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Abstract
In the present paper we show that for any given digraph G =
([n], E⃗), that is, an oriented graph without self-loops and

2-cycles, one can construct a 1-dependent Markov chain

and n identically distributed hitting times T1, … , Tn on this

chain such that the probability of the event Ti > Tj, for any

i, j= 1, … , n, is larger than
1

2
if and only if (i, j) ∈ E⃗. This

result is related to various paradoxes in probability theory,

concerning in particular non-transitive dice.

KEYWORDS

1-dependent Markov chain, ordering, paradoxes in proba-

bility theory

1 INTRODUCTION

Let us consider a collection of random variables n = {Y1, … ,Yn}, defined on a same probability

space and satisfying the no-tie condition, that is, any two of them are equal with probability zero.

Let [n]:= {1, 2, … , n}. For i≠ j∈ [n], one says that Yi is less than (resp. is equivalent to) Yj in the

stochastic precedence sense if

P(Yi < Yj) >
1

2
,

(
resp. P(Yi < Yj) =

1

2

)
.

This notion is natural in many applications, see for example [6, 8, 10] and references therein. From

a theoretical point of view, it gives rise to a series of apparent paradoxes which are caused by the

non-transitivity of the stochastic precedence comparison, see [11, 21, 23].

In order to present some results it is convenient to introduce the definition of ranking graph
G(n) = ([n], E⃗(n)) associated with the set of random variables n = {Y1, … ,Yn}. For any i, j∈ [n],

the pair (i, j) is an arrow of E⃗(n) if and only if Yj is less than Yi in the stochastic precedence sense.

Although expressed in a different form, it is known that for any digraph H = ([n], E⃗) there exists

a set of n random variables n such that the ranking graph G(n) coincides with H, that is, any set
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of stochastic precedence relations can be achieved (see [19, 20]). This result was initially obtained in

the field of voting theory by McGarvey, see [19], but it can be rewritten by using random variables

and the stochastic precedence comparison between them (see [8, 14, 20]). We also mention [3, 4, 16,

22] which improve McGarvey’s result by providing precise upper and lower bounds on the number of

voters needed to achieve all possible ranking graphs.

In this paper we take a different point of view and we give a positive answer to the following

problem: given a digraph H = ([n], E⃗), can we find a stationary Markov chain with n identically
distributed hitting times n = {T1, … ,Tn} such that G(n) = H? Our interest in this problem is

twofold.

(1) The problem loses its combinatorial structure and becomes entirely probabilistic.

(2) There are many applications where it is preferable to use hitting times rather than arbitrary

random variables.

In various applications the type of random variables to use is constrained by the nature of the

problem. For instance, in many competitive games the winner is the player who achieves his goal or

target before the others. In this situation one is forced to work with hitting times. As an example of an

application in this field, in the final part of the paper we define and analyze a Penney-type game in

which these random variables arise quite naturally.

From a theoretical point of view, we emphasize that the structure of the hitting times is very par-

ticular and many properties on their distributions are known a priori, see for example [13, 18] and

references therein. Moreover, the stationary Markov chains used in our construction have the particular

property that the square of the transition matrix has all of its entries equal. Hence, they are 1-dependent
uniform, in the sense that they are 1-dependent [1, 2], with uniform invariant distribution.

The plan of the paper is as follows.

In Section 2 we give some basic notation and definitions, and preliminary results. In Section 3,

we present our main result through an explicit construction of 1-dependent uniform Markov chains. In

Section 4, we present a Penney-type games and we develop a qualitative analysis of it. In particular,

we identify a threshold value beyond which it is possible to construct a Penney-type game unfavorable

to the starting player whereas this is impossible below the same threshold.

2 1-DEPENDENT UNIFORM MARKOV CHAINS, PATTERNS AND
IDENTICALLY DISTRIBUTED HITTING TIMES

First of all, recall that for a collection of r.v.n = {Y1, … ,Yn}, we defined the ranking graph G(n) =
([n], E⃗(n)) in the following way. For any i, j∈ [n],

(i, j) ∈ E⃗(n) ⇔ P(Yj < Yi) >
1

2
. (1)

It is clear that G(n) does not have loops or 2-cycles, thus it is a digraph.

We also recall the definition of 1-dependent uniform chain.

Definition 1. A Markov chain is a 1-dependent uniform chain if it is stationary and the square of its

transition matrix has all equal entries. The set of 1-dependent uniform chains is denoted by 1.

We notice that a 1-dependent uniform chain X = (Xm ∶ m ∈ N0) has the property that, for any

sequence of increasing indices m1, m2, … with m𝓁 + 1 −m𝓁 ≥ 2 (for 𝓁 ∈ N), the random variables
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(Xm𝓁
∶ 𝓁 ∈ N) are i.i.d. with Xm𝓁

distributed uniformly on the state space. In particular, the ini-

tial distribution is invariant and it coincides with the uniform distribution. For further properties on

1-dependent chains see [1,2], where such chains are studied in detail and characterized.

2.1 Construction of 1-dependent uniform Markov chains.

Let k,N ∈ N with N ≥ 2, we consider a sequence of i.i.d. random (column) vectors m =
(Um,1, … ,Um,k)T , with Um, i i.i.d. uniformly distributed on [N], for i∈ [k] and m ∈ N0. Next define

the k× 2 matrix

X(N,k)
m = [m,m+1], m ∈ N0. (2)

Notice that the collection of random variables X(N,k) = (X(N,k)
m ∶ m ∈ N0) forms a 1-dependent

uniform chain, in particular it starts with the uniform distribution on the state space of all the matrices

k× 2 with elements belonging to [N] (see Example 1). We notice that, for any k ∈ N and N ≥ 2 the

Markov chain X(N, k) is not reversible, instead P(X(N,k)
0 = [1, 1],X(N,k)

1 = [1, 2]) = N−3k but P(X(N,k)
0 =

[1, 2],X(N,k)
1 = [1, 1]) = 0, where 1 and 2 are column vectors with all the entries equal to 1 and 2,

respectively.

2.2 Patterns

For M, k ∈ N, a pattern Q= (qi, j ∈ [M]∪ {0} : i∈ [k], j∈ [2]) is a k× 2 matrix, with the property that

qi,1 ∈ [M], for i ∈ [k], and

k∑
i=1

1{qi,2≠0} = 1.

For a pattern Q we define the index of hump as

h(Q) = j if qj,2 > 0. (3)

The collection of all the k× 2 patterns with entries in [M]∪ {0} is denoted by M,k. In particular, any

pattern in M,k has a number of entries different from zero which is equal to k+ 1.

2.3 Hitting time of a pattern

For any h∈ [k], we define the projection Πh on the set of k× 2 matrices in the following way: if

S= (si, j : i∈ [k], j∈ [2]) , then

Πh(S) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1,1 0

⋮ ⋮

sh−1,1 0

sh,1 sh,2

sh+1,1 0

⋮ ⋮

sk,1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)
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Now let X(N,k) = (X(N,k)
m ∶ m ∈ N0) be as in (2) and let R ∈ M,k be a target pattern, with 2≤M ≤N.

We define the hitting time of R as

TR = inf{m ∈ N0 ∶ Πh(R)(X(N,k)
m ) = R}, (5)

in the following when Πh(R)(X(N,k)
m ) = R holds we will write X(N,k)

m ⊳ R.

The hitting time TR can be interpreted as the first time in which the pattern R occurs in the random

sequence (X(N,k)
m )m∈N0

. From the finiteness of state space [N]k and the irreducibility of the Markov

chain X(N, k) it follows that TR is finite almost surely.

2.4 Overlap

For two different patterns

R = (ri,j ∈ [M] ∶ i ∈ [k], j ∈ [2]), S = (si,j ∈ [M] ∶ i ∈ [k], j ∈ [2]) ∈ M,k, (6)

we define the overlap O(R, S)∈ {0, 1}2 in the following way

O1(R, S) =

{
1, if rh,1 = sh,1, h ∈ [k] and 𝛿h(R),h(S)(rh(R),2 − sh(S),2) = 0;
0, otherwise.

(7)

O2(R, S) =

{
1, if rh(R),2 = sh(R),1;
0, otherwise.

(8)

An analogous definition for strings has given in [17]. We notice that TR and TS are different w.p. 1 if

and only if O1(R, S)= 0. The meaning of O2(R, S) will be clarified by Lemmas 3 and 4 and Theorem 1

in which the relevance of O2(R, S) for the computation of P(TR < TS) becomes evident.

The overlap O(R, S) is in general different from O(S, R). Moreover it makes sense to consider the

overlap of a pattern with itself, in which case the first component is always equal to 1. For patterns

R1, … ,Rn ∈ M,k, one has

no-tie property of TR1
, … ,TRn ⇔ for distinct i, j ∈ [n], O1(Ri,Rj) = 0. (9)

In this case, for sake of simplicity, we say that the collection of patterns R1, … , Rn is no-tie.

To familiarize with the notions and definitions we present the following example

Example 1. Let

R =
⎡⎢⎢⎢⎣
1 0

2 1

2 0

⎤⎥⎥⎥⎦ , S =
⎡⎢⎢⎢⎣
1 0

1 0

2 1

⎤⎥⎥⎥⎦ ,
be two patterns in 2,3, with index of hump h(R)= 2 and h(S)= 3. The overlap O(R, S)= (0, 1) and

O(S, R)= (0, 0). Thus the collection of patterns {R, S} is no-tie.
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Suppose that

X(2,3) =
1 1 1 1 1 2 · · ·
2 2 1 1 2 1 · · ·
2 1 2 1 2 1 · · ·

Then TS = 2 being

S ≠ Π3

⎡⎢⎢⎢⎣
1 1

2 2

2 1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 0

2 0

2 1

⎤⎥⎥⎥⎦ , S ≠ Π3

⎡⎢⎢⎢⎣
1 1

2 1

1 2

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 0

2 0

1 2

⎤⎥⎥⎥⎦ , S = Π3

⎡⎢⎢⎢⎣
1 1

1 1

2 1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 0

1 0

2 1

⎤⎥⎥⎥⎦ .
Similarly, TR = 4.

3 RANKING GRAPHS THROUGH IDENTICALLY DISTRIBUTED
HITTING TIMES

Let R be a pattern with O(R, R)= (1, 0). Following the proof of Theorem 2.1 in [7] we recursively

compute the discrete distribution of TR.

Lemma 1. Let k, M, N be integers such that N ≥M ≥ 2 and k≥ 1. Let R ∈ M,k with O(R, R)= (1, 0)

and consider the 1-dependent uniform chain X(N, k). Define w(t) ∶= P(TR = t), then the probabilities
(w(t) ∶ t ∈ N0) are recursively determined from

w(t) = N−k−1 − N−k−1

t−2∑
s=0

w(s). (10)

Proof. The event {X(N,k)
t ⊳ R} holds true with probability N−k− 1. Moreover, {X(N,k)

t ⊳ R} can be

written as the union of the following three disjoint events:

(i) {TR = t};

(ii) {X(N,k)
t ⊳ R} ∩ {TR = s}, for s< t− 1;

(iii) {X(N,k)
t ⊳ R} ∩ {TR = t − 1}.

For s< t− 1, as a consequence of 1-dependence, one has

P({X(N,k)
t ⊳ R} ∩ {TR = s}) = w(s)P(X(N,k)

t ⊳ R) = N−k−1w(s).

The event in (iii) has probability zero because, by hypothesis O2(R, R)= 0. Therefore

N−k−1 = w(t) + N−k−1

t−2∑
s=0

w(s),

which corresponds to (10). ▪

Remark 1. Let R1, … ,Rn ∈ M,k such that O(Ri, Ri)= (1, 0), for each i∈ [n]. Let N ≥M and consider

the 1-dependent uniform chain X(N, k). Then, by Lemma 1, the hitting times TR1
, … ,TRn are identically

distributed because the distribution of any TRi is given by (10).
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Given a digraph G = ([n], E⃗), we now construct a collection of associated patterns {Ru ∈
n+1,n+1 ∶ u ∈ [n]}. For 𝓁 ∈ [n], pattern R𝓁 = (r(𝓁)i,j ∶ i ∈ [n + 1], j ∈ [2]) is constructed in the

following way:

1. r(𝓁)1,1 = r(𝓁)𝓁+1,2 = 𝓁;

2. for any j∈ [n+ 1] \ {𝓁 + 1}, r(𝓁)j,2 = 0;

3. for any j∈ [n],

r(𝓁)j+1,1 =

{
j, if (𝓁, j) ∈ E⃗;
n + 1, otherwise.

(11)

We will say that the patterns R1, … , Rn are generated by the graph G = ([n], E⃗).
First notice that h(R𝓁)=𝓁 + 1, for 𝓁 ∈ [n]. In order to explain our construction of the patterns we

observe that when (i, j) ∈ E⃗ then O2(Ri, Rj)= 0 and O2(Rj, Ri)= 1 (see Lemma 2), and this will cause

P(TRj < TRi) >
1

2
through the phenomenon of clustering (see Lemmas 3 and 4, and Theorem 1).

This phenomenon is analogous to what happens to the appearance of strings in a sequence of letters

randomly drawn (see e.g., [9,17]). To illustrate the notation, we present the following example.

Example 2. Let us consider the graph G = ([3], E⃗) with E⃗ = {(1, 3), (3, 2), (2, 1)}. Then the patterns

R1, R2, R3 generated by G are

R1 =

⎡⎢⎢⎢⎢⎢⎣

1 0

4 1

4 0

3 0

⎤⎥⎥⎥⎥⎥⎦
, R2 =

⎡⎢⎢⎢⎢⎢⎣

2 0

1 0

4 2

4 0

⎤⎥⎥⎥⎥⎥⎦
, R3 =

⎡⎢⎢⎢⎢⎢⎣

3 0

4 0

2 0

4 3

⎤⎥⎥⎥⎥⎥⎦
.

The present example will be continued at the end of the section where the patterns will be employed

in the definition of three hitting times that show non-transitivity for the stochastic precedence.

We now consider the properties of the overlap for patterns R1, … , Rn generated by a digraph

G = ([n], E⃗).

Lemma 2. Let n≥ 2 and G = ([n], E⃗) be a digraph. The overlaps of the patterns R1 … , Rn generated
by G = ([n], E⃗) are

O(Ri,Rj) = 𝛿i,j ⋅ (1, 0) + (1 − 𝛿i,j) ⋅
[
1{(i,j)∈E⃗} ⋅ (0, 1) + 1{(i,j)∉E⃗} ⋅ (0, 0)

]
,

for any i, j∈ [n].

Proof. Case i= j, then O1(Ri, Ri)= 1. The second component O2(Ri, Ri)= 0 since r(i)i+1,1 = n + 1 ≠

i = r(i)i+1,2 (see (11)).

Case i≠ j. O1(Rj, Ri)= 0 since r(i)1,1 = i ≠ j = r(j)1,1.

If (i, j) ∈ E⃗ then O2(Rj, Ri)= 1. Indeed, the condition in (8) r(j)h(R(j)),2 = r(i)h(R(j)),1 holds true since

r(j)j+1,2 = r(i)j+1,1 = j.
If (i, j) ∉ E⃗ then O2(Rj, Ri)= 0. Indeed, the condition r(j)h(R(j)),2 = r(i)h(R(j)),1 is not true since r(j)j+1,2 = j

and r(i)j+1,1 = n + 1. ▪
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Let us consider no-tie collection of patterns {R1, … , R𝓁} belonging to M,k and the corresponding

hitting times 𝓁 = {TR1
, … ,TR𝓁

} of X(N, k), with N ≥M. We are interested to upper and lower bound

pi(𝓁) ∶= P

(⋂
j∈[𝓁]

{TRi ≤ TRj}

)
for i ∈ [𝓁]. (12)

First notice that by the no-tie property one has
∑

i∈[𝓁]pi(𝓁) = 1.

We also define the sequence of stopping times (Zh ∶ h ∈ N0), as

Z0 = inf{m ≥ 0 ∶ X(N,k)
m ⊳ Ri for some i ∈ [𝓁]} (13)

and recursively, let

Zh+1 = inf{m ≥ Zh + 2 ∶ X(N,k)
m ⊳ Ri for some i ∈ [𝓁]}. (14)

It is immediate to notice that every hitting time Zh is finite almost surely. We present this simple lemma

without a proof.

Lemma 3. For any s ∈ N, one has

P(X(N,k)
Zs+1 ⊳ Ri|X(N,k)

Zs
⊳ Rj) =

O2(Rj,Ri)
Nk . (15)

The probabilities (pi(𝓁) ∶ i ∈ [𝓁]) could be explicitly calculated through a linear system but for

our purposes it will be more useful to have good upper and lower bounds.

Lemma 4. Let N ≥M ≥ 2 and k,𝓁 ≥ 2. Let R1, … ,R𝓁 ∈ M,k be a collection of no-tie patterns
and let O2(Ri, Ri)= 0, for i∈ [𝓁]. Let us take the uniform Markov chain X(N, k) and the hitting times
𝓁 = {TRi ∶ i ∈ [𝓁]}. Then 𝓁 are identically distributed. Moreover, for i∈ [𝓁],

pi(𝓁) =
vi∑

j∈[𝓁]vj
, (16)

where

1 − 1

Nk

∑
j∈[𝓁]

O2(Rj,Ri) ≤ vi ≤ 1 − 1

Nk

(
1 − 𝓁 − 1

Nk

) ∑
j∈[𝓁]

O2(Rj,Ri). (17)

Proof. In the proof, we will write Xm for X(N,k)
m . Lemma 1, Remark 1, and O2(Ri, Ri)= 0, for each i,

imply that 𝓁 are identically distributed.

For any i∈ [𝓁], by definition

pi(𝓁) = P(TRi = Z0).

From the fact that the random variables (Xm)m∈N0
are 1-dependent, we also have

pi(𝓁) = P(XZh ⊳ Ri), (18)
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for any h ∈ N. Moreover the times (Zs ∶ s ∈ N0) are renewal times, that is,

P(XZh ⊳ Ri,Zh − Zh−1 = s|XZh−1
= j,Zh−1 = t), for h, s ∈ N, and i ∈ [𝓁],

does not depend on h, t ∈ N and j∈ [n]. This is again a consequence of the 1-dependent structure.

We define, for any i∈ [𝓁], the sets of random times

i,t ∶= {m < t ∶ m = Zs for some s,Xm ⊳ Ri}, i,t ∶= {s < t ∶ Xs ⊳ Ri}, (19)

where t ∈ N ∪ {+∞}. These sets’ cardinalities are

Vi,t ∶= |i,t| = ∞∑
s=0

1{Zs≤t−1}1{XZs⊳Ri}, Ni,t ∶= |i,t| = t−1∑
s=0

1{Xs⊳Ri}. (20)

By (18) and by the ergodic theorem for renewal process, one has

lim
t→∞

Vi,t∑
j∈[𝓁]Vj,t

= pi(𝓁) a.s., lim
t→∞

Ni,t

t
= 1

Nk+1
a.s. (21)

We define the quantities (vi > 0 : i∈ [𝓁]) as

vi ∶= lim
t→∞

Vi,tNk+1

t
a.s., (22)

by hypothesis N ≥M one has vi ≤ 1, for each i∈ [𝓁]. The equalities in (21) and the previous definition

give (16).

We notice that

Ni,t = Vi,t +
∑

j∈[𝓁]∶j≠i

∞∑
s=0

1{Zs≤t−2}1{XZs⊳Rj}1{XZs+1⊳Ri}, (23)

indeed if XZs+1 ⊳ Ri, for some s, the time (Zs + 1) belongs to i,∞ but it is not in i,∞. Let us multiply

by Nk+ 1/t the previous formula and take the limit for t→∞, then, by the ergodic theorem, by (21) and

(22), one obtains

1 = vi + lim
t→∞

Nk+1

t
∑

j∈[𝓁]∶j≠i

∞∑
s=0

1{Zs≤t−2}1{XZs⊳Rj}1{XZs+1⊳Ri} a.s. (24)

By the ergodic theorem and Lemma 3 one has

1 = vi +
∑

j∈[𝓁]∶j≠i

O2(Rj,Ri)
Nk vj. (25)

Thus,

1 ≤ vi +
∑

j∈[𝓁]∶j≠i

O2(Rj,Ri)
Nk = vi +

∑
j∈[𝓁]

O2(Rj,Ri)
Nk . (26)



DE SANTIS 9

The inequality (26) corresponds to the first inequality in (17). In particular, vi ≥ 1− (𝓁 − 1)/Nk, for any

i∈ [𝓁]. Thus, for any fixed i∈ [𝓁]

lim
t→∞

Nk+1

t

∞∑
s=0

1{Zs≤t−2}1{XZs⊳Ri} ≥ 1 − (𝓁 − 1)∕Nk a.s. (27)

Now, by (23)–(27), Lemma 3 and ergodicity one has

vi ≤ 1 − 1

Nk

(
1 − 𝓁 − 1

Nk

) ∑
j∈[𝓁]

O2(Rj,Ri).

This end the proof. ▪

We are now ready to present the following result on the construction of any digraph through the

ranking graphs of 1-dependent uniform chains and identically distributed hitting times.

Theorem 1. For any digraph G = ([n], E⃗) there exists X = (Xm ∶ m ∈ N0) ∈ 1 and a collection
of identically distributed hitting times n = {T1,T2, … ,Tn} on X such that G(n) = G.

Proof. Let us consider the 1-dependent uniform chain X(N, n+ 1) with N ≥ n+ 1. By Lemma 2, the

patterns R1, … , Rn generated by G have the no-tie property. Furthermore, by Lemmas 1 and 2 the

hitting times {TR1
, … ,TRn} are identically distributed.

For distinct indices i, j, one has

pa({TRi ,TRj}) = P(TRa = Z1),

where a∈ {i, j}.

In the case that (i, j) and (j, i) are not arrows of the digraph G then, by Lemma 2,

O2(Ri, Ri)=O2(Rj, Rj)=O2(Ri, Rj)=O2(Rj, Ri)= 0. Thus, by (23) of Lemma 4 follows that Ni, t =Vi, t
and Nj, t =Vj, t. Hence by (21) and (22) one has

pi({TRi ,TRj}) = pj({TRi ,TRj}) =
1

2
.

Hence, (i, j) and (j, i) does not belong to G(n).
We now consider the case: (i, j) is in G. By Lemma 2, O(Ri, Rj)= (0, 0) and O(Rj, Ri)= (0, 1). Thus,

by (23) follows that Nj, t =Vj, t while

Ni,t = Vi,t +
∞∑

s=0

1{Zs≤t−2}1{XZs⊳Rj}1{XZs+1⊳Ri}.

Now, defining vi and vj as in the proof of Lemma 4, vj = 1 while

vi ≤ 1 − 1

Nk

(
1 − 1

Nk

)
< 1.

Therefore

pi({TRi ,TRj}) =
vi

vi + vj
<

vj

vi + vj
= pj({TRi ,TRj}).

Hence, (i, j) belongs to G(n). ▪

We end the section with the following example



10 DE SANTIS

Example 3. We want to construct X ∈ 1 and three identically distributed hitting times such that

P(T1 < T2) >
1

2
, P(T2 < T3) >

1

2
, P(T3 < T1) >

1

2
. (28)

Thus we consider the digraph G and the generated patterns R1, R2, R3 defined in Example 2. We take

X= X(4, 4) and Ti = TRi , for i= 1, 2, 3. Now, by Theorem 1, the inequalities in (28) hold.

4 A PENNEY-TYPE GAME

The classical Penney’s game concerns the occurrence of different strings in a sequence of independent

random draws of letters. This kind of problem was studied and solved in [9, 17] (see also [12] for a

version of the game with many players). In [17], among other results, the authors give the construction

for the optimal reply or optimal string to every string chosen by the first player. The game is always

unfavorable for the player who chooses first. The cause of this behavior lies in the absence of transitivity

for the stochastic precedence order (see e.g., [10, 21, 23]).

To introduce our Penney-type game we need some notation. Let n = {T1,T2, … ,Tn} be a

collection of no-tie r.v., for A⊂ [n] we write

T (A) = min{Ti ∶ i ∈ A}.

By the no-tie property, if the subsets A, B⊂ [n] are disjoint then P(T (A) = T (B)) = 0.

Let r1, r2 ∈ N, X ∈ 1 and let n be a collection of n identically distributed hitting times on X
with n≥ r1 + r2. We define the stochastic zero-sum game Gr1,r2

(X, n) as follows:

Step 1. Player I chooses a set A⊂ [n] with |A|=r1.

Step 2. Player II chooses a set B⊂ [n] \ A with |B|=r2.

Step 3. Player I chooses two nonempty sets A′ ⊂A and B′ ⊂B.

Step 4. If T (A′) <T (B′) then Player II pays |B′| dollars to Player I, otherwise Player I pays |A′|

dollars to Player II.

The idea underlying this payoff is that, in the final stage, each player pays one dollar for betting on

any hitting time and the winner takes all the stakes. After the choice of A′ and B′, the expected payoff

of Player I is given by

|B′| ⋅ P(T (A′) < T (B′)) − |A′| ⋅ P(T (A′) > T (B′)). (29)

Note that for given X ∈ 1 and for a collection of hitting times n the expected payoff of the

first player is a nondecreasing function of r1 and r2, as long as r1 + r2 ≤ n. Indeed, when r′1 ≥ r1 or

r′2 ≥ r2, the first player can mimic, for Gr′
1
,r′

2
(X, n), the strategies used in Gr1,r2

(X, n). Therefore his

expected payoff is a monotone increasing function in r1 and r2 when the two players adopt an optimal

strategy.

It is quite easy to construct for given r1, r2, and n≥ r1 + r2 games of this kind that are fair or

favorable to Player I. We will come back to this point in this section. However, we also determine

a threshold (r1, r2) through a graph characterization that will be used in the following result (see

formula (30)).
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Theorem 2. For any r1, r2 ∈ N, there exist X ∈ 1 and a family of identically distributed hitting
times n on X such that the game Gr1,r2

(X, n) is favorable to Player II if and only if n ≥ (r1, r2).

This result is also related with “voting paradoxes,” see for example [3, 4].

4.1 Existence of (r1, r2)-directional graphs

We start this subsection with some definitions. For a digraph G = ([n], E⃗) and for disjoint A, B⊂ [n]

we write A→B if for any i∈A and j∈B one has that (i, j) ∈ E⃗. For r1, r2 ∈ N, we say that a digraph

G = ([n], E⃗) is (r1, r2)-directional if for any A⊂ [n] with |A|=r1 there exists B⊂ [n] \ A with |B|=r2 such

that A→B (see [4, 15] for similar definitions). For any r1, r2 ∈ N, let us define

(r1, r2) ∶= inf
{

k ≥ r1 + r2 ∶ there exists a (r1, r2)-directional tournament ([k], E⃗)
}
. (30)

In [15] Erdős analyzes a problem that correspond to the existence of (r1, 1)-directional graphs (see also

[5]). The probabilistic method developed there can be easily adapted in our case.

Theorem 3. For any r1, r2 ∈ N and any n ≥ (r1, r2) there exists a (r1, r2)-directional tournament
T = ([n], E⃗). Moreover

(r1, r2) ≤ inf

{
n ≥ r1 + r2 ∶

(
n
r1

)(
1 − 1

2r1r2

)⌊
n−r1

r2

⌋
< 1

}
< ∞. (31)

Proof. For r1, r2 ∈ N, we first assume that for a specific n0 ∈ N there exists a (r1, r2)-directional

tournament Tn0
= ([n0], E⃗). Then, we prove that for any n> n0 there exists a (r1, r2)-directional

tournament Tn = ([n], E⃗n). The proof is by induction.

Suppose that for n− 1≥ n0 there is a (r1, r2)-directional tournament Tn−1 = ([n − 1], E⃗n−1), then

we will construct a tournament Tn = ([n], E⃗n) that is (r1, r2)-directional.

For any distinct i, j∈ [n− 1] let (i, j) be in E⃗n if and only if (i, j) ∈ E⃗n−1. Moreover, for any

i∈ [n− 1], we impose that (n, i) belongs to E⃗n. It is clear that if Tn−1 is a (r1, r2)-directional tourna-

ment then also Tn is an (r1, r2)-directional tournament. Indeed, if A⊂ [n− 1] with |A|=r1 then one can

select B⊂ [n− 1] with |B|=r2 and A→B, as in Tn−1. On the other hand if we consider an A⊂ [n] such

that n∈A and |A|=r1 then one can take B⊂ [n− 1] such that (A\{n})→B and |B|=r2. In any case the

relation (A\{n})→B implies A→B because (n, i) ∈ E⃗n for any i∈ [n− 1].

Now, we prove formula (31), by the probabilistic method (see e.g., [5]). For this purpose, we

will construct a random tournament, denoted by T(n) = ([n], E⃗(n)), and we will show that it is

(r1, r2)-directional with positive probability.

For two distinct vertices u, v, either (u, v) ∈ E⃗(n) or (v, u) ∈ E⃗(n); both these events occur with

probability 1/2. Moreover all the events involving distinct edges are assumed independent.

For given r1, r2 ∈ N let Ṽ ⊂ [n] with |Ṽ| = r1, we define the event

AṼ ∶= {∃V ′ ⊂ [n]∖Ṽ ∶ Ṽ → V ′, with |V ′| = r2}.

Now, for a given Ṽ having cardinality r1, let us choose a family of sets of vertices(
Vi ∶ |Vi| = r2,Vi ⊂ [n]∖Ṽ , i = 1, … ,

⌊
n − r1

r2

⌋)
,

with Vi ∩Vj =∅, for i≠ j.
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By independence of the random directions involving different edges one has

P(Ac
Ṽ ) ≤ P

⎛⎜⎜⎜⎝
⌊

n−r1

r2

⌋⋂
i=1

{Ṽ → Vi}c

⎞⎟⎟⎟⎠ ≤
(

1 − 1

2r1r2

)⌊
n−r1

r2

⌋
,

for any Ṽ ⊂ [n] with |Ṽ| = r1.

By subadditivity of the probability measure one has

P

⎛⎜⎜⎝
⋂

Ṽ⊂[n]∶|Ṽ|=r1

AṼ

⎞⎟⎟⎠ = 1 − P

⎛⎜⎜⎝
⋃

Ṽ⊂[n]∶|Ṽ|=r1

Ac
Ṽ

⎞⎟⎟⎠ ≥ 1 −
(

n
r1

)(
1 − 1

2r1r2

)⌊
n−r1

r2

⌋
. (32)

For any r1, r2 ∈ N,

lim
n→∞

(
n
r1

)(
1 − 1

2r1r2

)⌊
n−r1

r2

⌋
= 0. (33)

Formulas (32) and (33) imply (31). ▪

Observe that, for a given n ∈ N, if G = ([n], E⃗) is a (r1, r2)-directional digraph and G′ = ([n], E⃗′)
with E⃗ ⊂ E⃗′ then also G′ is a (r1, r2)-directional digraph. This easy observation and Theorem 3 imply

the following result.

Corollary 1. For r1, r2 ∈ N, all the (r1, r2)-directional digraphs have a number of vertices larger
than or equal to (r1, r2).

4.2 Favorable, fair and unfavorable games

In the following, we take the point of view of the second player so we declare favorable (resp. fair
and unfavorable) the game if the expected value of the payoff of Player II is positive (resp. null and

negative), when both players adopt optimal strategies.

We first construct, for any n≥ r1 + r2 a fair game Gr1,r2
(X, n). Let X = (Xm ∶ m ∈ N0) be a

sequence of i.i.d. random variables taking value on [n], with X0 uniformly distributed on [n], hence

X ∈ 1. Let n = {T1, … ,Tn} be the collection of identically distributed hitting times, where

Ti = inf{m ∈ N0 ∶ Xm = i}, for i ∈ [n]. For any strategy of the players the game has a null expected

payoff, therefore the game is trivially fair.

Now we construct an unfavorable game for any n≥ r1 + r2. Let us consider the Markov chain

X(n+ 1, n+ 1), a tournament T = ([n], E⃗) with the property that (i, n) ∈ E⃗ for any i∈ [n− 1], the patterns

R1, … , Rn generated by T and the hitting times TR1
, … ,TRn . Player I takes A with n∈A then, for any

chosen set B by Player II, Player I selects A′ = {n} and B′ ⊂B with |B′|=1. By construction B→ {n},

therefore Player I has guaranteed a positive expected payoff despite of the fact that this strategy could

be suboptimal.

In order to find for which n there exist favorable games we need some more discussion and def-

initions. Definitions 2 and 3 are similar to others given in [11] but they are used there for different

applications and purposes.
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Definition 2. Let us consider two finite sets of random variables A = {Si ∶ i ∈ A} and B = {Si ∶
i ∈ B}, such that A ∪ B has the no-tie property. We say that A is small with respect to B iff

1|A|∑i∈A
pi(A ∪ B) >

1|B|∑i∈B
pi(A ∪ B). (34)

First we present an example showing that the collective behavior cannot be deduced by pair

relations.

Example 4. Let S1 = 49

100
and let S2, S3 be independent r.v. with uniform law on [0, 1]. The collection

{S1, S2, S3} has the no-tie property. The r.v. S1 is small with respect to Si, for i= 2, 3, because P(S1 <

S2) = P(S1 < S3) = 51

100
. But

1

2

3∑
i=2

pi({S1, S2, S3}) =
1

2
− 1

2

(
51

100

)2

>
(

51

100

)2

= p1({S1, S2, S3}).

Therefore {S2, S3} is small with respect to S1. This example shows that the analysis of the smallness

property cannot be reduced to the study of pair relations. In fact, these can be completely reversed

when we move on to consider collections of random variables. A complete theory that studies all the

possible ranking in a set of random variables is in [14, 20].

In order to avoid some difficulties in the construction of favorable games we define some special

systems of random variables.

Definition 3. Let n = {S1, … , Sn} be a collection of random variables and let G(n) = ([n], E⃗)
be the associated ranking graph. We say that n is 2-determined if for any two disjoint A, B⊂ [n] such

that A→B then B = {Si ∶ i ∈ B} is small with respect to A = {Si ∶ i ∈ A}.

Theorem 4. Let n≥ 2 and G = ([n], E⃗) be given. Let R1, … , Rn be patterns in n+1,n+1 generated by
G = ([n], E⃗). For N ≥ n+ 1, let us consider the 1-dependent uniform chain X(N, n+ 1) and the identically
distributed hitting times n = {TR1

, … ,TRn}. Then n is 2-determined.

Proof. For any C ⊂ [n] let C ∶= {Ti ∶ i ∈ C}. For any disjoint A, B⊂ [n] with A→B, we need to

show

1|A|∑i∈A
pi(A ∪ B) <

1|B|∑i∈B
pi(A ∪ B). (35)

Inequality (35) holds true if and only if
1|B|∑i∈Bvi − 1|A|∑i∈Avi > 0, for disjoint sets A, B.

For any i∈A, by Lemma 4, one has

vi ≤ 1 − 1

Nn+1

(
1 − |A| + |B| − 1

Nn+1

) |B|
Nn+1

.

Hence,

1|A|∑i∈A
vi ≤ 1 − |B|

Nn+1
+ (|A| + |B| − 1)|B|

N2n+2
. (36)
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Analogously, by the first inequality in (17) and the hypothesis that A→B, one has

1|B|∑i∈B
vi ≥ 1 − 1

Nn+1

∑
i∈B

∑
j∈B∖{i}∶(i,j)∈E⃗

1. (37)

Hence,

1|B|∑i∈B
vi ≥ 1 − |B| − 1

2Nn+1
(38)

Therefore one obtains

1|B|∑i∈B
vi −

1|A|∑i∈A
vi >

|B|
2Nn+1

− (|A| + |B| − 1)|B|
N2n+2

> |B| ⋅ [ 1

2Nn+1
− 1

N2n+1

]
, (39)

where the last inequality is a consequence of N > |A|+ |B|−1. Thus, for any N ≥ n+ 1≥ 3 and for any

choice of nonempty disjoint sets A, B⊂ [n] the l.h.s. in (39) results larger than zero. ▪

We give the key result that will allow the construction of favorable games.

Theorem 5. Let r1, r2 ∈ N, n≥ r1 + r2, let X ∈ 1 and n = {T1, … ,Tn} be a collection of
identically distributed hitting times.

i. The game Gr1,r2
(X, n) is favorable ⇒ G(n) is (r1, r2)-directional.

Moreover, let us suppose that n is 2-determined then

ii. The game Gr1,r2
(X, n) is favorable ⇔ G(n) is (r1, r2)-directional.

Proof. Item i. The proof is by contradiction. Suppose that G(n) = ([n], E⃗(n)) is not

(r1, r2)-directional. By hypothesis, Player I can select A, with cardinality r1, such that, for any B with

cardinality r2, A↛B in G(n). Let us consider such A and B. Now, Player I selects i∈A and j∈B such

that (i, j) ∉ E⃗(n). Hence, P(Tj < Ti) ≤ 1

2
. Then, by choosing A′ = {i} and B′ = {j} Player I has guaran-

teed that the game is either fair or in his favor. Obviously, this strategy could be suboptimal for Player

I. In any case, the game Gr1,r2
(X, n) is not favorable for Player II.

Item ii. For any set A having cardinality r1, Player II selects B, with cardinality r2, such that A→B.

Let us consider such a B. From the fact that the system is 2-determined for any choice of no empty

A′ ⊂A and B′ ⊂B one obtains

1|A′|∑i∈A′

pi(A′∪B′ ) < 1|B′|∑i∈B′

pi(A′∪B′ ).

By (29), the expected payoff of Player II is positive, for all A′ ⊂A, B′ ⊂B. ▪

Now we prove Theorem 2 presented in the beginning of this section. For given r1, r2 if n < (r1, r2),
by Corollary 1 any graph is not (r1, r2)-directional; then by Theorem 5, the considered game is fair or

unfavorable.

If n ≥ (r1, r2), by Theorem 3, one takes a digraph G = ([n], E⃗) that is (r1, r2)-directional. Let

us take a chain X(N,n+1) ∈ 1 with N ≥ n+ 1. Then the patterns R1, … ,Rn ∈ n+1,n+1 generated by

G are considered. By Theorem 1, we know that G({TR1
, … ,TRn}) = G, moreover TR1

, … ,TRn are
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identically distributed hitting times and, by Theorem 4, these hitting times are 2-determined. Finally, by

the item ii of Theorem 5, the game Gr1,r2
(X(N,n+1), {TR1

, … ,TRn}) is favorable. This proves Theorem 2.
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16. P. Erdős and L. Moser, On the representation of directed graphs as unions of orderings, Magyar Tud. Akad. Mat.

Kutató Int. Közl. 9 (1964), 125–132.

17. L. J. Guibas and A. M. Odlyzko, String overlaps, pattern matching, and nontransitive games, J. Combin. Theory

Ser. A 30 (1981), 183–208.

18. F. Manzo and E. Scoppola, Exact results on the First hitting via conditional strong quasi-stationary times and
applications to metastability, J. Stat. Phys. 174 (2019), 1239–1262.

19. D. C. McGarvey, A theorem on the construction of voting paradoxes, Econometrica 21 (1953), 608–610.

20. D. G. Saari, A chaotic exploration of aggregation paradoxes, SIAM Rev. 37 (1995), 37–52.

21. R. P. Savage Jr., The paradox of nontransitive dice, Amer. Math. Mon. 101 (1994), 429–436.

22. R. Stearns, The voting problem, Amer. Math. Mon. 66 (1959), 761–763.

23. S. Trybuła, Cyclic random inequalities, Appl. Math. 10 (1969), 123–127.

How to cite this article: De Santis E. Ranking graphs through hitting times of Markov chains.

Random Struct Alg 2021;1–15. https://doi.org/10.1002/rsa.20998

https://doi.org/10.1007/s11009-020-09772-3
https://doi.org/10.1002/rsa.20998
https://doi.org/10.1002/rsa.20998
https://doi.org/10.1002/rsa.20998
https://doi.org/10.1002/rsa.20998
https://doi.org/10.1002/rsa.20998
https://doi.org/10.1002/rsa.20998

