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1 Introduction

This paper deals with a Diophantine inequality with prime variables involving a prime, two squares of
primes and one kth power of a prime. In particular, we prove the following theorem:

Theorem 1. Assume that 1 < k < 14/5, A, Ay, A3 and A4 be non-zero real numbers, not all of the same sign,
that Ai/A, is irrational and let w be a real number. The inequality

\ip1 + Aop3 + Aspd + Aupf — wl| < (max(py, p3, p3, pf)y ¥k (1)
has infinitely many solutions in prime variables p, p2, ps, ps for any € > 0, where

1 14—5kj
14> 28k )

Yk) = min[

Many recent such results are known with various types of assumptions and conclusions. Many of them deal
with the number of exceptional real numbers w such that the inequality

i+ + Apf —wl <

has no solution in prime variables p;,..., p;, for small > 0 fixed.

Briidern et al. in [1] dealt with binary linear forms in prime arguments; Cook and Fox in [2] dealt with
a ternary form with squares of primes that was improved in terms of approximation by Harman in [3]. Cook
in [4] gave a more general description of the problem, later improved by Cook and Harman in [5].

* Corresponding author: Alessandro Gambini, Dipartimento di Matematica ‘Guido Castelnuovo’, P.le Aldo Moro 5, Sapienza
Universita di Roma, Rome, ltaly, e-mail: alessandro.gambini@uniroma1.it

8 Open Access. © 2021 Alessandro Gambini, published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.


https://doi.org/10.1515/math-2021-0044
mailto:alessandro.gambini@uniroma1.it

374 —— Alessandro Gambini DE GRUYTER

There are some differences between the results quoted above and our purpose: in our case the value
of n does depend on the primes p; and it will be actually a negative power of the maximum of the p; while
in the papers quoted above 7 is a small negative power of w. In their papers, the assumption that the coeffi-
cients A; are all positive is not a restriction. Moreover, k; is the same positive integer for all j. Nevertheless,
the assumption that A;/A;, must be irrational is still the heart of the matter.

Vaughan in [6] follows another approach, that is, the same we are using in our article: dealing with
a ternary linear form in prime arguments and assuming some more suitable conditions on the A;, he proved
that there are infinitely many solutions of the problem:

Aip1 + Aps + Asps —w| <1,

when 1 depends on the maximum of the p;; in his case = (max;p; )1 . Such result was improved by Baker
and Harman in [7] with exponent —%, by Harman in [8] with exponent —é and finally by Matomaki in [9]
with exponent —é.

Languasco and Zaccagnini in [10] and [11] dealt with a ternary problem with a kth power of a prime.
In this case, the value of 17 is a negative power of the maximum of p; also depending on the parameter k:
the idea in this case is to get both the widest k-range and the strongest bound for the approximation.

Li and Wang (see [12]) in 2011 dealt with a quaternary problem with a prime and three square of primes

getting as exponent —%. Languasco and Zaccagnini improved it to —é in [13]; Liu and Sun, in turn, impro-
ved it to —% using the Harman technique in [14]. Finally, Wang and Yao in [15] improved the approximation

to the exponent —i; in this paper, we generalized the problem to a real power k € (1, %)

2 Outline of the proof

We use a variant of the classical circle method that was introduced by Davenport and Heilbronn in 1946 [16]
in order to attack this kind of Diophantine problems. The integration on a circle, or equivalently on the interval
[0, 1], is replaced by integration on the whole real line.

Throughout this paper, p and p; denote prime numbers, k > 1 is a real number, € is an arbitrarily small
positive number whose value could vary depending on the occurrences and w is a fixed real number. In
order to prove that (1) has infinitely many solutions, it is sufficient to construct an increasing sequence X,
that tends to infinity such that (1) has at least one solution with maxp; € [6X,, X,], with § > O fixed,
depending on the choice of A;. Let g be a denominator of a convergent to A;/A; and let X,, = X (dropping
the suffix n) run through the sequence X = ¢q’7. The choice of such X is due to an optimization procedure.
Set

Si@) =Y logpe(p*a), @)
SX<pk<X

Uda) = ) e(n*a), 3)
§X<nk<X
Xk

T@) = J.e((xtk)dt, %)
Xk

where e(a) = eZia,

In order to get the best possible estimate we will use the sieve function p(m) defined in (5.2) of [17]
introduced by Harman and Kumchev and used by Wang and Yao in [15] in the case k = 2, which is a non-
trivial lower bound for the characteristic function of primes. Such function will allow us to define an expo-
nential function (6) with a different weight:

p(m) = p(m, X542 — %" Y(m/p, z(p)),

X5/423p<xl/4
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where

1if pm = p=>z,
0 otherwise

Y(m, z) = {

and
X5/28p—1/2 if p < X1/7,
z(p) =1p if X177 <p < X314,
X5/14p—1 if p> X314,
The choice of the exponents in the definition of p (and consequently of z) is an appropriate choice of the

function itself having the properties (i)—(v) of [17, Section 3] and constructed with sieve methods. The property
we are most interested in about p(m) is the estimation (2.3) of [15]:

Y pm) = tlll(logX)™ + OX"*(log X)2), )

mel

where £ > 0 is an absolute constant and I is any subinterval of [(6X)!/2, X'/2]. The exact value of the constant
¢ is the same given by the constant § defined in (4.4) of [17]: it is expressed in terms of integrals of
Buchstab’s function in [17, Section 5], from numerical calculation ¢ > 9/10. With this premises we define
the following exponential function:

Siay= ) p(m)e(ma). (6)
6X<m?<X

We will approximate S, with T, and Uy and §2 with T.
By the Prime Number Theorem and first derivative estimates for trigonometric integrals we have

Sia) < Xk, Sya) < X2, T(@) <xs Xi'min(X, |a 1), )

where k > 1 and 6 > O are real numbers.
Moreover, the Euler summation formula implies that, for k > 1,

Ti(a) — Ula) < 1 + |a|X. (8)
We also need a continuous function that we will use to detect the solutions of (1), so we introduce
I?,l(a) = max{0, n - |a|}, where >0,

whose inverse Fourier transform is

sin(man) T
a

Ky(a) = [

for a # 0 and, by continuity, K,(0) = n2. It vanishes at infinity like |a|? and in fact it is trivial to prove that
Ky(@) < min(n?, |al~?). 9

The original works of Davenport-Heillbronn in [16] and later Vaughan in [6] and [18] approximate directly

the difference |S(a) — Ti(a), estimating it with O(1) using the Euler summation formula. Briidern et al.
(see [1]) improved these estimations taking the I?-norm of |Si(a) — Ti()| leading to significantly better

conditions and to have a wider major arc compared to the original DH approach. In fact, setting the
generalized version of the Selberg integral, which was first used by Languasco-Setitmi for the case k = 2

in [19],
B T AN AN L AN
JiX, h) = l(@((x + h)k) B(Xk) <(x + h)k Xk)] dx,

where 6 is the Chebyshev Theta function,
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6(x) = ) logp,

<X

we have the following lemmas.

Lemma 1. [10, Lemma 1] Let k > 1 be a real number. For 0 < Y < %, we have

" 2

221002
I|Sk(a) - Ur(@) Pda < w +Y2X + Yzjk[X, %)
-y

Lemma 2. [10, Lemma 2] Let k > 1 be a real number and € be an arbitrarily small positive constant. There
exists a positive constant ¢|(€), which does not depend on k, such that

5
JiX, h) < th%’lexp —-q loi
loglog X

uniformly for X'-a*¢ < h < X.

2.1 Setting the problem

Let
PX) = {(P1, D2, D3, Ps) : 6X <p1 < X, 86X < p?,p3 <X, 6X < pf <X}

and let us define

I, w, X) = Isl(Ala)§2(Aza)Sz(A3a)Sk(Az.a)Kq(a)e(—wa)da,
X

where X is a measurable subset of R.
From the construction of p(m) follows that, if w(m) is the characteristic function of the set of primes,

p(m) < w(m).
Then, from the definitions of Sj(A;a) and Sy(ha), and performing the Fourier transform for Ky(a), we get
I(n, w,R) = Y logpip(my)logp;logp, -(max(0,n — Aipy + Amg + Asp? + Aupk — wl)
piePX)

< n(log X)’ N(X),

where N(X) denotes the number of solutions of the inequality (1) with (p1, p>, p3, ps) € P(X). In other words,
I(n, w,R) provides a lower bound for the quantity we are interested in; therefore, it is sufficient to prove
that 7(n, w,R) > 0.

We now decompose R into subsets such that R = M U m uU t where M is the major arc, m is the minor
arc (or intermediate arc) and t is the trivial arc. The decomposition is the following:

M = [_B, £:|’ m= l:B, R:| U |:—R, —£:|, t= [R\(M um),
X' X X X

so that 7(n, w, R) = I(n, w, M) + I(n, w, m) + I(n, w, t).
The parameters P = P(X) > 1and R = R(X) > 1/n are chosen later (see (13) and (16)) as well as = n(X),
that, as we explained before, we would like to get a small negative power of max p; (and so of X, see (24)).
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We are expecting to have on M the main term with the right order of magnitude without any special
hypothesis on the coefficients A;. It is necessary to prove that 7(n, w, m)and I(n, w, t) are both o(Z(n, w, M)):
the contribution from the trivial is “tiny” with respect to the main term. The real problem is on the minor arc
where we will need the full force of the hypothesis on the A; and the theory of continued fractions.

Remark: From now on, anytime we use the symbol <« or » we drop the dependence of the approximation
from the constants A;, 6 and k.

2.2 Lemmas

In this paper, we will also use Lemmas 3-4-10 of [20] and (2.5) of [15] that allow us to have an estimation of
mean value of |Sy(@)/* and |Sy(@)[*:

Lemma 3. [20, Lemma 3] Let € > O fixed, k > 1,y > 0 and let AXY; k; y) denote the number of solutions of
the inequality

K, ook ok ok
I + nf - nf —nfl <y, XYK<n,ny,ns, n, < 22XV

Then
AXYE, ks y) < (pXAk1 4 X2k XE,

Lemma 4. [20, Lemma 4] Let k > 1, T > 0. We have

T
_[|Sk(a) [“da < (TX2/k + X4, Xe « max(rX2/kre, X4/k-1+¢),

T
Lemma 5. [20, Lemma 10]

IlSk(Aa) 4K(@)da < nX¢ - max(X2/k, X4/k-1),

m

Finally, we will use the following Lemma.

Lemma 6. Let Si(a) and Sy(a) defined as in (2) and (6), respectively, and m be the minor arc. Then we have

1

JISl(a) Pda < X logX, JISl(a) PKy(a)da < nX logX,

0 m

1

IISz(a) [*da <« X log?X, IISZ(a) [“Ky(@)da < nXlog?X,

0 m

1

I|§2(a) fda < X(logX)° , I|§2(a) K@) da < nX(logX)" .
0 m

Proof. The first two statements come directly from the Prime Number Theorem, the second two estimations
are based on Satz 3 of [21, p. 94] and the last two refer to (2.5) of [15]. O
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3 The major arc

Let us start from the major arc and the computation of the main term. We replace all S, and S, defined in (2)
and (6) with the corresponding T; defined in (4). This replacement brings up some errors that we must
estimate by means of Lemma 1, the Cauchy-Schwarz and the Hoélder inequalities. We write

In,w, M) = ISI(AIa)Sz(/lza)Sz(A3a)Sk(/laa)Kr,(a)e(—wa)da

M
= ¢(log X)™ jTl(/lla) Lk a) T a) Ti(A,a) Ky(a) e(-wa) da
M

+ J-(Sl(Ala) - Tiha) Saha) () T(As ) Ky(@) e(-wa) da
M

+ ISI(/ha) SxAa) - e(log X)! T(ha)) T a) Ti(Asa) Ky(a) e(-wa) da
M

+ ISI(Ala)STz(Aza) (S:(Aa) - T(Aza)) Ti(Aya) Ky(a) e(-wa) da
M

+ ISI(Ala)STz(Aza)Sz(Aga) (SkAsa) — Ti(As@)) Ky(a) e(~wa) da
M

=h+h+h+]+k

Since the computations for J, are similar to, but simpler than, the corresponding ones for j, J, and J;, we
will leave it to the reader.

3.1 Main term: lower bound for J;

As the reader might expect the main term is given by the summand Jj.
Let H(a) = TiAa) L(ha) LAza) Ti(Asa) K (a)e(-wa) so that

h = E(logX)‘lj-H(a)da + 0| (logX)™ J.IH(a)Ida .
R

P/X

Using inequalities (9) and (7),

+00 +0o

IIH(a)Ida < X‘lXi‘lnzjd—f < Xetipp3 = 0<Xi+1112)
a

P/X P/X

provided that P — +oo. Let D = [6X, X] x [(6X)2, X3 x [(6X)t, Xt]; we have

IH(a)da - I” ety + M8 + AE + At - w)a)K (@ dadtdbdede,
R D R

= J""_[Hl&X(O, n- Mltl + Aztzz + /13t32 + A4tll,( - wl)dtldtzdt3dt4.
D

Apart from trivial changes of sign, there are essentially three cases:
1. >0,4>0,A4>0,1;, <0;
2. 4>0,4>0,A3<0,A,<0;
3. 4>0,4<0,43<0,1, <0.

We deal with the second case, cases 1 and 3 being similar. Let us perform the following change of

variables: u; = t; - %, W =, u3 = t, u, = tf, so that the set D becomes essentially [6X, X]*. Let us define
1
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D' = [6X, (1 - 6)X]* for large X, as a subset of D. The Jacobian determinant of the change of variables above

L1 -1 11y
is 2ou,’uz?uj . Then

i > (logX)‘le(a)da = (logX)1! j~--jmax(0, n - hw + iy + A3us + Mml)%w
R /!

o uFuiu, ¢
> (logX)! Xi—2 f~--_[max(0, n - A + Ly + Aus + Aquyl)duyduy dusduy,.
DI

4 |Ag
A1 2

Now, forj =1,2,3 letq; = b; = ;aj and D; = [a;6X, b;6X]; if u; € Dj, then
Ay + Ly + Asuz € [2|A4]6X, 8|A4]6X]

so that, for every choice of (uy, u,, u3) the interval

1 1
la, b] = {—(—n + (M + by + Awg)), — @ + Ly + hup + A}”s)):'
A4l [A4]

is contained in [6X, (1 — 6)X]. In other words, for u, € [a, b] the values of ALju; + Lu, + A3us + A u, cover
the whole interval [-7, 7]. Hence, for any (uy, U, u3) € D1 x D, x D3 we have
1-8)X n

J- max(0, 1 — |Auy + Luy + A3us + Auuy|)duy = 4470 | max(0, n — |ul)du > n.

6X -n
Finally,

Ji > (log X)™ n2Xx 2 “:[ duydurdus > 2X02X3 = p2Xx+1(log X) ™!,
D1xDHx D3

which is the expected lower bound.

3.2 Bound for J5

From partial summation on (6) we get

!
S = [eacad Y pm))
1 my<t
(6X)2 mye (X2, X1/2)

then
Sha) - tlogX) ! Lha) < X2(1ogX)2(1 + |alX).

Finally, 5 can be estimated as follows:
k< an‘ 1T [IS5(Aa) - €log X)™! Ttk HAsa) || TeAq @) |da
M

X
< n’X:(log X )*ZJ‘ ITi(ha) | L) || Ti(A4a) |[da
0

P/X
+ n°X2(log X))~ | alTlh)|ILAsa) (| Ti(Asa)|da = o(n°Xk*'(log X)-
2X3(10g X)? | alTiha) | B(As@) || TdAsa) |d 2Xi*1(log X)!
/X

using (7).
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3.3 Bound for J,

Using the triangle inequality,

Ja Isl(Ala)g (Aa) (S:(A30) — T(Aa)) Ti(Asa) Ky(a) e(-wa) da

M
< IIS1(A1a)I|§ Aa)lIS:(a) - TAsa)l| TiA4a)|da
M

IA

n’ IIS1(A1a)I|§ Aa)lS:Az0) - Ur(Aa)]|Ti(A4a)|dax
M
+ 1 II51(A10()I|§ Aal|Ux(Aa) - Do)l TlAs)lda = n*(A4 + By),
M

where Uy(A3a) is given by (3).
Using (7) and the Cauchy-Schwarz inequality,

1 1
2 2

A, < XoXk I|Sl(A1a)||SZ(A3a) - D(sa)da < X2Xi j|sl(/t1a)|2da I 1S5(50) — Us(Aa)Pda| .
M M M

Using Lemmas 1 and 2 (these will give us some conditions on P but the choice we will make in (13)
makes all things work), we have

A, < X3 H(X log X)b(log X) 4 = XM*i(log X)i~4 = O(Xi“)
as long as A > 1. Again using (7) and (8),
B, < Xk J|51(/11“)||§(/\2a)||Uz(/13a) - L(Aza)|da
M

1

X
< Xt _[ 1S;A4 1S ha)lda + Xt | alSi4a)l|S A a)lda.
0

et T

Recalling that |a| < § on M and using the Holder inequality, trivial bounds and Lemma 6, we have

1

1 1
P/X 2(P/X % P/X 4

B, < Xx%x%% L xin I 1S,(ha) Pdat I adat j S [“da
1/X 1/X 1/X

5
< Xi*h + Xith(log X) [gjaX%(logXﬁ = X3+ iPi(log X)b+6 .
Since we must have Pi = o(Xi(logX )‘3‘4 ), it follows that
P <X (10)

is sufficient for our purpose.
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3.4 Bound for J5

In order to provide an estimation for J5, we use (9),
J < n? jISl(/ha)IISz(/\za)IISz(/laa)IISk(/laa) - T(Asa)lda.
M

The two terms are equivalent; then we consider only one of them

Js < n? I|51(/\1a)||§2(A20()||52(/13f1)|5k()l411) - Ti(A4)lda
M

< n? I|51(/\1a)||§2(A20()||52(/13a)|5k()l411) - U(A4a)lda
M

+ 12 I|51(A10f)||§2(A201)||52(/\3a)|Uk(/\411) - TAse)lda = n*(As + Bs).
M

Using trivial estimates,
As < X I|§2(/120l)||52(A311)|Sk(/\401) - UA4a)|da,
M

2

then using the Holder inequality, for any fixed A > 2 by Lemmas 1 and 2 we have
1

1

1
4

4

As < X j|§z(Aza)|‘* j|sz<A3a>|4da f|sk(il4a>— UeAs)da
M M M

1
< XXi(log X)i Xi(log X)? gjk(X, %jz <4 X'"i(logX):ti=2 = o(xiﬂ),

provided that % > X'-a+¢ (condition of Lemma 2), that is,
P < Xa¢. (11)
Now we turn to Bs: by (8) we have
X P/X
B; « J|51(A1a)||§2(A20()||52(A30()|d0( +X J-a|51(/11a)||§2(A20()||52(/130()|d0(-
0 1/X
Using trivial estimates and Lemma 6
Ux SIUX rrx !
Bs < | [Ishepdal | [IShardal | [Isisalda
0 0 0
1 1 1
P/X 2(P/X ¥ (PIX u
v x| [ Isharda | [ Sharda | [ Isdsarda
1/X 1/X

X
< (X 1og X)7(X log X)#(X log?X)i + P(X log X)2(X log® X)4(X log2 X)i

= X(logX)'*4 + PX(log X)!*4 .

Then we need

12)
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Collecting all the bounds for P, that is, (10), (11), (12) we can take
P< min(X%*f, X(,%**-‘). (13)

In fact, if we consider (10) and (11) we should choose the most restrictive condition between the two:

1fk<f—;,P X3-¢, otherwise, 1f <k< E P = Xa¢.

4 The trivial arc

From the trivial bound for S;(1,a), we see that
II(n, w, Ol <« I 11041 @) Sx(A2@) S2(A32) Si(A s ) Kyl dex

R

1
3 +o0 i [ +c0 4

< Xi I 1S1(A Q)P K@) dex f ISZ(/\za)|4K,1(a)da J 1S:(Az )| K@) dex

1

+00 z +00 114 4
2 4 4
< Xt |51(i120()| da J‘|52(22211)| da |52(23211)| da

R R R

111
= XiC2ChCh.

Using the Prime Number Theorem and the periodicity of S;(a), we have

(Il T|sl(a)|2 I X logX
C = 17 a< | —/—da <« Si(@)Pda <« .
1= e e Z - )2 |S1(a)] IR (14)
2 IR n|A|R
Using Lemma 6 we can estimate both G, and G, for brevity we leave G to the reader,
[Batha jo Sy@r’ I X(log X
G = Ii a < ———da « Sy(a)fda « —=2——,
2= e o2 >Z/1:R( ~1y |Sa(a)] IR (15)
R IR nz|Ay|
Collecting (14) and (15),
1 c\i 2%\ 1+1 1+
T, w, B)] < X’I{X logX\: (X(logX) j" Xlog?X ) < X" i(log X)*4
R R R R
Hence, remembering that |7(n, w, t)| must be o (ani“), i.e., of the main term, the choice
1+c
R- (lm% (16)

is admissible.

5 The minor arc

In [15], Section 4 it is proven that the measure of the set where|S;(A;a) |2 and |S,(A,@)| are both large fora € m
is small, exploiting the fact that the ratio A;/A, is irrational.
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Lemma 7. [22, Theorem 3.1] Let a be a real number and a, q be positive integers satisfying (a, q) = 1 and

o
q

1
< z Then

X 4
Si(a) <« | =— + JXq + X5 |log*X.
[ﬁ ]

We now state some considerations about Lemma 7:

Corollary 1. [14, Corollary 2.7] Suppose that X > Z > X 1-5+¢ gnd |S1(Aya)| > Z. Then there are coprime integers

(a, q) = 1 satisfying

x1+e)2 X;+s2
1<qg=< , ha - al < .
q LZJ lah | (ZJ

Lemma 8. [15, Lemma 1] Suppose that X:>Z> X1 and IS5(&a)| > Z. Then there are coprime integers

(a, q) = 1 satisfying

4 1 4
X;+s X3+e
1<qgc< , ha - al < X1 .
q (Z] lgA> | (Zj

Let us now split m into two subsets 1 and m* = m\m. In turn m = m; U m,, where
m = {a e m: |S;(Aha) < X1-7+€},

my = {a € m: |Sy(ha) < Xa-1*e},
Using the Holder inequality, Lemmas 5-6 and the definition of m;, we obtain

(1, w, my)| « II51(/l10f)|I§z(/lza)lISz(/laa)IISk(Ma)II(q(a)da

X A 14
< [maxlSl(Ala)ﬂ IISl(Ala)lan(a)da I|§2(A2a)|41<n(a)da
aemy ml ml
1/4 1/4
< | [Isar K @dal | sl K @da

m m
< X7*¢(nX log X)i (nX log¢ X)i (nX log2X)i (nxs max(Xx, Xi-l))‘l‘
= nX»+% max(Xa, Xk 4).

Using the Holder inequality, Lemmas 5, 6 and the definition of m,, we obtain

[ Z(n, w, my)| <« IISl(/ha)lI§z(/\za)lISz(/l3a)I|Sk(/l4a)IKn(a) da

12 1/4 1/4
<« maxiSbal| [IShaPK@da | [ISsarK@da| | [IS0uarKeda
m, m, my

1
< X7+ (X log X2 (nX logZX)%(rlX'g max(Xx, ng)]"

33 1 1_1
= nXx*% max(Xx, Xx~%).

a7

(18)



384 —— Alessandro Gambini DE GRUYTER

Both (17) and (18) must be o (an 1*%), consequently it is clear that for 1 < k < 2, nj is a negative power of

X independently from the value of k and (k) = % Then we have the following most restrictive condition
for k > 2:

N = oo (XVh+e),

where (k) = 142;:". We use the notation f = oco(g) for g = o(f).

It remains to discuss the set m* in which the following bounds hold simultaneously

log?X
7

ISiha) | > X7, Sha)l > X7, X5 < Jal < R.

Following the dyadic dissection argument as in [3] we divide m* into disjoint sets E(Z;, Z,, y) in which,
for a € E(Zy, Z,, y), we have
Z < IS)| <22y, Z, < 1Sha)| <22, y < lal <2y,

where Z; = 2kX ?*S, Z, = 2kX 7+ and y= 2l X-i-¢ for some non-negative integers k;, k, k.

It follows that the number of disjoint sets are, at the most, «log>X. Let us define A as a shorthand for
the set E(Z;, Z>, y); we have the following result about the Lebesgue measure of A following the same lines
of Lemma 6 in [23]:

Lemma 9. Let € > 0. We have u(A) <« yX 7 +3¢7°275%, where u(-) denotes the Lebesgue measure.

Proof. If & € A, by Corollary 1 and Lemma 8 there are coprime integers (a;, ¢;) and (a,, q,) such that

1+£))2 12
1<q < [XZ j e - @l < [XZ ] , (19)
1

1

4 1 4
Xive X3
, ha - a| < X! . 20
Z J |g2A2 )| ( Z } (20)

1sq2<<£

We remark that a;a, # 0 otherwise we would have a € M. In fact, if a; = 0, recalling the definitions of
Z; and (19), we get

+€
ol < qfl(xz
Z

1

2
J < X5

otherwise, if a, = 0 recalling the definitions of Z, and (20)
e\
la] < g5 IXI(XZ—j < X,
Z
It means that on the minor arc
lal > X7+ (21)

Now, we can further split m* into sets I(Z;, Z>, y, Q1, Q2) where, on each set, Q; < g; < 2Q;. In the opposite
direction, for a given quadruple ai, qi, @, ¢», the inequalities (19)—(20) define a subset of a of length

BRI e 2 ~ X3te 4
U(I) < min [9[ Z J , QZIX_{TZJ ]

By taking the geometric mean we can write

11 xive ) xive ) X1+3¢
H(I) < Ql ZQZ ZX%[ Zl Zz < 1 1 5 . (22)
Q7 Z12;
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1 1
Now we need a lower bound for Q2 Q#: by (19) and (20)

aq&—aq
21/12 142

a a
—(gha - @) - ——(@ha - a)
/12(1 Aza
< @lgha — ail + qlgha — ay
2 1 4
X;+£ X3+e
<Q + QX1 .
. x1e ) xiee ) 6 3
Remembering that Q; « - | Q < i Zy > X7%¢, Z, > X77¢, we have
1 2

L\ ylee)? 1+£\2 Lie )\t 2+4e Y1428
< (XZ ] (Xz J + (X ]X{XZ J < XX « X776 < % (23)
q

Xo+e ) | xi+e X5+ X3+ XFraexF2e

aqﬁ—aq
21/12 142

We recall that X = g’7. Hence by (23), Legendre’s law of best approximation for continued fractions
implies that|a,q;| > q and by the same argument, for any pair a, a’ having distinct associated products a,q;
(see Watson [24]),

lax(@) qi(@) — ax(a’)qu(@)] = gq;

thus, by the pigeon-hole principle, there is at most one value of a,q; in the interval [rg, (r + 1)q) for any
positive integer r. Hence, a,q; determines a, and g, to within X¢ possibilities (from the bound for the divisor
function) and consequently also a,q; determines a; and g, to within X¢ possibilities from (23).

Hence, we obtain a lower bound for ¢;4,, remembering that Q; < g; < 2Q;:

r
Q9 = 6126112 > 9 > rqy™!
a al

for the quadruple under consideration. As a consequence, we obtain from (22), that the total length of the
part of the subset I(Z;, Z>, y, Q1, Q), with ayq; € [rq, (r + 1)q), is

ul) < X1z 7,2 3q 2y,
Now, we sum on every interval to get an upper bound for the measure of A:
UA) <« X132 7252 g2y > ra.
1<r<qlyX4+6ez2 754

By standard estimation we obtain

1 _ _4N\1
12 < (qlyX4r e Z2 2%z,
1<r<qlyx4+6ez2 74

then
U(A) < yX3+6eZ72 754 gL « yXB3OeZ2 7,4 X7 < yX 77 2yt

This concludes the proof of the lemma. O

Using Lemma 9, we finally are able to get a bound for 7(n, w, A):

l[I(n, w, A) < '[ISl(/ha)I|§z(/12a)|ISz(/larx)lISk(/h.a)lKr,(a)da

A
: : N e2)

<| [IstuSarK @dal | [ISsal K @dal | (ISl K @da
A A A
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S

1
(o 1)) 2 1 251 ZR S
< |min|n?, — (Z1Zy)*u(A))2 X log? X)s | nX€ max| Xk, Xk
y
< NZ; X7+ Exa2e max(lek,Xi‘lj < nX7EX 2 max(lek, Xi‘ij

31 1 1 1
<« nXasthe max(sz, Xk_aj,

son = oo(max(X‘ﬁ, X‘“zs;fk“j is the optimal choice.
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