We consider Lane-Emden and Nenon equations either in the plane or in the unit planar ball B centered at the origin with Dirichlet or Neumann boundary conditions. We give a sharp description of the asymptotic behavior of all the radial solutions to these problems and we show that there is no uniform a priori bound for nodal solutions under Neumann or Dirichlet boundary conditions.

Sharp asymptotic behavior of radial solutions of some planar semilinear elliptic problems / Ianni, Isabella; Saldaña, Alberto. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - (2021). [10.1016/j.jde.2021.09.039]

Sharp asymptotic behavior of radial solutions of some planar semilinear elliptic problems

Isabella Ianni
;
2021

Abstract

We consider Lane-Emden and Nenon equations either in the plane or in the unit planar ball B centered at the origin with Dirichlet or Neumann boundary conditions. We give a sharp description of the asymptotic behavior of all the radial solutions to these problems and we show that there is no uniform a priori bound for nodal solutions under Neumann or Dirichlet boundary conditions.
2021
Henon equation, Lane-Emden equation, Sign-changing radial solutionsAsymptotic analysisA priori boundsMorse index
01 Pubblicazione su rivista::01a Articolo in rivista
Sharp asymptotic behavior of radial solutions of some planar semilinear elliptic problems / Ianni, Isabella; Saldaña, Alberto. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - (2021). [10.1016/j.jde.2021.09.039]
File allegati a questo prodotto
File Dimensione Formato  
Ianni_Sharp_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 787.46 kB
Formato Adobe PDF
787.46 kB Adobe PDF   Contatta l'autore
IaSa_HLE_JDE.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 784.58 kB
Formato Adobe PDF
784.58 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1605258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact