In the present paper we show that for any given digraph G=([n],E), that is, an oriented graph without self-loops and 2-cycles, one can construct a 1-dependent Markov chainandnidentically distributed hitting timesT1,...,Tn on this chain such that the probability of the event Ti bigger than Tj (for i,j=1,...,n),is larger than1/2 if and only if (i,j)∈E.This result is related to various paradoxesin probability theory,concerning in particular non-transitive dice.

Ranking graphs through hitting times of Markov chains / DE SANTIS, Emilio. - In: RANDOM STRUCTURES & ALGORITHMS. - ISSN 1042-9832. - 59:2(2021), pp. 189-203. [10.1002/rsa.20998]

Ranking graphs through hitting times of Markov chains

Emilio De Santis
2021

Abstract

In the present paper we show that for any given digraph G=([n],E), that is, an oriented graph without self-loops and 2-cycles, one can construct a 1-dependent Markov chainandnidentically distributed hitting timesT1,...,Tn on this chain such that the probability of the event Ti bigger than Tj (for i,j=1,...,n),is larger than1/2 if and only if (i,j)∈E.This result is related to various paradoxesin probability theory,concerning in particular non-transitive dice.
2021
1-dependent Markov chain; ordering; paradoxes in probability theory
01 Pubblicazione su rivista::01a Articolo in rivista
Ranking graphs through hitting times of Markov chains / DE SANTIS, Emilio. - In: RANDOM STRUCTURES & ALGORITHMS. - ISSN 1042-9832. - 59:2(2021), pp. 189-203. [10.1002/rsa.20998]
File allegati a questo prodotto
File Dimensione Formato  
DeSantis_postprint_Ranking-graphs_2021.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 353.5 kB
Formato Adobe PDF
353.5 kB Adobe PDF
DeSantis_Ranking-graphs_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 332.52 kB
Formato Adobe PDF
332.52 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1604482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact