Let $1<14/5$, $lambda_1,lambda_2,lambda_3$ and $lambda_4$ be non-zero real numbers, not all of the same sign such that $lambda_1/lambda_2$ is irrational and let $omega$ be a real number. We prove that the inequality $|lambda_1p_1+lambda_2p_2^2+lambda_3p_3^2+lambda_4p_4^k-omega|le (max (p_1,p_2^2,p_3^2,p_4^k))^{-psi(k)+arepsilon}$ has infinitely many solutions in prime variables $p_1,p_2,p_3,p_4$ for any $arepsilon>0$ where $psi(k)=minleft(rac1{14},rac{14-5k}{28k} ight)$.
Diophantine approximation with one prime, two squares of primes and one kth power of a prime / Gambini, A.. - In: OPEN MATHEMATICS. - ISSN 2391-5455. - 19:1(2021), pp. 373-387. [10.1515/math-2021-0044]
Diophantine approximation with one prime, two squares of primes and one kth power of a prime
Gambini A.
Primo
2021
Abstract
Let $1<14/5$, $lambda_1,lambda_2,lambda_3$ and $lambda_4$ be non-zero real numbers, not all of the same sign such that $lambda_1/lambda_2$ is irrational and let $omega$ be a real number. We prove that the inequality $|lambda_1p_1+lambda_2p_2^2+lambda_3p_3^2+lambda_4p_4^k-omega|le (max (p_1,p_2^2,p_3^2,p_4^k))^{-psi(k)+arepsilon}$ has infinitely many solutions in prime variables $p_1,p_2,p_3,p_4$ for any $arepsilon>0$ where $psi(k)=minleft(rac1{14},rac{14-5k}{28k} ight)$.File | Dimensione | Formato | |
---|---|---|---|
Gambini_Diophantine_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.