E)1y,, = fly,, which is nilpotent. On

the other hand, it is not difficult to check that if v € V5, then we have (f + E)?*?v = c?v = 0. Hence,

(f + E)1y, is nilpotent as well. This proves that f + F is nilpotent, contradicting the fact that it is
integrable. [

As a consequence of Propositions 4.12, 4.14 and 4.16 we get the following.

Corollary 4.17. If E € gi, k > 1, is an integrable element for f € gl or sly, thenk=d or k=d — 1.
In other words, f + E is integrable if and only if it is an integrable cyclic or quasicyclic element.

Remark 4.18. For g = gl, the triple (0, f, 1y) satisfies Definition (I1),(I2) and (I3). However, 1y € go.

4.2.7. Here we reformulate the results on quasi-cyclic elements in g = gl or sly in terms of polar linear
groups. First, note that g4, is naturally identified with the space

Hom(V[D — 1], V[D]) & Hom(V[D], V[D — 1)) (4.33)

(recall equation (4.19)) with the action of the group Z(s) defined by the natural action of GL,, x GL,,
(recall that dim V[D] = r; and dim V[D — 1] = r5). This linear group is polar since it is a theta group.
Proposition 4.14 says that an element E = ¢ @ ¢ from (4.33) is integrable if and only if

pop=ALl,,, AeF, X#O0. (4.34)
It follows that for existence of an integrable F in g4 it is necessary and sufficient that

T1 S T2 (4.35)
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Suppose that condition (4.35) holds. Then for the polar linear group GL,, x GL,, acting on (4.33)
one can choose a Cartan subspace C, consisting of the following matrices (in some bases of V[D — 1] and
VIDI]);

C={(A0)®(A0)T | A=diag(A1,...., A\r,) € Maty, xr, } -

Then condition (4.34) on an element from C' means that A = ... = A2 = A2, hence A\; = £ for all j.
Since the Weyl group of C' contains all sign changes of diagonal elements, up to the action of the Weyl
group and rescaling, C' contains a unique integrable element (1,, 0) @ (1,, 0)T. Due to Theorem 3.16 (b),
any integrable E € g4_1 is Z(s)-conjugate to C. Thus we obtain the following theorem.

Theorem 4.19. Let g = gly orsly andlet f € g be a non-zero nilpotent element of depth d, corresponding

to the partition (4.1).

(a) If there exists an integrable E € g;, j > 1, for the nilpotent element f, then j=d ord—1.

(b) The linear group Z(s)|ga—1 is polar.

(c) The element f admits an integrable element E € g4—1 if and only if 11 < ro. Provided that this
condition holds, there exists a unique, up to equivalence, integrable element E € gq_1 for f.

Remark 4.20. Tt follows from [EKV13] and the above discussion that for a nilpotent element f € sly there
exists I/ € g;, such that the element f + F is semisimple if and only if j = d and po =1, or j =d —1 and
r1 = r9 and pg = 1. This claim was stated in [DSKV13], where the associated integrable Hamiltonian
systems were also discussed.

4.3. General setup for symplectic and orthogonal Lie algebras. Recall from [CMG93] that nilpo-
tent orbits of spy (respectively son) are in one-to-one correspondence with partitions p of N as in (4.1)
with the property that if p, is odd (respectively even), then r, is even, 1 < a < s.

Let V be the N-dimensional vector space over F with basis {eq}ocr, where I is an index set for the
basis, which can be identified with the set of boxes in the pyramid associated to p (cf. Fig. 1). Given
a € I we let o € I correspond to the box in the same rectangle as « reflected with respect to the center
of the rectangle. For example, in Fig. 1, if « is the box labelled by 17, then o’ is the box labelled by 24,
while if « is the box labelled by 23, then «’ is the box labelled by 18.

Clearly, o = a.. Let n = %1, and choose a map € : I — {+1} with the properties that

€abar =1, €antp = —1, for «, 6 adjacent boxes in the same row. (4.36)

For example, let v : I — {1,2,..., N} be the ordering of the boxes of the pyramid going from right to left
and then from bottom to top. Then ¢, = (—1)"(®) satisfies the properties in (4.36) with n = (—=1)NV+1. Tt
is easy to see that for every choice of 1 such a map e : I — {£1} exists.

Let us define on V' a bilinear form (- | -) : V.® V — F letting

(eales) = €ada.pr a,pel. (4.37)
Lemma 4.21. The bilinear form (4.37) satisfies (v,w € V')
(v]w) = n{wlv) .
Proof. From equations (4.36) and (4.37) we have
(eslea) = €800 8 = €arbur.p = Neada,pr = Nieales) , a,Bel.
(]

Given A € EndV, let us denote by AT its adjoint with respect to the bilinear form (4.37). By Lemma
4.21 we have that

g={AcEndV |A=—A"} ~spy (resp. soy),n=—1 (resp. n=1). (4.38)
We denote by E, g € EndV, «, 3 € I, the elementary matrices: E, ge, = 0g€q-

Lemma 4.22. We have that (E,5)' = €aegEprar, a, B € 1.



INTEGRABLE TRIPLES IN SEMISIMPLE LIE ALGEBRAS 25
Proof. By a straightforward computation we get («, 3,7v,n € I)
(Ea,peqylen) = dpy(€alen) = €adp 00,y = €a€aeydp0a,y
= €a€p0a,y (€y]€s) = €atpley|Eg arey) .

The claim follows. O

For every «, 3 € I, we let
Fap=FEap—€a€pEp o €. (4.39)
Note also that
Fgrar = —€aepbap,  afel. (4.40)
Lemma 4.23. Let A = Zaﬁel o, g0 € EndV.

(a) A€ gifand only if ag o = —€n€gaa. 3, for every a, 5 € I.
(b) If A € g, then

1
A= 5 Z[;aa’BFa’ﬁ .

Proof. Straightforward. ([l

The following commutation relations hold («, 3,7v,n € I):
[Fa,8, Fyn] = 0y,8Fam — 0naFpy — €a€sbar yFiarn + €a€pdn g Fyar . (4.41)

If we depict, as in Section 4.2.1, the basis elements of V as boxes of a symmetric pyramid associated to
the partition p (cf. Fig. 1), let, as usual, f be the endomorphism which corresponds to "shifting to the
left". Then, f € g. Indeed, using the second property in (4.36), we have f =3" . ;s Eo 5 = %Zakﬁ Fop.
Note that the "shift to the right" operator f7 lies in g as well.

As in Section 4.2.1, let h € End V be the diagonal endomorphism of V' whose eigenvalue on e, is the
x-coordinate of the center of the box labeled by « (see Figure 1) which we denote by x,. We then have
the h-eigenspace decomposition of V' (4.4) where D = p; — 1 is the maximal eigenvalue of h.

Note that z,» = —x, and we have

h = ZxaEa,a = EZxaFa,a €g.
acl 2 acl

Clearly, the matrices Fy, g are eigenvectors with respect to the adjoint action of h:
(ad h)Fa”@ = (xa — xB)FOl,B . (4.42)

This defines a Z-grading of g, given by the ad h-eigenspaces as in (1.1):

gr = Spang{Fu g | o —xg =k}. (4.43)

Recalling the definition (4.8) of the spaces V4 ;, we have an isomorphism fPi : V_; -V, ;,i=1,...,s.

Then the bilinear form (4.37) induces non-degenerate bilinear forms 5;(-, -) : V4, QVy,;, = F,i=1,...,s,
defined by

Bi(v,w) := (v|fPw), v,weVy,. (4.44)

Using Lemma 4.21 and the fact that fT = —f, we have (v,w € V, ;)

ﬁi(va U}) = (_1)D177ﬁ1(wa U) . (445)
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4.4. Integrable triples in g = spy. For n = —1, the Lie algebra (4.38) is g ~ spy. In this case the
depth of the grading (4.43) is d = 2D = 2p; — 2. To see this, we describe explicitly the space gap (clearly,
gr =0, for k> 2D). Let A € Hom(V[-D],V[D]), and let A = AfP € End(V[D]). We have

Bi(Av, w) = (AfP] fPw) = (=) (v [P AT [Pw) = (=1)P 1 (v] ATw)
Hence, the adjoint of A € End V[D] with respect to 3; is
A* = (—1)P AT, (4.46)
As a consequence, we have a bijection
p~{BecEnd(V[D])| B*=(-1)"B}, A~ A. (4.47)

Using equations (4.45) and (4.47) we have that, if p; is even, then g4 is identified with the space of
selfadjont (with respect to the symmetric bilinear form £ in (4.44)) endomorphsims of V[D], while if p;
is odd then g4 ~ sp(V[D], 51).

4.4.1. The centralizer 3(g>2). From Lemma 4.23 we have that E € g can be decomposed as
E= Y capFop, Coroar=—€ahlayp. (4.48)
To—wp=k
Proposition 4.24. The centralizer of g>2 in g s 3(g>2) = W @ ga—1 © ga, where
W = Spang{Fop | o =D — l,25 =—D +1} C gq—2.
Proof. As in Lemma 4.6 we have 3(g>2) C g>0. Let &, 3 € I be such that z5 = D and 5 <D —2 (the

box 3 is completely at the left of the box @). Then F55 € 9>2. Hence, letting E as in (4.48), and using
the commutation relations (4.41) and equation (4.40) We get

0=[Fs3 E] = Z caplFsg Fagl = Z 2¢55F5p — Z 2cw B - (4.49)
To—rg=k Tg—wg= =k
If £ > 1, then the condition z, — D = k > 1 is empty. Hence,
Y. capFap =0,
;E[;*:v/g:k)

which implies that that cog = 0 if 2z, < D — 2. Using the second equation in (4.48), we have also that
cap =0if zg > —D + 2. If k = 0, a similar argument to the one used in the proof of Lemma 4.6 shows
that equation (4.49) implies F = 0. As a consequence, E € W @ gyg—1 D gq4. On the other hand, by
Proposition 4.7, we have
W& ga1@ga=3((0ly)>2) Ng C3(g>2).
O

Recalling the definition of integrable triples given in the Introduction, by Proposition 4.24, if E is an
integrable element for f, then £ € (W @ ga—1 @ ga) N g>1 (note that g4—1 ® ga C g1 for p1 > 2, and
W C g>; for p1 > 3).

4.4.2. The coisotropy condition. An element E € gg_; can be uniquely written as £ = A — A, where
A € Hom(V[-D + 1], V[D]). Let

= AfP7TATFP € End(V[D)). (4.50)

Proposition 4.25. Let E € g4_1. The subspace g¥ is coisotropic with respect to the bilinear form (1.2)
if and only if a = 0.

Proof. By Lemma 4.3 with B = —AT, we have that ad E o (ad f)"! ocad E|,_, = 0 if and only if
[a, (f1YPU] =0, forevery U €g_g4.

g-—

| B

Note that g 4 = gq and that (fT)P
that (f7)Pg_q = {B € End(V[D])

4 C End(V[D]). By the description of g4 given in (4.47) we have
* = (=1)P* B}, where the adjoint is with respect to the bilinear
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form f; defined in (4.44). Recall that a € End(V[D]). Using equation (4.46), its adjoint with respect to
the bilinear form f; is

a* = (—1P)(AfP-LANY fP = —a.
Hence, by (4.47), if p; is odd, then a = 0 since it lies in the center of sp(V[D], 51). On the other hand, if
p1 is even, a = 0 since it is a skewadjoint operator commuting with all selfadjoint operators. 0

Now, let E € W = Spang{Fus | to = D — 1,23 = —D 4+ 1} C gg—2. As in Section 4.2.3 we write
E =c(fT)P~1 where ¢ € End(V[D — 1]).

Proposition 4.26. Let E = c(fT)P~1 € W. The subspace g¥ is coisotropic with respect to the bilinear
form (1.2) if and only if ¢ = 0.

Proof. Same as the proof of Proposition 4.9. (]

4.4.3. Integrable E € g,. Recall from Section 4.2.4 that E = u(fT)?, where u € End(V[D]). The following
result follows from Lemmas 4.10 and 4.11.

Proposition 4.27. Let g = spy and f its nonzero nilpotent element of depth d. Then E = u(fT)P € g4
is integrable for f if and only if u is semisimple.

4.4.4. No integrable elements for f in gq—1 ® W. Recall the element a, defined by (4.50) for F € gq4-1,
and the element ¢, defined by (4.22) for E € W.

Proposition 4.28. There are no integrable elements for f in gg_1 & W.

Proof. By contradiction, let E € g4_1 be an integrable element for f. Since g¥ is coisotropic, by Propo-
sition 4.25, we have a = 0. Clearly, f + E = (f + E)Ly_, + (f + E)1v.,, and f + E preserves the direct
sum decomposition V' = V¢a @ V>3. Note that (f + E)Ly., = fly., is nilpotent. On the other hand it
is not difficult to check that (f + E)*’~'v = av = 0 for every v € Vo. Hence, (f + E)1y,, is nilpotent
as well. This proves that f 4+ FE is nilpotent, contradicting the fact that it is integrable. The proof of the
claim for £ € W is the same as the proof of Proposition 4.16. O

As a consequence of Propositions 4.27 and 4.28 we get the following.

Corollary 4.29. Let g = spy and f its non-zero nilpotent element. The element f + E, where E € gy,
k > 1, is integrable if and only if f + E is an integrable cyclic element.

4.5. Integrable triples in g = soy for nilpotent elements of even depth. Recall that for n =1 in
(4.36), the algebra (4.38) is g ~ sop.

Lemma 4.30 (cf. [EKV13]). The depth d of the grading (1.1) for g = soy is
(i) d=2D formr >2;
(it) d=2D — 1 forp; odd, 1 =1, po =p1 — 1;

(iii) d =2D —2 forpy odd, r1 =1, po < p1 — 2.

Proof. As in Section 4.4, let A € Hom(V[~D],V[D]), D = p; — 1, and consider A = AfP ¢ End(V[D]).
Then, the adjoint of A with respect to the bilinear form 3; defined in (4.44) is given by equation (4.46)
and the space gap is described in (4.47). Using equation (4.45) we have that, if p; is even (hence 7y is
even), then gop is identified with the space of selfadjont (with respect to the skewsymmetric bilinear form
B1) endomorphisms of V[D], while if p; is odd then gop ~ so(V[D], 51). It follows that the depth of the
grading (4.43) is d = 2D when r; = dim V[D] > 2, proving case (i).

If 11 = 1 (hence p; is odd), then gop = {0} and d < 2D. Consider first the case when ps = p; — 1.
In this case, V[D] is one dimensional and V[—D + 1] is an ry-dimensional vector space. Furthermore,
gap—1 = {A— AT | A € Hom(V[-D + 1],V[D])} ~ V[-D + 1]*. Hence, in this case the depth of the
grading (4.43) is d = 2D — 1, proving case (ii).

We are left to consider the case 11 = 1 and ps < p; — 2. In this case d = 2D — 2. Indeed, F,ll,%l_1 €
g2p—2, where oy is the rightmost box of the pyramid (which is in the bottom row) and a, —1 is the second
leftmost box of the bottom row, is a non-zero element. (I
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4.5.1. Even depth d =2D.
Proposition 4.31. We have that 3(g>2) = W @ ga—1 P ga, where
W =Spanp{Fop | o =D —l,25 = —-D+1} C gq—2.
Proof. Similar to the proof of Proposition 4.24. O

Proposition 4.32.
(i) Let, as in Section 4.4.2, E = A — A" € g4_1, with A € Hom(V[-D],V[D — 1]), and let a =
AT fP=LAFP € End(V[D]). If p1 is even and rq = 2, then the subspace g¥ is coisotropic with respect
to the bilinear form (1.2). In the other cases, gt is coisotropic if and only if a = 0.
(ii) Let E € W and let, as in Section 4.4.2, c = EfP~1 € End(V[D—1]). The subspace g¥ is coisotropic
with respect to the bilinear form (1.2) if and only if ¢ = 0.

Proof. As in the proof of Proposition 4.25 we have that ad E o (ad f)~! oad E|; , = 0 if and only if
[a, (fT)PU] = 0, for every U € g_4 and that a € End(V[D]) is skewadjoint with respect to the bilinear
form (4.44). Note that g_gq = g4 and that, by equation (4.47), we have (fT)Pg_4 = {B € End(V[D]) |
B* = (=1)"B}End(V[D]) C End(V[D]). If py is odd, then a = 0 since it lies in the center of so(V[D], 81).
On the other hand, if p; is even (this implies r; even), then a is a skewadjoint operator (with respect to a
skewsymmetric bilinear form) commuting with all selfadjoint operators with respect to the same bilinear
form. This gives no condition on a when r = 2, but implies that a« = 0 for r; > 2. This proves part i).
The proof of part ii) is similar to the proof of Proposition 4.9. [

Let p; be even and r; = 2 = dim(V[D]). Let us choose a basis {u,v} of V[D] such that

Bu(u,v) = (ul fPv) =1,

where the bilinear form 8; on V[D] defined in (4.44) is skew-symmetric by (4.45). Then, clearly { f*u, fhov |
0 < h,k < D} is a basis of V. In particular V[—D] = FfPu @ FfPv.

For every w € V| let us denote by ¢(w) : V' — F the linear functional ¢(w)(wy) = (w|wy), wy € V.
Hence, we can write

A=z¢(v) +yd(u), (4.51)
for some z,y € V[D — 1]. Then
AT = up(y) +vo(z). (4.52)
Indeed, using the fact that £ (wy,w;) = 0, for every wy € V[D] we have
(AfPulw) = —(zlw) = (fPulATw),  (AfPv|w) = (ylw) = (fPv[ATw).

Hence, in this case, F can be uniquely written as

E = 26(0) + yo(u) — ub(y) — v6(z), 2,y € VID—1]. (4.53)
Lemma 4.33. With respect to the basis {u,v} of V[D] we have that
_ At gD=1 44D _ —Ba2(z,y) 52(%9))
a=ATfP=1AfD = (—Bz(m,w) ) (4.54)

where By is defined by (4.44).
Proof. We have, by (4.51) and (4.52),
a(u) = ATFPAfPu = ATFP7 (o] fPu)z + (ul fPu)y)
— —ATFP e = — (P 2+ (e f P e))
= —B2(y,x)u — Ba(z, x)v,
which gives the first coloumn in the matrix (4.54). Similarly for the second column. O

Proposition 4.34. Let E € g4_1 be as in (4.53) and let a € End(V[D]) be as in (4.54). If a is a non-zero
semisimple element, then (f + E), € g_a.
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Proof. By assumption, a is a non-zero semisimple element. In (4.54) a is represented by a 2 x 2 traceless
matrix. Hence, it is non-zero semisimple if and only if det(a) # 0. This implies that z and y are linearly
independent. Let
U={weVID-1]| fa(z,w) = fa(y,w) =0} C V[D —1].
Since (33 is non-degenerate and det(a) # 0 it easily follows that
VID-1]=FzaFyaU.
As a consequence, applying f repeatedly, we get
Vo=V, V, U,
where
Vo =0 Fffe, V=l (Ffly, U=e ) fU.
Note that (f + E)lyev.,=fluevs, is nilpotent and commutes with (f + E)1lv,ev,ev,. Moreover, it is
not difficult to check that

(f + B)*PMyw = aw, weVieV,aV,. (4.55)

Let ¢(t) denote the minimal polynomial of a, which has non-zero distinct roots since a is non-zero semisim-
ple. Equation (4.55) implies that the minimal polynomial of (f + E)Llv,gv,ev, divides ¢(t?P*!) which
obviously has also distinct roots. Then (f + E)lv,gv,ev, is semisimple. In conclusion, the Jordan
decomposition of f + E has (f + E)s = (f + E)lv,gv,ev, and (f + E), = fluev., € g-2- ]

The next result characterizes integrable elements for soy when the depth of the grading is d = 2D.

Theorem 4.35. Let g = soy and let f € g be a non-zero nilpotent element of depth d =2D, D = p; — 1.

(i) Let E € gq and let, as in Section 4.2.4, u = EfP € End(V[D]). Then E is integrable for f if and
only if u is semisimple.

(ii) Let E € ga_1 and let, as above E = A — At where A € Hom(V[-D],V[D — 1]), and a =
ATfP=1AfP ¢ End(V[D]). Then E is integrable for f if and only if py is even, 11 = 2 and
deta # 0.

(iii) If E € W, then E cannot be integrable for f.

Proof. Part i) follows by Proposition 4.12. If py is even and r; = 2 part ii) follows from Proposition 4.32i),
Lemma 4.15 and Proposition 4.34. The remaining claim in part ii) and iii) can be proved in the same way
as for the proof of Proposition 4.28 using Proposition 4.32. O

Remark 4.36. We have a non-zero E € g4—; if and only if po = p; — 1 (otherwise dim gy—; = 0). In this
case, if ro = 1, there are no elements E € g4 satisfying the assumption of Theorem 4.35ii). Indeed,
since dim V[D — 1] = ro = 1, x and y are linearly dependent thus a defined in (4.54) is nilpotent.

4.5.2. Even depth d = 2D — 2.
Proposition 4.37. The centralizer of g>2 in g is 3(g>2) = gi—1 D Ga-

Proof. Clearly, 3(g>2) C g>0. By degree considerations, 3(g>2) D ga—1 ® ga. On the other hand, let 1 € I
be the label of the rightmost box of the pyramid associated to p (note that 1 = D) and p; € I be the
label of the leftmost box (note that x,, = —D). Let also 3 € I be such that z5 < D — 2 (the box B is
completely at the left of the box 1). Then Fi5 € g>2. Hence, letting £ as in equation (4.48), using the
commutation relations (4.41), the second equation in (4.48) and (4.40), we have that

0=[F5,El= Y caplFig.Fapl= >, 235Fi5— > 2carF,z. (4.56)
To—Tg=k a:/gfz[g:k: ro—D=k

If k > 1, then the condition zo, — D =k > 1 implies that z, > 1 4+ D, which is empty. Hence, cop = 0 if
To < D —2and 8 # p; (since Fy,, = 0 by (4.40) and (4.36)). Using the second equation in (4.48), we
have also that ¢, =0if o # 1 and x5 > —D + 2. Since V[D — 1] = V[-D + 1] = 0, we have

E = Z CIBFIB~
325=D—]€
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Let then assume that d,@ € I are such that x5 — rg = 2. Then
0= [Fdév E] = 25Ia,D7kcl,&F1’B . (457)

If 25 =D —k, then —D < z3 < D —2— k. Hence, equation (4.57) implies that ¢34 = 0 for x5 > —D + 3,
thus showing that £ € gq ® gq_1-
If £ = 0, a similar argument to the one used in the proof of Lemma 4.6 shows that £ = 0. O

In the sequel, we are going to use the following basis of V5. Let v € V4 1 be such that 51 (v4,vy) = 1.
Then we consider the basis {fkv+}kD:0 of V1. We also denote v_ = fPu,.

An element E € gy can be uniquely written as £ = A — Af, for some A € Hom(V[-D],V[D — 2]).
Note that V[D] = Fvy and V[D — 2] = Ffv; & V4 2. Hence,

E=(a+ Afvy)d(vy) — vi(éla) + Ad(foy)), (4.58)

for some A € F and a € V, 5.
Let now E € gq—1 instead. It can be uniquely written as £ = B — Bf, where B € Hom(V[-D], V, 3).
Hence, B = bp(v;.), for some b € V 3, and we can write

E=bp(vy) —vip(b). (4.59)
We also set
B = (b fP3b). (4.60)

Proposition 4.38. Let E € gq_1 be as in (4.59) and let 3 be as in (4.60). The subspace g¥ is coisotropic
with respect to the bilinear form (1.2) if and only if § = 0.

Proof. Let E = B — Bt € gg_1 and let U = X — XT € g4, for some X € Hom(V[D],V[-D +2]). Recall
that B = bp(vy). Hence, 1y B = 0. Moreover, BT = v;$(b), Hence, Bf1+y = 0. By Proposition 3.13
and Lemma 4.5 we have that g¥ is coisotropic if and only if

(fIP2XB P B = B P AXT ()P =0, (4.61)

for every X € Hom(V[D],V[-D + 2]). Note that the middle term in equation in (4.61) is the ad-
joint of the first term. Hence, g¥ is coisotropic if and only if (fT)P"2XBffP=3B = 0 for every
X € Hom(V[D],V[-D + 2]). Then, we have

0= ((NHP2XBIfP72B) (v-) = BU/MP 72X (v4).

Since X is arbitrary we get 5 = 0. O

The next result characterizes integrable elements for soy when the depth of the grading is d = 2D — 2.

Theorem 4.39. Let g =soyn and let f € g be a nilpotent element of even depth d =2D —2, D =p; — 1.

(i) Let E € g4 be as in (4.58), where A\ € F and a € V, 2, and let also o = (a|fP~2a). E is integrable
for f if and only if either a« 20, or a =a =0 and XA # 0.
(i) There are no integrable elements for f in gq—1.

Proof. In order to prove part (i) one can use the same arguments that will be used for the proof Theorem
5.6 (ii) (in fact, part (i) of the present Theorem corresponds to the special case b = 0 of Theorem 5.6 (ii)).
Let us then prove part (ii). Let E € gq—1 be as in (4.59) and let § be as in (4.60). If E is integrable for
f, then g must be coisotropic. By Proposition 4.38, then 3 = 0, and, as one can easily check, f + E is
nilpotent. This contradicts the fact that E is integrable and proves part (ii). O

Remark 4.40. Theorem 4.39 (i) follows from Theorem 3.15 since in this case Z(s)|gq = st(SO,.,) & 1 (see
Table 1).
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4.5.3. Let us reformulate the results, obtained in Subsection 4.5 about integrable quasicyclic elements in
terms of polar linear groups.

First, actions of centralizers of the sls-triples for nilpotent elements in simple Lie algebras of classical
types on gq_1 are given in the following table:

g partition d rank 3(5)|gd—1
sly
P, (pr — 1)), ) 2p1 —2 | min(ry,r2) | D (st(sh,)* @st(sl,,) @ F)
SpN
(pgh)7 (pr — 1)) ), p1 even | 2p; — 2 | min([Z], 22) st(s0,,) @ st(sp,.,)
P (pr = 1)), ), piodd | 2p; —2 | min(%, [2]) st(sp,,) ® st(so,,)
sop
(pgﬁ)v (p1 — 1)(”), ), p1 even | 2p; — 2 | min(7, [%2]) st(sp,., ) ® st(so,,)
(pgrl), (pr — 1)), ), 71 >1,podd | 2p; —2 | min([4], %) st(s0,,) @ st(sp,.,)
(p1, (p1 — 1)), (py —2)(), ), py odd | 2p; — 3 242 N’ st(sp,,) @ st(so,,) @ 1
(p1, (p1 —2)"), (p1 —3)"), ), p1 odd | 2p — 4 0 st(sp,.,)

TABLE 2. Actions of centralizers of the sly-triples for nilpotent elements in simple Lie
algebras of classical types on gq_1

In Tables 2 and 3, for a G-module V', D(V') stands for the G-module V @& V*.

Cartan subspaces for the entries in Table 2 are as follows.

e For D (st(sl,,)* @ st(sl,,) ® F): let us identify the representation space with st(sl,,) ® st(sl,,)* +
st(sl,, )* ®st(sl,,); then, a Cartan subspace is spanned by u; ® v} +uf @ v;, i = 1,...,min(r1,72),

where wu;, uf, resp. v;, v} are dual bases of st(sl,,) and st(sl,,) respectively.

o For st(§02,4possibly 1) @ St(spy,): let uq, ..., Wy, (possibly ug,) u—m, ..., u—1 be a basis of
[F2mpossibly 1 and vy, ..., ¥n, U—n, ..., v1 be a basis of F2"; then, the subspace C spanned by
{u; @v; +u_; ®v_; | i =1,...,min(m, n)} is a Cartan subspace.

e For A\’ st(sp,.,): as in subsection 4.1.3, case (d).

e For st(so,,): as in subsection 4.1.3, case (a).

Theorem 4.41. Let g = sopn, let f € g be a non-zero nilpotent element of even depth d and let p =

(pgh),pé”), ...) be the corresponding partition. Then

(a) All the linear groups Z(s)|gq—1 are polar, and described in Table 2.

(b) There exists an integrable quasi-cyclic element for f if and only if p1 is even, 11 = 2, and py = p; —1,
ro = 2. Such an element is the unique, up to equivalence, element f+FE, where E € gq_1 is semisimple
with respect to Z(s).

Proof. (a) follows from Table 2, since all these linear groups are theta groups.

In order to prove (b), note that in the case in question, Z(s)|gs—1 = st(Sp2) ® st(SO,,), for which the
rank equals 1. This shows that, up to equivalence, there is at most one integrable quasi-cyclic element.
Its existence follows from Theorem 4.35 (ii). O
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4.6. Integrable quasi-cyclic elements in exceptional Lie algebras for nilpotent elements of
even depth.

g nilpotent f ‘ d ‘ 3(8) | 9d—1 ‘ rank ‘ quasi-cyclic f + E, F € g4—1 | quasi type
Gy A =0 | 2 | S35t (slo) 1 3 semisimple semisimple
Fy Ay 1—o=po—o | 2 /\g st(spg) 1 3 semisimple semisimple
Ay o—o=>o—1 | 2 | D(st(sly)) 1 nilpotent only semisimple
Eg Ay 0-0-0-0-0 2 | A\’ st(slg) 1 3 semisimple semisimple
2A, 1-0- ;) -o-1 | 2 | spin; ®st(soz) 2 3 semisimple semisimple
Ay + Ay 1-0- ; -o-1 | 4 | D(st(gls)) 1 3 semisimple semisimple

Ay +2A4 0o-1- % —1-0 | 4 | st(so2) ®st(sly) 1 nilpotent only mixed
Ay + Ay 1—1— ; —1-1 | 8 | st(so2) 1 3 semisimple semisimple

1

E~ A, -0-0-0-0-1 2 | spings 1 3 semisimple semisimple
2A4 —1-0- ; —o-o | 2 | sping ®@st(sly) 2 nilpotent only semisimple
Ay + Ay —1-0- ; -o-1 | 4 | D(st(gly)) 1 3 semisimple semisimple

Ay +2A4 -0-o0- [}] —o—o0 | 4 | st(s04) ®st(sly) 1 nilpotent only mixed
As+ Ay —1-0- ; —o-o0 | 6 | D(st(gly)) 1 nilpotent only semisimple
A+ Ay -1-0— [}] -o-1 | 8 | st(so02) 1 3 semisimple semisimple
Eg Ay 1-0-0-0- ; —0-0 | 2 | 56 1 3 semisimple semisimple
2A7 o0-0-0-0- ; —0-1 2 | spin;s 2 nilpotent only semisimple
Ay +A; 1-0-0-0- ; —o—1 | 4 | D(st(slg)) 1 3 semisimple semisimple

Ay +2A1 o-0-1-0- ; —o-o0 | 4 | spin, @st(sly) 1 nilpotent only mixed

Ay +3A, 0—0—0—0—;—1—0 4 | st(Gz) ® st(sls) 1 nilpotent only mixed
As+As o-o0-1-0- ; —o-1 | 6 | st(sp,) ®st(soz) | 1 nilpotent only semisimple

As + Ay + A 0_0_0_0_;_0_0 6 | st(sly) @ st(so3) 1 nilpotent only mixed
Aj+A1 1-0-1-0- ; —o-1 | 8 | st(so02) 1 3 semisimple semisimple

Ay +2A4 1—0—0—0—?—0—0 8 | D(st(gly)) 1 3 integrable mixed

Ay +As+AT o- -1-0-;-1-0 8 | §3 st(slz) 1 nilpotent only mixed
D7(az) 1-o0-1-0- ; -o-1 | 14 | st(soz) 1 3 semisimple semisimple

0

TABLE 3. Quasi-cyclic elements, attached to odd nilpotent elements f of even depth in

exceptional g with Z(s)|gq—1 having non-trivial invariants

By the quasi type in the last column we mean whether f + F for a generic E € g4 is semisimple or
mixed (meaning neither semisimple nor nilpotent).
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g | nilpotent f d|3(s) | ga—1 g | nilpotent f d|3(s) | ga—1
Fy A2+K1 o—o=1—o0| 4 St(ﬁ[g) Eg A 2-0-0-0-0-0-1 610
By 2—o0=0—1]6|0 0
Cg((lq) f—o=>1—0]| 6 St(ﬁ[g) Az + A 1—0—1—0—?—0—0 6 St(ﬁ[g)
% (]
Cs 1—o=—2 10 St(ﬁ[z) A3 +2A7 1-0-0-0-0-1-0 |6 st(ﬁlg)@st(sp4)
Eg As 1-0-0-0-1 |60
! D4(a1)+A1 0-1-0-0-0—0-0 | 6 St(S[g)@St(Sb)@St(ﬁ[g)
As+ Ay o-1-0-1-0 | 6 [st(sly)
{ Dy+ Ay 2-1-0-0-0-0-0 |10]0

A5 2-1-0-1-2 |10 St(ﬁ[g)

1‘ D5(a1) 2=1=0—-0—

DS((Ll) 1-1-0-1-1 [10]0
; A5 1-0-1-0—

E7 A3 0—1—0—?—0—2 6|0 D5(d1)+A1 5000

A3+ Ay o-0-0-1-0-1 6 St(s[g)

10|10

—o-2 [10 St(s[g)

-o0-0 |10]0

O=r ©O=0 ©0=0 k=0 R=0 o=0
|
o
I
-

As +A; 1-0-0-0-1-0-1 |10 St(ﬁ[g)@st(slz)

Az +2A; 1—0—1—?—0—1 6 st(slg)@st(slg) D5(a1)+A2 oo

0
D4(a1)+A1 1—0—0—?—1—0 6 St(s[g)GBSt(E[z) De(a2) o-1-0-0-

—1-0 [10 St(s[g)

—1-0 [10 St(ﬁ[z) @St(E[z)

©=0 O=r ©0=0 k=0 O=0 o=k
|
o
I
-

!
Dy + Ay R e e Eo(as) + Ar o-1-o0-1- 10{st (s12)
Ds(a1) prmomyons 1010 Er(as) o—o—1-0-1-0-0 |10|st(sl2)
As 0—2-0-3—0-1 10|st(sl2) Ds4+ A 2-1-0—-1-0—0—1 |14]0
As + A 2-1-0-1-0-1 10|st(sl2) De(a1) 2=1-0-0-g1-0 14]0
!
De(az) 2-0-1-0-1-0 |10|st(sl2) Ag+ Ay 0—0—1—0—;—0—1 14 st(sly)
!
Ds + Ay 0—1—1—?—1—2 1410 E7(a4) 2_0_1_0_;_0_0 14]0
Ds(a1) 2-o0-1-0-1-2 |14)0 D 2_1_0_0_;_1_2 18(0
Dg z—z-l-;-l_z 140 Eo(a1) + Ay 2_0_1_0_;_0_1 180
1 Er(as) 2_0_1_0_;_0_2 18(0
Es+ A, 2_2_1_0_?_0_1 22|0
Er(az) 2_2_0_1_;_1_0 22|0
Dr 1momamamgmios [22]st(slo)
Er(a1) 1_0_1_1_%_1_2 260
E; 2_2_2_1_%_1_2 34/0
!

TABLE 4. Odd nilpotent elements f of even depth in exceptional g, for which Z(s)|gq—1
has only trivial invariants

4.6.1. Nilpotent elements with label A;. A representative for the orbit with label A; is given by a negative
root vector e_, — arbitrary for type E and a long one for F, and Gs. Depth is 2, and a 1-dimensional
Cartan subspace for 3(s)|g; is spanned by the vector E = v* + v, where v*, resp. v, is the highest, resp.
lowest weight vector. Moreover FE satisfies the coisotropy condition, and the quasi-cyclic element f + F
is semisimple.

4.6.2. Nilpotent element with label Kl in Fq. A representative f for Kl is given by a short root vector.
Depth is 2, with g; of dimension 8. The representation 3(s)|g1 is the direct sum V = V4 @ V, of two
standard representations of sly, and a Cartan subspace is spanned by E = v! + vq, where v! is a highest
weight vector for V7 and v, a lowest weight vector for V5. This E does not satisfy the coisotropy condition,
which implies that all quasi-cyclic elements are nilpotent.
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4.6.3. Nilpotent element with label 2A; in Eg. A representative f for 2A; is given by the sum of any
two commuting root vectors. Depth is 2, and 3(s)|g1 is as in Example 2.10, so we can choose a basis
{E1, E5} of a Cartan subspace as there, with Ey = v +v_ and F3 = v~ + v,. Coisotropy condition for
E = x1E) + 22 E5 turns out to be 2% = 23. We then check that both f + 2(E; + Es) and f + 2(E; — E»)
are semisimple for x # 0. These are all integrable quasi-cyclic elements f + E for F from the Cartan
subspace.

In fact these two solutions E; + E5 and E; — E5 are equivalent under the action of Z(s). This can be
seen as follows. Take

f = fu{u + le?Qla
then
E = 600801 + 611}107 E, = 611(1)00 + 801%21-

Consider the element H of the Cartan subalgebra determined by the following values of simple roots
on it:
02 0-20
0

Its eigenvalues on g are —2,0,2, so it defines a Z-grading g = g_o @ go @ g2 of g. Moreover f, Fy € go,
611(1]00 € g2 and 601%21 €g_o, i e

[Ha f] = [H7 El] =0, [H; 611(1]00] = 2611[1)007 [H, 301%21] = _2601%21~

Hence in the corresponding Z/2Z-grading g = g ®g', where g° = go and g* = g2®g_», one has f, E; € g°
and E; € g'. Let ay be the inner automorphism corresponding to this Z/2Z-grading, i. e. ay(z) = x
for z € g° and ay(z) = —x for x € g'. Then ay(f) = f, ay(F1) = By and ay(Ey) = —FE,. Hence
apg(E1 + Ey) = E1 — Ey and ag(E; — Ey) = E1 + Es, so ay interchanges the above solutions.

4.6.4. Nilpotent element with label 2A1 in E7. Also here, a representative f for 2A; is given by the sum
of any two commuting root vectors. Depth is 2, and 3(s)|g; is as in Example 2.11, so we can choose a
basis {v1,v2} of a Cartan subspace as there, with v; = vp +v_p and vo = €_. €y, UA + €, EeptesU—A-
Coisotropy condition for E = z1v1 + x9vy turns out to be 2 + 23 = 0 and 22 — 23 = 0, which implies
that all quasi-cyclic elements are nilpotent.

4.6.5. Nilpotent element with label 2A; in Eg. As in two previous cases, a representative f for 2A; is
given by the sum of any two commuting root vectors. Depth is 2, and 3(s)|gy is spinys, so, as in [GV7S,
Proposition 10], we can choose a basis {v1,v2} of a Cartan subspace as there, with v1 = vpA+v_, and vy =
€, €_gy€_gy UN + €c,€c,€e,U_p, Where A is the highest weight. Coisotropy condition for E = ziv1 + 2209
turns out to be, as in the previous case, 23 + 22 = 0 and 22 — 22 = 0, which implies that all quasi-cyclic
elements are nilpotent.

4.6.6. Nilpotent elements with label Ao + Ay in Eg, E; and Eg. Here depth is 4, the algebra 3(s) is gl
for Eg, gl, for E7 and slg for Eg. The representation 3(s)|gs is a direct sum Vi @ Va of two copies of a
standard representation of slg for Eg, of sl for E7 and of slg for Eg. A Cartan subspace of g3 is spanned
by E = v! + vy, where v! is a highest weight vector for V; and vy is a lowest weight vector for V,. Each
of these FE satisfies the coisotropy condition, and the quasi-cyclic element f + FE is semisimple.

4.6.7. Nilpotent element with label Ay + 2A; in Eg, E7 and Eg. Depth is 4. Here 3(s)|gs is V ® st(slz),
where V is st(s02) for Eg, st(s04) for E7 and spin; for Eg. In all three cases a Cartan subspace is spanned
by F = v* ® v, + v, ® v*, where v* denote highest weight vectors and v, the lowest weight vectors, both
for V and for st(sly). This E does not satisfy the coisotropy condition, so that all quasi-cyclic elements
are nilpotent.

4.6.8. Nilpotent elements with label Ay + Ay in Eg, E7 and Eg. Depth is 4. The representation 3(s)|gs
is 2-dimensional, it is st(so2) with a 1-dimensional Cartan subspace spanned by F = v* + v,, where v*,
resp. v, is the highest, resp. lowest weight vector. This F satisfies the coisotropy condition, and f + F
is semisimple.
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4.6.9. Nilpotent elements with label A3 + Ay in E; and Eg. Depth is 6. The algebra 3(s) is sls plus a
1-torus for E7 and sp, plus a 1-torus for Eg. The representation 3(s)|gs is direct sum V, @ V_ of two copies
of a standard representation, with the torus acting as +1 on V.. It has a 1-dimensional Cartan subspace
spanned by E = v 4+ v_, the sum of the highest weight vector of V. and the lowest weight vector of V_.
This E does not satisfy the coisotropy condition, so that all quasi-cyclic elements are nilpotent.

4.6.10. Nilpotent element with label Ay + 3A; in Eg. Depth is 4, and 3(s)|gs is st(Gz2) ® st(slz), with
1-dimensional Cartan subspace spanned by E = v* 4 v,, the sum of the highest and the lowest weight
vectors. This FE does not satisfy the coisotropy condition, which means that all quasi-cyclic elements are
nilpotent.

4.6.11. Nilpotent element with label A5 + Ao + Ay in Eg. Depth is 6, and 3(s)|gs is st(slz) ® st(so3), with
1-dimensional Cartan subspace spanned by E = v* + v,, the sum of the highest and the lowest weight
vectors. This F does not satisfy the coisotropy condition, which means that all quasi-cyclic elements are
nilpotent.

4.6.12. Nilpotent element with label A4+ 2A; in Eg. Depth is 8, the algebra 3(s) is sly plus a 1-torus, and
the representation 3(s)|gr is the direct sum Vi @ V_ of two copies of st(sly), with the torus acting by +1
on V4. It has a 1-dimensional Cartan subspace spanned by £ = v + v_, the sum of the highest and
the lowest weight vectors of V., resp. V_. This E satisfies the coisotropy condition, and the quasi-cyclic
element f + E has Jordan decomposition (f* + E) + f® where f%, f® € g_o are nilpotent elements with
labels Ay + A; and A; respectively. This gives an integrable triple for this case.

4.6.13. Nilpotent element with label Ag+ Ao+ A; in Eg. Depth is 8, the algebra 3(s) is slo, and 3(s)|gy is its
4-dimensional irreducible representation. It has a 1-dimensional Cartan subspace spanned by E = v* +v,,
the sum of the highest and the lowest weight vectors. This E does not satisfy the coisotropy condition,
so that all quasi-cyclic elements are nilpotent.

4.6.14. Nilpotent element with label D7(as) in Eg. Depth is 14, and 3(s)|g13 is the standard representation
of s05. It has a 1-dimensional Cartan subspace spanned by E = v* + v,, the sum of the highest and the
lowest weight vectors. This E satisfies the coisotropy condition, and the quasi-cyclic element f + E is
semisimple.

Remark 4.42. It was proved in [DSKV13] that for a long root vector f € g # sp, there exists a unique,
up to equivalence, integrable quasi-cyclic element. This covers f of type A; in all exceptional g (see Table
3).

Conclusion. Due to Theorem 3.16 (b), Subsections 4.6.1, 4.6.3, 4.6.8, 4.6.12, and 4.6.14 describe all
integrable quasi-cyclic elements f + E for nilpotent elements f of even depth for all examples from Table
3, up to conjugation by Z(s). Obviously even nilpotent elements and the nilpotent elements from Table
4 have no integrable quasi-cyclic elements. As a result, we see that for each nilpotent element f of even
depth in an exceptional simple Lie algebra either there are no integrable quasi-cyclic elements f + F, or,
up to equivalence, there is exactly one.

5. INTEGRABLE QUASI-CYCLIC ELEMENTS ASSOCIATED TO NILPOTENT ELEMENTS OF ODD DEPTH

Recall that if f € g is a nilpotent element of odd depth d, then all elements of the Z(s)-module g4 are
nilpotent [EKV13, Theorem 1]. Actually the linear group Z(s)|gq is the full symplectic group, [EJK20,
Remark 2|, hence it is polar. Thus, by Lemma 3.14, if f has odd depth, there are no integrable cyclic
elements f + E, with E € g4.

By [EKV13], if g is a classical Lie algebra, nilpotent elements f of odd depth exist only in so,,, and for
g exceptional, such f are listed in [EKV13, Table 1]. These two cases are treated in Subsections 5.1 and
5.2 respectively.
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5.1. Integrable quasi-cyclic elements in soy for nilpotent elements of odd depth. Let g = soy
and let f € g be a nilpotent element associated to the partition p as in (4.1). Assume that it has odd
depth d =2D — 1, D = p; — 1. By Lemma 4.30, this happens when p; is odd, 71 = 1 and ps = p; — 1.

We realize the Lie algebra g ad in (4.38), with n = 1, and we let {F, 3, a, 5 € I} be the set of generators
of g defined in (4.39). The first result describes 3(g>2), the centralizer of g>2 in g.

Proposition 5.1. We have that 3(g>2) = ga—1 P 94-

Proof. The proof is similar to the proof of Proposition 4.37. For completeness, we replicate the argument.
Clearly, 3(g>2) C g>0. By degree considerations, 3(g>2) D gq—1 @ ga- On the other hand, let 1 € I be the
label of the rightmost box of the pyramid associated to p (note that 1 = D) and p; € I be the label of
the leftmost box (note that z,, = —D). Let also 5 € I be such that r5 < D —2 (the box /3 is completely
at the left of the box 1). Then F); € g>2. Hence, letting £ as in equation (4.48), using the commutation
relations (4.41), the second equation in (4.48) and (4.40), we have that

0=[FzEl = Y. clFigFasl= > 2e55F5— >, 2caiF,;. (5.1)

To—rg=k mB—mL;:k ro—D=k

If £ > 1, then the condition zo, — D = k > 1 implies that z, > 1 4 D, which is empty. Hence, c,3 = 0 if
o < D —2and f # p; (since Fy,, = 0 by (4.40) and (4.36)). Using the second equation in (4.48), we
have also that cog =0 if @ # 1 and 23 > —D + 2. Hence, we can write

E= Z Ca,BFoc,B + Z ClﬁFIB~

To=D—1 $5=D—k
I/-}:*D%’l

Note that the first sum lies in g4—1. Let then assume that E = ZwBZD_k c1gF1 and that 64,5 € I are
such that z5 — T > 2. Then

0= [E7 F&B] = 25w&7D—kcl,6¢F1,5> . (52)
If 24 = D —k, then —D <3 < D — 2 — k. Hence, equation (5.2) implies that c15 = 0 for x5 > —D +2,

thus showing that E € g4 ® gq_1-
If £ =0, a similar argument to the one used in the proof of Lemma 4.6 shows that £ = 0. (I

By the discussion at the beginning of this section and Proposition 5.1, if (f1, fo, F) is an integrable
triple, then E € g4_1.

Recall that dim V[D] = r; = 1, and let v, € V[D] be such that (fPv|vy) = 1. We consider the basis
{frv 3P of Vi (cf. Section 4.5.2). Let also v_ = fPuv,.

Lemma 5.2. There is a bijective correspondence between the triples (X, a,b), where A € F, a € Vi 3 and
b € End(V 2) selfadjoint with respect to the bilinear form By on Vi o defined by (4.44), and the elements
E € gq-1, given by

(A, a,b) = B = (a+ Afoi)o(vs) — vi(dla) + Ad(fuy)) +b(fT)P, (5.3)
where ¢(v) € V* is given by ¢(v)(u) = (v|u) (cf. Section 4.5.1).
Proof. An element F € g;_1 can be uniquely written as
E=A—-A"+Begq, (5.4)

where A € Hom(V[-D],V[D-2]), B= —B' € Hom(V[-D+1],V[D—1]). Recall that V[-D] = Fv_ and
that we have the decomposition VD — 2] =F fvy @&V, 3. Hence, we can uniquely write Av_ = Afvy +a,
for A € IF and a € V, 3. Hence,

A= (a+Afve)é(vs) (5.5)
and

AV = vy (é(a) + Ag(fve)) - (5.6)
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Furthermore, let us define b = BfP~1 ¢ End(V4 2). Since Do =ps —1=p; —2=D — 1 and p; is odd,
then the bilinear form (4.44) B2 on V4 o is skewsymmetric. Note that, for v, w € V4 o we have
Ba(bv,w) = (bo| fP7 w) = (u|(= )P~ (=B) [P w)
= (BfP~ Y|P~ w) = (w| fP 7 bw) = By (v, bw) .
Hence, b is self-adjoint with respect to $2. A similar computation shows that, if b is selfadjoint with
respect to Bz, then B = b(fT)P~1 € g4 ;. O
Proposition 5.3. Let E € gq—1 be as in (5.3). The subspace gfj 18 coisotropic with respect to the bilinear
form (1.2) if and only if
b —2Xb+a=0, (5.7)
where
a = (a|fP%a). (5.8)

Proof. Let E = A—A"+B € gq_1 asin (5.4) and let U = X — X' € g4, where X € Hom(V[D], V[-D+1]).
Note that the two equations in (4.13) are equivalent in the present setting. Hence, by Proposition 3.13
and Lemma 4.4 we have that g¥° is coisotropic if and only if

BfPTIBX(fT)P = BX(fThpyv A~ ATLpry fT) = (fT)P 7 XAy fP7%1y, A, (5.9)
for every X. From equations (5.5) and (5.6) we immediately have

Iy, A=ad(vy), LpvA=Avid(vy),

ATy =vid(a), Allpry = Mvyo(foy). (5.10)
Using equation (5.10) we rewrite equation (5.9) as
b2(FT)PTIX = (20 — a)(fT)PT X (04 )b(v4) - (5.11)
Applying both sides of (5.11) to vy we get
B(TPIX (0) = (200 — a) (1) X (u4) (5.12)
Equation (5.7) follows from (5.12) since X is arbitrary. O

In order to prove the main result of this section we need the following.
Lemma 5.4. Ifa #0 and a =0, then (f + E), & g—o.
Proof. Note that, since a # 0, Vi 3 = V[D — 2] N V4 # 0. From equation (5.3), we have
(f + B)Pla = EfP~2a = —(alfP2a)v, = —av, .
Hence, if a = 0, we have (f + E)P71(a) = 0. Recall that the bilinear form (4.37) is non-degenerate.
Hence, there exists w € V_ 3 such that (a|w) = 1. Let u = 2 \w + fP~1v . By equation (5.3) we have
(f+E)w) =v — Xy, (f+E)Pw=a.

Thus we get that u lies in the generalized eigenspace of f 4+ E of eigenvalue 0 and (f + F)s(u) = 0. This
implies that (f+ E)n(u) = (f+ E)(u) = v— — Avy. On the other hand, u € V[—D+2], while v_ € V[-D]
and vy € V[D]. As a consequence, (f + E),, € g—_o. O

Lemma 5.5. Let X = (f + E)Lly,qv, and let us assume that o # 0. Then X,, € g_o.
Proof. Since a # 0, we have a # 0 and the direct sum decomposition
Vis=VI[D—-2NVy =Fa®Kero(f’?a)ly, ,.

Let V, = @E;O2kaa and U = @E;OQF]”’“ Ker ¢(a)ly, ,. Then, we have the direct sum decomposition
VieVs=Vi @V, ®U. Note that X(V1 & V,) C Vi @V, X(U) C U and X1y is nilpotent. Fixing, for
example, the basis { f*vy, f*al0 <k < D,0 < h < D—2} of Vi @V, it is straightforward to check that the
characteristic polynomial of X1y, gy, is 2P — 2X\z? + a. Hence, if a # A2, then X1y, 4y, is semisimple.
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In this case the Jordan decomposition of X = X, + X,, has X; = X1y, ey, and X,, = X1y € g_o, as
claimed. If instead o = A2, then the nilpotent part of X1y, gy, is the following element of g_»

1 1 &= \2 .
St = 1)+ g 3 ((PFaomhe) = 2 (P ) )

k=0

(The proof of this fact is straightforward and is omitted). O

The following main result of this subsection characterizes integrable quasi-cyclic elements for soy
associated to nilpotent elements of odd depth.

Theorem 5.6. Let g = son and let f € g be a nilpotent element of odd depth d = 2D — 1, where
D =p; —1. Let E € g4—1 be decomposed as in (5.3) and let o be as in (5.8). Then E is integrable for
f if and only if the following two conditions hold: (i) b is semisimple with minimal polynomial dividing
22 =2 \x +a, (i) if a = 0 then X\ # 0, while if a # 0 then o # 0.

Proof. First note that (f + E)ly, = fly, + b(fT)P~!. By Propositions 5.3 and 4.12, (f + E)1y, is
integrable if and only if b is semisimple and its minimal polynomial divides 22 — 2\z + a, i.e. condition (i)
holds. Furthermore, (f + E)ly., = fly., and (f + E)(V1 © V3) C V1 © V3. Since fly., is nilpotent and
commutes with both (f + E)1y, and (f + E)Ly, v, we are left to understand when X = (f + E) 1y, gv;
is integrable. By Lemma, 5.4 X is not integrable if a # 0 and a = 0. If a = v = 0, then A # 0, otherwise
E =0 (indeed if A = @ =0, then b = 0). When A # 0, then X is semisimple since its minimal polynomial
is x(z” — 2)\) which has distinct roots (see Example 2.12 in [DSJKV20]). If a # 0, then the result follows
from Proposition 5.3 and Lemma 5.5. ]

Remark 5.7. The integrable element F € g4_; constructed in Example 2.12 in [DSJKV20] corresponds to
the choice A =1 and @ = b = 0 in Theorem 5.6.

Let us reformulate the results obtained in this subsection in terms of polar linear groups.

Theorem 5.8. Let g = son and let f € g be a nilpotent element of odd depth d, so that the corresponding

partition has the form p = (p1, (p1 — 1)) (p; — 2)("3), ..), and d = 2p; — 3. Then

(a) The linear group Z(s)|ga—1 (rather its unity component) is isomorphic to the direct sum of polar linear
groups

N st(Spr,) @ st(SO,,) & 1, (5.13)

hence is polar. This linear group leaves invariant the non-degenerate symmetric bilinear form, defined
by

(a,b) = ((ad % al b) , (5.14)

where (- | +) is the trace form on g. Consequently, we may identify Z(s)|gqa—1 with the space of triples
(b,a, N), where b is a selfadjoint operator on F™ with a skewsymmetric non-degenerate bilinear form,
aclF3, and N €.
(b) A triple E = (b,a,\) € ga—1 is an integrable element for f if and only if the following holds:
(i) b is semisimple and its minimal polynomial divides x*> — 2\x + (a,a),

(ii) N\£0 ifa#0; (a,a) £0 if a #0.

Proof. In order to compute Z(s)|gq—1, consider the subalgebra gz = €, 92; of g, which contains s and
ga—1- It is a direct sum of orthogonal subalgebras g’ and g”, so that f = f'+ ", f' € ¢, [’ € g", where
f" (resp. f") corresponds to the odd part (p1,(p1 — 2)("),...) (resp. even part ((p1 — 1)("),...)) of the
partition p, which give contributions st(SO,,) @ 1 and A*st(Sp,, ), respectively, to (5.13) (cf. [EKV13]).
This proves (a). Claim (b) follows from Theorem 5.8 and claim (a). O

Remark 5.9. Another simple example of an integrable E is (A, a, \?), where A\ # 0 and (a,a) = \2.
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5.2. Integrable quasi-cyclic elements in exceptional Lie algebras for nilpotent elements of odd
depth. We begin by explaining details of calculations that were used to produce Table 1 in [DSJKV20]
(see Table 5 below).

g nilpotent f d 3(8)[9a-1 rank | quasi-cyclic f + E, E € gq_1 | quasi type
Es | 34, 0-0-1-0-0 ad(sl3) @1 3 3 semisimple semisimple
2A5 + Ay 1—0—;—0—1 5 st(so3) @ 1 2 3 integrable mixed
0
E; | 34] 0-0=0-0=1-0 3 N’ st(spg) 3 3 semisimple semisimple
44, 1-0-0- ; —o-0 | 3| A’st(spg) @1 4 3 semisimple semisimple
2A5 + Ay 0—1—0—[1:—1—0 5 | st(so3) @ st(so3) 2 3 integrable mixed
0
Eg | 34 0=1-0-0-0-0-0 3 st(Fy) @1 3 3 semisimple semisimple
44, 0—0—0—-0- ; —0-0 | 3 N’ st(spg) 4 nilpotent only semisimple
245 + Ay 0—1—0—0-[}-0-1 5 | st(G2) @ st(so3) 2 3 integrable mixed
24, + 24, 0—0—0—1—;—0—0 5 ad(so5) 2 nilpotent only mixed
2A3 0—0-0—-1— ; —o=1 | 7 st(s05) @ 1 2 nilpotent only semisimple
Ay + As 0—1-0-0-({—0—0 9 st(so3) 1 nilpotent only mixed
Ay 0-1-1-0—;—0—1 15 1 1 none semisimple
0
Fy | A+ Ay o—1=r0—o | 3 S2st (s03) 3 3 semisimple semisimple
Ay + Ay 0o—1=>0—1 | D st(s03) 1 nilpotent only mixed
Go A 1 o==1 | 3 1 1 none semisimple

TABLE 5. Quasi-cyclic elements attached to nilpotent elements of odd depth in excep-
tional simple Lie algebras

As in [DSJKV20], st(a) denotes the standard representation of the Lie algebra a (which is the 26-
dimensional for a = F4). In this Table rank = dimgq—1/Z(s). We call f to be of semisimple (resp.
mixed) quasi type if there exist E € gq4—1, such that f + E' is semisimple (resp. not nilpotent).

Notation for the nilpotent elements describes them as principal nilpotent elements in the corresponding
Levi subalgebras. For example, in Eg there is a unique, up to conjugacy, Levi subalgebra of type 2As + Ay;
then f is the sum of the corresponding negative simple root vectors. In E; there are two, up to conjugacy,
Levi subalgebras of type 3A1; 3A} stands for the one whose principal nilpotent has odd depth in E; (the
principal nilpotent for the other one has even depth). Finally, in F4 and G, tilde means that we take the
negative short simple root vector.

Except for the nilpotent with label A; +A;in F4, Cartan subspaces in gy with respect to the 3(s)-module
structure are given by the zero weight spaces of these modules.

5.2.1. Nilpotent elements with label 3A; in Eg, Es and 3A} in E;. All these conjugacy classes have
representatives of the form f = e_no, +€_n, + €_ns, sums of three pairwise commuting negative simple
root vectors. For Eg and Eg these can be arbitrary three commuting root vectors, while in E; arbitrary
under the restriction that f has odd depth. One checks that in this case the subspace C' C go spanned
by €a,,€as,€ay 1S a Cartan subspace with respect to the action of Z(s). The coisotropy condition on
E = zieq, + T2eq, + T3€q, is

x% + x% + x§ — 21129 — 22173 — 22923 = 0.
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The subalgebra generated by ei,,, ¢ = 1,2, 3, is the direct sum of three copies of sls, and it is straight-
forward to check that f 4+ E is semisimple when 1, x2, 3 are arbitrary nonzero numbers satisfying the
coisotropy condition. When one of them is zero, say, 1 = 0, then the coisotropy condition forces x5 =
x3 = # 0, in which case the Jordan decomposition of f+z(€q,+€as) 18 (6—ay +€—as +T(€as+€as))+e—a,
and we get an integrable triple (f1, f2, E'), where f; has label 2A; and f> has label A;.

5.2.2. Nilpotent elements with label 2A + Ay in Eg, E7 and Eg. This case is described in [DSJKV20,
Example 2.14]. Here d = 5. We can take

f=ea,tea,tep tep +e,y,

where ay + o and 31 + B2 are roots, while no other pairwise sum of the «;, 8; and + is a root. One then
checks that the subspace of gq_1, spanned by eq, 4, and eg, +3,, is a Cartan subspace. The coisotropy
condition for E = zeq, 1a, + Y€s,+p, is then x =y, and for E = z(eq,4a, + €3,+5,) the Jordan decom-
position of the quasi-cyclic element f + E is (e_qy + €—ay + €—5, +€_3, + T(€ar+as + €8,48,)) + €—~.
This is straightforward to check after restricting considerations to the subalgebra of type As + As + A
containing both f and E. We thus obtain integrable triple (f1, fo, E'), where f; has label 2A5 and f5 has
label A;.

Clearly in such way we obtain all possible integrable triples that might occur in this case: if all three
of the x1, ws, x3 are nonzero, we obtain the integrable triple (f,0, F), while if some of them are zero, we
necessarily get the integrable triples (f1, f2, F) as above.

5.2.3. Nilpotent elements with label 4A1 in E; and Eg. These conjugacy classes have representatives of
the form f =e_q, +e_q, +€_q; +€_q,, sums of four pairwise commuting root vectors. One checks that
in this case the subspace C' C gy spanned by eq,, €ay;€as, €a, is & Cartan subspace with respect to the
action of Z(s). The coisotropy condition on E = x1e,, + T2€q, + T3€0; + Ta€q, 1S

2 2 2
xy + o + oy — 2z;wj — 2wixy — 225708 = 0,

where {i,7,k} is any three-element subset of {1,2, 3,4} for Eg, while for E; it can be any three-element
subset except one of them.

For Eg the resulting system of quadratic equations has only zero solution, which means, by Lemma
3.11, that in this case there are no non-nilpotent quasi-cyclic elements.

For E;, choose some numbering, say, such, that the equations correspond to {i, 7, k} equal to {1,2,3},
{1,2,4} or {1, 3,4}; then, the system has five solutions, corresponding to

E =z(eq, + €as + €ay)s

E =x(deq, + €ay + €as + €ay),
E = x(4ea, + 9ea, + €ay + €a,),
E = x(4eq, + €ar + 9e0s + €a,),
E = x(4eq, + €as + €0y +9eq,).

The subalgebra generated by e1,,, i = 1,2, 3,4, is a direct sum of 4 copies of sly, which easily implies that
the last four solutions give semisimple quasi-cyclic elements, while the first solution gives a quasi-cyclic
element with the Jordan decomposition (e_q, +e_q, +€_a, +Z(€q, + €ay + €a,)) + €—q,, which gives an
integrable triple (f1, f2, F) where f; has label 3A; and f5 has label A;.

This exhausts all possible integrable triples in this case, since the coisotropy equations do not have any
other solutions.

5.2.4. Nilpotent element with label 2A5 + 2A1 in Eg. We can take
f= €a; tCa, T pg +€ g, +€ y+es,

where a; 4+ ao and 1 + 2 are roots, while no other pairwise sum of the «;, 8;, v and ¢ is a root. A
Cartan subspace in gq—; is spanned by e, +q, and eg, +3,. We then find that the coisotropy condition on
E=zeq,+a, +Yes,+8, are x —y = 0 and x + y = 0, hence, by Lemma 3.11, all quasi-cyclic elements are
nilpotent.
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5.2.5. Nilpotent element with label 2A3 in Eg. We can take
= €a; tCq, T aytepg te g, te g,

where a1 + aw, g + ag, a1 + as + asg, B1 + B2, B2 + B3 and 1 + [2 + B3 are roots, while no other sum
of the o; and ; is a root. A Cartan subspace in gq—; is spanned by €, +ay+as a0d €8, 48,48, We then
find that the coisotropy condition on E = Zeq, tay+as + Y€, +82+8s are z(z +4y) =0 and y(dz +y) =0,
hence, by Lemma 3.11, all quasi-cyclic elements are nilpotent.

5.2.6. Nilpotent element with label Ay + Az in Eg. We can take
= €a; T € q, T € ayTEqa +€pg +e g, +e g,

where oy + g, oo + a3, az +ay, o + g + a3, az + a3z + oy, o + o + a3 + ay, S+ Pa, P2 + Pz and
B1 + B2 + B3 are roots, while no other sum of the a; and f; is a root. A Cartan subspace in g4—; is
spanned by €q, +as+as+ay- We then find that the coisotropy condition on E = zeq, +as+as+ay 15 T = 0,
hence, by Lemma 3.11, all quasi-cyclic elements are nilpotent.

5.2.7. Nilpotent element with label A7 in Eg. We can take

f=e€—a tea,+e a;+ea,+ea;+eq+eqr,

where a4, ..., a7 form simple roots for a root subsystem of type A;. Here g4_1 is one-dimensional, spanned
by €ay+...4a7, and for E = xeq, +. +q, the coisotropy condition fails unless z = 0, so that there are no
quasi-cyclic elements whatsoever.

5.2.8. Nilpotent element with label A1 + Kl in Fq. Take f = f1o00 + f1232.

Here 3(s)|gq—1 is the direct sum of a 5-dimensional irreducible and 1-dimensional trivial representation
of sly. The subspace of g4—; spanned by Fy = e1220, £'1 = e1222+€1232+€1242 and Ey = e1222 —€1232+€1242
is a Cartan subspace. Coisotropy condition on E = xqFy + x1F1 + x2Fs is

x(z) + 4:& + 4:103 —4xox1 + 4xgxo + 8129 = 0.

Subalgebra generated by f and the Cartan subspace is a direct sum of three copies of sly, and the matrix
of f + F in the standard representation of this subalgebra is

00 2o 0 0O 0 O
1 0 0 0 0 O
0 0 0 z O O
0 0 2 0 0 O
0 0 0 0 0 =
0 0 0 0 -2 0

It follows that the quasi-cyclic element f 4+ E with E as above satisfying the coisotropy condition, is
semisimple except for the cases

g = 0,21 = —T9;
z1 = 0,29 = —2x9;
ro = 0,29 = 221.
The Jordan decomposition of f + E in these cases is, respectively,

(fi2s2 + E) + fr220;

1 1
(f1220 + 5(*f1222 + fi2z2 — fi2a2) + E) + §(f1222 + fi232 + f1242);

1 1
(f1220 + §(f1222 + fi2s2 + fi2a2) + E) + 5(—f1222 + fr232 — f1242).

In all three cases we thus get an integrable triple (f1, f2, E'), where f; has label A; and fo has label Aj.
These three cases, together with the case when the quasi-cyclic element is semisimple, give all possible
integrable triples for this case.



42 INTEGRABLE TRIPLES IN SEMISIMPLE LIE ALGEBRAS

5.2.9. Nilpotent element with label Ay + Ay in F4. A Cartan subspace is given by the zero weight space
of the adjoint representation of sly, and none of its nonzero vectors satisfies the coisotropy condition. It
follows from Lemma 3.11 that all quasi-cyclic elements are nilpotent.

5.2.10. Nilpotent element with label Kl in Go. This nilpotent does not produce any quasi-cyclic elements,
as Example 2.8 in [DSJKV20] shows. Namely, the depth is 3, and gs is 1-dimensional, spanned by ejs;
its centralizer has zero intersection with g;, and the zero subspace is not coisotropic.

Conclusion. Due to Theorem 3.16 (a), Subsections 5.2.1, 5.2.2, 5.2.3, and 5.2.8 describe all integrable
quasi-cyclic elements f + E for nilpotent elements f of odd depth, for all exceptional simple Lie algebras,
up to conjugation by Z(s). In particular, an integrable quasi-cyclic element exists for such f, except for
seven cases, described in the Introduction.
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