Research Article

Alessandro Gambini*

Diophantine approximation with one prime, two squares of primes and one kth power of a prime

https://doi.org/10.1515/math-2021-0044
received February 14, 2021; accepted May 6, 2021
Abstract: Let $1<k<14 / 5, \lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} be non-zero real numbers, not all of the same sign such that $\lambda_{1} / \lambda_{2}$ is irrational and let ω be a real number. We prove that the inequality $\left|\lambda_{1} p_{1}+\lambda_{2} p_{2}^{2}+\lambda_{3} p_{3}^{2}+\lambda_{4} p_{4}^{k}-\omega\right| \leq$ $\left(\max \left(p_{1}, p_{2}^{2}, p_{3}^{2}, p_{4}^{k}\right)\right)^{-\psi(k)+\varepsilon}$ has infinitely many solutions in prime variables $p_{1}, p_{2}, p_{3}, p_{4}$ for any $\varepsilon>0$, where $\psi(k)=\min \left(\frac{1}{14}, \frac{14-5 k}{28 k}\right)$.
Keywords: Diophantine inequalities, Goldbach-type problems, Hardy-Littlewood method, Davenport-Heilbronn method

MSC 2020: 11D75, 11J25, 11P32, 11P55

1 Introduction

This paper deals with a Diophantine inequality with prime variables involving a prime, two squares of primes and one k th power of a prime. In particular, we prove the following theorem:

Theorem 1. Assume that $1<k<14 / 5, \lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} be non-zero real numbers, not all of the same sign, that $\lambda_{1} / \lambda_{2}$ is irrational and let ω be a real number. The inequality

$$
\begin{equation*}
\left|\lambda_{1} p_{1}+\lambda_{2} p_{2}^{2}+\lambda_{3} p_{3}^{2}+\lambda_{4} p_{4}^{k}-\omega\right| \leq\left(\max \left(p_{1}, p_{2}^{2}, p_{3}^{2}, p_{4}^{k}\right)\right)^{-\psi(k)+\varepsilon} \tag{1}
\end{equation*}
$$

has infinitely many solutions in prime variables $p_{1}, p_{2}, p_{3}, p_{4}$ for any $\varepsilon>0$, where

$$
\psi(k)=\min \left(\frac{1}{14}, \frac{14-5 k}{28 k}\right)
$$

Many recent such results are known with various types of assumptions and conclusions. Many of them deal with the number of exceptional real numbers ω such that the inequality

$$
\left|\lambda_{1} p_{1}^{k_{1}}+\cdots+\lambda_{r} p_{r}^{k_{r}}-\omega\right| \leq \eta
$$

has no solution in prime variables p_{1}, \ldots, p_{r}, for small $\eta>0$ fixed.
Brüdern et al. in [1] dealt with binary linear forms in prime arguments; Cook and Fox in [2] dealt with a ternary form with squares of primes that was improved in terms of approximation by Harman in [3]. Cook in [4] gave a more general description of the problem, later improved by Cook and Harman in [5].

[^0]There are some differences between the results quoted above and our purpose: in our case the value of η does depend on the primes p_{j} and it will be actually a negative power of the maximum of the p_{j} while in the papers quoted above η is a small negative power of ω. In their papers, the assumption that the coefficients λ_{j} are all positive is not a restriction. Moreover, k_{j} is the same positive integer for all j. Nevertheless, the assumption that $\lambda_{1} / \lambda_{2}$ must be irrational is still the heart of the matter.

Vaughan in [6] follows another approach, that is, the same we are using in our article: dealing with a ternary linear form in prime arguments and assuming some more suitable conditions on the λ_{j}, he proved that there are infinitely many solutions of the problem:

$$
\left|\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}-\omega\right| \leq \eta,
$$

when η depends on the maximum of the p_{j}; in his case $\eta=\left(\max _{j} p_{j}\right)^{-\frac{1}{10}}$. Such result was improved by Baker and Harman in [7] with exponent $-\frac{1}{6}$, by Harman in [8] with exponent $-\frac{1}{5}$ and finally by Matomäki in [9] with exponent $-\frac{2}{9}$.

Languasco and Zaccagnini in [10] and [11] dealt with a ternary problem with a k th power of a prime. In this case, the value of η is a negative power of the maximum of p_{j} also depending on the parameter k : the idea in this case is to get both the widest k-range and the strongest bound for the approximation.

Li and Wang (see [12]) in 2011 dealt with a quaternary problem with a prime and three square of primes getting as exponent $-\frac{1}{28}$. Languasco and Zaccagnini improved it to $-\frac{1}{18}$ in [13]; Liu and Sun, in turn, improved it to $-\frac{1}{16}$ using the Harman technique in [14]. Finally, Wang and Yao in [15] improved the approximation to the exponent $-\frac{1}{14}$; in this paper, we generalized the problem to a real power $k \in\left(1, \frac{14}{5}\right)$.

2 Outline of the proof

We use a variant of the classical circle method that was introduced by Davenport and Heilbronn in 1946 [16] in order to attack this kind of Diophantine problems. The integration on a circle, or equivalently on the interval $[0,1]$, is replaced by integration on the whole real line.

Throughout this paper, p and p_{i} denote prime numbers, $k \geq 1$ is a real number, ε is an arbitrarily small positive number whose value could vary depending on the occurrences and ω is a fixed real number. In order to prove that (1) has infinitely many solutions, it is sufficient to construct an increasing sequence X_{n} that tends to infinity such that (1) has at least one solution with $\max p_{j} \in\left[\delta X_{n}, X_{n}\right]$, with $\delta>0$ fixed, depending on the choice of λ_{j}. Let q be a denominator of a convergent to $\lambda_{1} / \lambda_{2}$ and let $X_{n}=X$ (dropping the suffix n) run through the sequence $X=q^{7 / 3}$. The choice of such X is due to an optimization procedure. Set

$$
\begin{align*}
& S_{k}(\alpha)=\sum_{\delta X \leq p^{k} \leq X} \log p e\left(p^{k} \alpha\right), \tag{2}\\
& U_{k}(\alpha)=\sum_{\delta X \leq n^{k} \leq X} e\left(n^{k} \alpha\right) \tag{3}\\
& T_{k}(\alpha)=\int_{(\delta X)^{\frac{1}{k}}}^{X^{\frac{1}{k}}} e\left(\alpha t^{k}\right) \mathrm{d} t \tag{4}
\end{align*}
$$

where $e(\alpha)=e^{2 \pi i \alpha}$.
In order to get the best possible estimate we will use the sieve function $\rho(m)$ defined in (5.2) of [17] introduced by Harman and Kumchev and used by Wang and Yao in [15] in the case $k=2$, which is a nontrivial lower bound for the characteristic function of primes. Such function will allow us to define an exponential function (6) with a different weight:

$$
\rho(m)=\psi\left(m, X^{5 / 42}\right)-\sum_{X^{5 / 42} \leq p<X^{1 / 4}} \psi(m / p, z(p)),
$$

where

$$
\psi(m, z)=\left\{\begin{array}{l}
1 \text { if } p \mid m \Rightarrow p \geq z \\
0 \text { otherwise }
\end{array}\right.
$$

and

$$
z(p)= \begin{cases}X^{5 / 28} p^{-1 / 2} & \text { if } p<X^{1 / 7} \\ p & \text { if } X^{1 / 7} \leq p \leq X^{3 / 14} \\ X^{5 / 4} p^{-1} & \text { if } p>X^{3 / 14}\end{cases}
$$

The choice of the exponents in the definition of ρ (and consequently of z) is an appropriate choice of the function itself having the properties (i)-(v) of [17, Section 3] and constructed with sieve methods. The property we are most interested in about $\rho(m)$ is the estimation (2.3) of [15]:

$$
\begin{equation*}
\sum_{m \in I} \rho(m)=\ell|I|(\log X)^{-1}+O\left(X^{1 / 2}(\log X)^{-2}\right) \tag{5}
\end{equation*}
$$

where $\ell>0$ is an absolute constant and I is any subinterval of $\left[(\delta X)^{1 / 2}, X^{1 / 2}\right]$. The exact value of the constant ℓ is the same given by the constant δ defined in (4.4) of [17]: it is expressed in terms of integrals of Buchstab's function in [17, Section 5], from numerical calculation $\ell>9 / 10$. With this premises we define the following exponential function:

$$
\begin{equation*}
\tilde{S}_{2}(\alpha)=\sum_{\delta X \leq m^{2} \leq X} \rho(m) e\left(m^{2} \alpha\right) \tag{6}
\end{equation*}
$$

We will approximate S_{k} with T_{k} and U_{k} and \widetilde{S}_{2} with T_{2}.
By the Prime Number Theorem and first derivative estimates for trigonometric integrals we have

$$
\begin{equation*}
S_{k}(\alpha) \ll X_{k}^{\frac{1}{k}}, \quad \widetilde{S}_{2}(\alpha) \ll X^{\frac{1}{2}}, \quad T_{k}(\alpha) \ll_{k, \delta} \quad X_{k}^{\frac{1}{k}-1} \min \left(X,|\alpha|^{-1}\right) \tag{7}
\end{equation*}
$$

where $k \geq 1$ and $\delta>0$ are real numbers.
Moreover, the Euler summation formula implies that, for $k \geq 1$,

$$
\begin{equation*}
T_{k}(\alpha)-U_{k}(\alpha) \ll 1+|\alpha| X . \tag{8}
\end{equation*}
$$

We also need a continuous function that we will use to detect the solutions of (1), so we introduce

$$
\widehat{K}_{\eta}(\alpha):=\max \{0, \eta-|\alpha|\}, \quad \text { where } \eta>0,
$$

whose inverse Fourier transform is

$$
K_{\eta}(\alpha)=\left(\frac{\sin (\pi \alpha \eta)}{\pi \alpha}\right)^{2}
$$

for $\alpha \neq 0$ and, by continuity, $K_{\eta}(0)=\eta^{2}$. It vanishes at infinity like $|\alpha|^{-2}$ and in fact it is trivial to prove that

$$
\begin{equation*}
K_{\eta}(\alpha) \ll \min \left(\eta^{2},|\alpha|^{-2}\right) \tag{9}
\end{equation*}
$$

The original works of Davenport-Heillbronn in [16] and later Vaughan in [6] and [18] approximate directly the difference $\left|S_{k}(\alpha)-T_{k}(\alpha)\right|$, estimating it with $O(1)$ using the Euler summation formula. Brüdern et al. (see [1]) improved these estimations taking the L^{2}-norm of $\left|S_{k}(\alpha)-T_{k}(\alpha)\right|$ leading to significantly better conditions and to have a wider major arc compared to the original DH approach. In fact, setting the generalized version of the Selberg integral, which was first used by Languasco-Setitmi for the case $k=2$ in [19],

$$
\mathcal{J}_{k}(X, h)=\int_{X}^{2 X}\left(\theta\left((x+h)^{\frac{1}{k}}\right)-\theta\left(x^{\frac{1}{k}}\right)-\left((x+h)^{\frac{1}{k}}-x^{\frac{1}{k}}\right)\right)^{2} \mathrm{~d} x
$$

where θ is the Chebyshev Theta function,

$$
\theta(x)=\sum_{p \leq x} \log p,
$$

we have the following lemmas.
Lemma 1. [10, Lemma 1] Let $k \geq 1$ be a real number. For $0<Y<\frac{1}{2}$, we have

$$
\int_{-Y}^{Y}\left|S_{k}(\alpha)-U_{k}(\alpha)\right|^{2} \mathrm{~d} \alpha<_{k} \frac{X_{k}^{2}-2 \log ^{2} X}{Y}+Y^{2} X+Y^{2} \mathcal{J}_{k}\left(X, \frac{1}{2 Y}\right) .
$$

Lemma 2. [10, Lemma 2] Let $k \geq 1$ be a real number and ε be an arbitrarily small positive constant. There exists a positive constant $c_{1}(\varepsilon)$, which does not depend on k, such that

$$
\mathcal{J}_{k}(X, h)<_{k} h^{2} X_{k}^{\frac{2}{k}-1} \exp \left(-c_{1}\left(\frac{\log X}{\log \log X}\right)^{\frac{1}{3}}\right)
$$

uniformly for $X^{1-\frac{5}{6 k}+\varepsilon} \leq h \leq X$.

2.1 Setting the problem

Let

$$
\mathcal{P}(X)=\left\{\left(p_{1}, p_{2}, p_{3}, p_{4}\right): \delta X<p_{1}<X, \delta X<p_{2}^{2}, p_{3}^{2}<X, \delta X<p_{4}^{k}<X\right\}
$$

and let us define

$$
\mathcal{I}(\eta, \omega, \mathfrak{X})=\int_{\mathfrak{X}} S_{1}\left(\lambda_{1} \alpha\right) \widetilde{S}_{2}\left(\lambda_{2} \alpha\right) S_{2}\left(\lambda_{3} \alpha\right) S_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha) e(-\omega \alpha) \mathrm{d} \alpha,
$$

where \mathfrak{X} is a measurable subset of \mathbb{R}.
From the construction of $\rho(m)$ follows that, if $\omega(m)$ is the characteristic function of the set of primes,

$$
\rho(m) \leq \omega(m)
$$

Then, from the definitions of $S_{j}\left(\lambda_{i} \alpha\right)$ and $\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)$, and performing the Fourier transform for $K_{\eta}(\alpha)$, we get

$$
\begin{aligned}
\mathcal{I}(\eta, \omega, \mathbb{R}) & =\sum_{p_{i} \in \mathcal{P}(X)} \log p_{1} \rho\left(m_{2}\right) \log p_{3} \log p_{4} \cdot\left(\max \left(0, \eta-\left|\lambda_{1} p_{1}+\lambda_{2} m_{2}^{2}+\lambda_{3} p_{3}^{2}+\lambda_{4} p_{4}^{k}-\omega\right|\right)\right) \\
& \leq \eta(\log X)^{3} \mathcal{N}(X)
\end{aligned}
$$

where $\mathcal{N}(X)$ denotes the number of solutions of the inequality (1) with $\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \in \mathcal{P}(X)$. In other words, $I(\eta, \omega, \mathbb{R})$ provides a lower bound for the quantity we are interested in; therefore, it is sufficient to prove that $I(\eta, \omega, \mathbb{R})>0$.

We now decompose \mathbb{R} into subsets such that $\mathbb{R}=\mathcal{M} \cup m \cup t$ where \mathcal{M} is the major arc, m is the minor arc (or intermediate arc) and t is the trivial arc. The decomposition is the following:

$$
\mathcal{M}=\left[-\frac{P}{X}, \frac{P}{X}\right], \quad m=\left[\frac{P}{X}, R\right] \cup\left[-R,-\frac{P}{X}\right], \quad t=\mathbb{R} \backslash(\mathcal{M} \cup m)
$$

so that $I(\eta, \omega, \mathbb{R})=I(\eta, \omega, \mathcal{M})+I(\eta, \omega, m)+I(\eta, \omega, t)$.
The parameters $P=P(X)>1$ and $R=R(X)>1 / \eta$ are chosen later (see (13) and (16)) as well as $\eta=\eta(X)$, that, as we explained before, we would like to get a small negative power of max p_{j} (and so of X, see (24)).

We are expecting to have on \mathcal{M} the main term with the right order of magnitude without any special hypothesis on the coefficients λ_{j}. It is necessary to prove that $I(\eta, \omega, m)$ and $I(\eta, \omega, t)$ are both $o(\mathcal{I}(\eta, \omega, \mathcal{M}))$: the contribution from the trivial is "tiny" with respect to the main term. The real problem is on the minor arc where we will need the full force of the hypothesis on the λ_{j} and the theory of continued fractions.

Remark: From now on, anytime we use the symbol < or \gg we drop the dependence of the approximation from the constants λ_{j}, δ and k.

2.2 Lemmas

In this paper, we will also use Lemmas 3-4-10 of [20] and (2.5) of [15] that allow us to have an estimation of mean value of $\left|S_{k}(\alpha)\right|^{4}$ and $\left|\widetilde{S}_{2}(\alpha)\right|^{4}$:

Lemma 3. [20, Lemma 3] Let $\varepsilon>0$ fixed, $k>1, \gamma>0$ and let $\mathcal{A}\left(X^{1 / k} ; k ; \gamma\right)$ denote the number of solutions of the inequality

$$
\left|n_{1}^{k}+n_{2}^{k}-n_{3}^{k}-n_{4}^{k}\right|<\gamma, \quad X^{1 / k} \leq n_{1}, n_{2}, n_{3}, n_{4} \leq 2 X^{1 / k}
$$

Then

$$
\mathcal{A}\left(X^{1 / k} ; k ; y\right) \ll\left(y X^{4 / k-1}+X^{2 / k}\right) X^{\varepsilon} .
$$

Lemma 4. [20, Lemma 4] Let $k>1, \tau>0$. We have

$$
\int_{-\tau}^{\tau}\left|S_{k}(\alpha)\right|^{4} \mathrm{~d} \alpha \ll\left(\tau X^{2 / k}+X^{4 / k-1}\right) X^{\varepsilon} \ll \max \left(\tau X^{2 / k+\varepsilon}, X^{4 / k-1+\varepsilon}\right)
$$

Lemma 5. [20, Lemma 10]

$$
\int_{m}\left|S_{k}(\lambda \alpha)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha \ll \eta X^{\varepsilon} \cdot \max \left(X^{2 / k}, X^{4 / k-1}\right)
$$

Finally, we will use the following Lemma.
Lemma 6. Let $S_{k}(\alpha)$ and $\widetilde{S}_{2}(\alpha)$ defined as in (2) and (6), respectively, and m be the minor arc. Then we have

$$
\begin{aligned}
& \int_{0}^{1}\left|S_{1}(\alpha)\right|^{2} \mathrm{~d} \alpha \ll X \log X, \quad \int_{m}\left|S_{1}(\alpha)\right|^{2} K_{\eta}(\alpha) \mathrm{d} \alpha \ll \eta X \log X, \\
& \int_{0}^{1}\left|S_{2}(\alpha)\right|^{4} \mathrm{~d} \alpha \ll X \log ^{2} X, \quad \int_{m}\left|S_{2}(\alpha)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha<\eta X \log ^{2} X, \\
& \int_{0}^{1}\left|\widetilde{S}_{2}(\alpha)\right|^{4} \mathrm{~d} \alpha \ll X(\log X)^{c}, \quad \int_{m}\left|\widetilde{S}_{2}(\alpha)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha \ll \eta X(\log X)^{c} .
\end{aligned}
$$

Proof. The first two statements come directly from the Prime Number Theorem, the second two estimations are based on Satz 3 of [21, p. 94] and the last two refer to (2.5) of [15].

3 The major arc

Let us start from the major arc and the computation of the main term. We replace all S_{k} and \widetilde{S}_{2} defined in (2) and (6) with the corresponding T_{k} defined in (4). This replacement brings up some errors that we must estimate by means of Lemma 1, the Cauchy-Schwarz and the Hölder inequalities. We write

$$
\begin{aligned}
\mathcal{I}(\eta, \omega, \mathcal{M})= & \int_{\mathcal{M}} S_{1}\left(\lambda_{1} \alpha\right) S_{2}\left(\lambda_{2} \alpha\right) S_{2}\left(\lambda_{3} \alpha\right) S_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha) e(-\omega \alpha) \mathrm{d} \alpha \\
= & \ell(\log X)^{-1} \int_{\mathcal{M}} T_{1}\left(\lambda_{1} \alpha\right) T_{2}\left(\lambda_{2} \alpha\right) T_{2}\left(\lambda_{3} \alpha\right) T_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha) e(-\omega \alpha) \mathrm{d} \alpha \\
& +\int_{\mathcal{M}}\left(S_{1}\left(\lambda_{1} \alpha\right)-T_{1}\left(\lambda_{1} \alpha\right)\right) \widetilde{S}_{2}\left(\lambda_{2} \alpha\right) T_{2}\left(\lambda_{3} \alpha\right) T_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha) e(-\omega \alpha) \mathrm{d} \alpha \\
& +\int_{\mathcal{M}} S_{1}\left(\lambda_{1} \alpha\right)\left(\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)-\ell(\log X)^{-1} T_{2}\left(\lambda_{2} \alpha\right)\right) T_{2}\left(\lambda_{3} \alpha\right) T_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha) e(-\omega \alpha) \mathrm{d} \alpha \\
& +\int_{\mathcal{M}} S_{1}\left(\lambda_{1} \alpha\right) \widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\left(S_{2}\left(\lambda_{3} \alpha\right)-T_{2}\left(\lambda_{3} \alpha\right)\right) T_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha) e(-\omega \alpha) \mathrm{d} \alpha \\
& +\int_{\mathcal{M}} S_{1}\left(\lambda_{1} \alpha\right) \widetilde{S}_{2}\left(\lambda_{2} \alpha\right) S_{2}\left(\lambda_{3} \alpha\right)\left(S_{k}\left(\lambda_{4} \alpha\right)-T_{k}\left(\lambda_{4} \alpha\right)\right) K_{\eta}(\alpha) e(-\omega \alpha) \mathrm{d} \alpha \\
= & J_{1}+J_{2}+J_{3}+J_{4}+J_{5}
\end{aligned}
$$

Since the computations for J_{2} are similar to, but simpler than, the corresponding ones for J_{3}, J_{4} and J_{5}, we will leave it to the reader.

3.1 Main term: lower bound for \boldsymbol{J}_{1}

As the reader might expect the main term is given by the summand J_{1}.
Let $H(\alpha)=T_{1}\left(\lambda_{1} \alpha\right) T_{2}\left(\lambda_{2} \alpha\right) T_{2}\left(\lambda_{3} \alpha\right) T_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha) e(-\omega \alpha)$ so that

$$
J_{1}=\ell(\log X)^{-1} \int_{\mathbb{R}} H(\alpha) \mathrm{d} \alpha+O\left((\log X)^{-1} \int_{P / X}^{+\infty}|H(\alpha)| \mathrm{d} \alpha\right)
$$

Using inequalities (9) and (7),

$$
\int_{P / X}^{+\infty}|H(\alpha)| \mathrm{d} \alpha \ll X^{-1} X^{\frac{1}{k}-1} \eta^{2} \int_{P / X}^{+\infty} \frac{\mathrm{d} \alpha}{\alpha^{4}} \ll X^{\frac{1}{k}+1} \eta^{2} P^{-3}=o\left(X_{k}^{\frac{1}{k}+1} \eta^{2}\right)
$$

provided that $P \rightarrow+\infty$. Let $D=[\delta X, X] \times\left[(\delta X)^{\frac{1}{2}}, X^{\frac{1}{2}}\right]^{2} \times\left[(\delta X)^{\frac{1}{k}}, X^{\frac{1}{k}}\right]$; we have

$$
\begin{aligned}
\int_{\mathbb{R}} H(\alpha) \mathrm{d} \alpha & =\int \cdots \int_{D} e\left(\left(\lambda_{1} t_{1}+\lambda_{2} t_{2}^{2}+\lambda_{3} t_{3}^{2}+\lambda_{4} t_{4}^{k}-\omega\right) \alpha\right) K_{\eta}(\alpha) \mathrm{d} \alpha \mathrm{~d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} t_{3} \mathrm{~d} t_{4} \\
& =\int \cdots \int_{D} \max \left(0, \eta-\left|\lambda_{1} t_{1}+\lambda_{2} t_{2}^{2}+\lambda_{3} t_{3}^{2}+\lambda_{4} t_{4}^{k}-\omega\right|\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} t_{3} \mathrm{~d} t_{4}
\end{aligned}
$$

Apart from trivial changes of sign, there are essentially three cases:

1. $\lambda_{1}>0, \lambda_{2}>0, \lambda_{3}>0, \lambda_{4}<0$;
2. $\lambda_{1}>0, \lambda_{2}>0, \lambda_{3}<0, \lambda_{4}<0$;
3. $\lambda_{1}>0, \lambda_{2}<0, \lambda_{3}<0, \lambda_{4}<0$.

We deal with the second case, cases 1 and 3 being similar. Let us perform the following change of variables: $u_{1}=t_{1}-\frac{\omega}{\lambda_{1}}, u_{2}=t_{2}^{2}, u_{3}=t_{3}^{2}, u_{4}=t_{4}^{k}$, so that the set D becomes essentially $[\delta X, X]^{4}$. Let us define
$D^{\prime}=[\delta X,(1-\delta) X]^{4}$ for large X, as a subset of D. The Jacobian determinant of the change of variables above is $\frac{1}{4 k} u_{2}^{-\frac{1}{2}} u_{3}^{-\frac{1}{2}} u_{4}^{\frac{1}{k}-1}$. Then

$$
\begin{aligned}
J_{1} \gg(\log X)^{-1} \int_{\mathbb{R}} H(\alpha) \mathrm{d} \alpha & =(\log X)^{-1} \int_{D^{\prime}} \ldots \int_{D^{\prime}} \max \left(0, \eta-\left|\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}+\lambda_{4} u_{4}\right|\right) \frac{\mathrm{d} u_{1} \mathrm{~d} u_{2} \mathrm{~d} u_{3} \mathrm{~d} u_{4}}{u_{2}^{\frac{1}{2}} u_{3}^{\frac{1}{2}} u_{4}^{1-\frac{1}{k}}} \\
& \gg(\log X)^{-1} X_{k}^{\frac{1}{k}-2} \int_{D^{\prime}} \cdots \int_{1} \max \left(0, \eta-\left|\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}+\lambda_{4} u_{4}\right|\right) \mathrm{d} u_{1} \mathrm{~d} u_{2} \mathrm{~d} u_{3} \mathrm{~d} u_{4}
\end{aligned}
$$

Now, for $j=1,2,3$ let $a_{j}=\frac{4\left|\lambda_{4}\right|}{\left|\lambda_{j}\right|}, b_{j}=\frac{3}{2} a_{j}$ and $\mathcal{D}_{j}=\left[a_{j} \delta X, b_{j} \delta X\right]$; if $u_{j} \in \mathcal{D}_{j}$, then

$$
\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3} \in\left[2\left|\lambda_{4}\right| \delta X, 8\left|\lambda_{4}\right| \delta X\right]
$$

so that, for every choice of $\left(u_{1}, u_{2}, u_{3}\right)$ the interval

$$
[a, b]=\left[\frac{1}{\left|\lambda_{4}\right|}\left(-\eta+\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}\right)\right), \frac{1}{\left|\lambda_{4}\right|}\left(\eta+\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}\right)\right)\right]
$$

is contained in $[\delta X,(1-\delta) X]$. In other words, for $u_{4} \in[a, b]$ the values of $\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}+\lambda_{4} u_{4}$ cover the whole interval $[-\eta, \eta]$. Hence, for any $\left(u_{1}, u_{2}, u_{3}\right) \in \mathcal{D}_{1} \times \mathcal{D}_{2} \times \mathcal{D}_{3}$ we have

$$
\int_{\delta X}^{(1-\delta) X} \max \left(0, \eta-\left|\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}+\lambda_{4} u_{4}\right|\right) \mathrm{d} u_{4}=\left|\lambda_{4}\right|^{-1} \int_{-\eta}^{\eta} \max (0, \eta-|u|) \mathrm{d} u \gg \eta^{2}
$$

Finally,

$$
J_{1} \gg(\log X)^{-1} \eta^{2} X_{k}^{\frac{1}{k}-2} \iiint_{\mathcal{D}_{1} \times \mathcal{D}_{2} \times \mathcal{D}_{3}} \mathrm{~d} u_{1} \mathrm{~d} u_{2} \mathrm{~d} u_{3} \gg \eta^{2} X_{k}^{\frac{1}{k}-2} X^{3}=\eta^{2} X_{k}^{\frac{1}{k}+1}(\log X)^{-1},
$$

which is the expected lower bound.

3.2 Bound for J_{3}

From partial summation on (6) we get

$$
\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)=\int_{(\delta X)^{\frac{1}{2}}}^{X^{\frac{1}{2}}} e\left(\lambda t^{2} \alpha\right) \mathrm{d}\left(\sum_{m_{2} \leq t}^{m_{2} \in\left[(\delta X)^{1 / 2}, X^{1 / 2}\right]}<~ \rho\left(m_{2}\right)\right),
$$

then

$$
\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)-\ell(\log X)^{-1} T_{2}\left(\lambda_{2} \alpha\right) \ll X^{\frac{1}{2}}(\log X)^{-2}(1+|\alpha| X) .
$$

Finally, J_{3} can be estimated as follows:

$$
\begin{aligned}
J_{3} & \ll \eta^{2} \int_{\mathcal{M}}\left|T_{1}\left(\lambda_{1} \alpha\right)\left\|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)-\ell(\log X)^{-1} T_{2}\left(\lambda_{2} \alpha\right)\right\| T_{2}\left(\lambda_{3} \alpha\right) \| T_{k}\left(\lambda_{4} \alpha\right)\right| \mathrm{d} \alpha \\
& \ll \eta^{2} X^{\frac{1}{2}}(\log X)^{-2} \int_{0}^{1 / X}\left|T_{1}\left(\lambda_{1} \alpha\right)\left\|T_{2}\left(\lambda_{3} \alpha\right)\right\| T_{k}\left(\lambda_{4} \alpha\right)\right| \mathrm{d} \alpha \\
& +\eta^{2} X^{\frac{3}{2}}(\log X)^{-2} \int_{1 / X}^{P / X} \alpha\left|T_{1}\left(\lambda_{1} \alpha\right)\left\|T_{2}\left(\lambda_{3} \alpha\right)\right\| T_{k}\left(\lambda_{4} \alpha\right)\right| \mathrm{d} \alpha=o\left(\eta^{2} X_{k}^{\frac{1}{k}+1}(\log X)^{-1}\right)
\end{aligned}
$$

using (7).

3.3 Bound for J_{4}

Using the triangle inequality,

$$
\begin{aligned}
J_{4}= & \int_{\mathcal{M}} S_{1}\left(\lambda_{1} \alpha\right) \widetilde{S}\left(\lambda_{2} \alpha\right)\left(S_{2}\left(\lambda_{3} \alpha\right)-T_{2}\left(\lambda_{3} \alpha\right)\right) T_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha) e(-\omega \alpha) \mathrm{d} \alpha \\
< & \eta^{2} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)-T_{2}\left(\lambda_{3} \alpha\right) \| T_{k}\left(\lambda_{4} \alpha\right)\right| \mathrm{d} \alpha \\
\leq & \eta^{2} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}\left(\lambda_{2} \alpha\right)\right| S_{2}\left(\lambda_{3} \alpha\right)-U_{2}\left(\lambda_{3} \alpha\right)| | T_{k}\left(\lambda_{4} \alpha\right) \mid \mathrm{d} \alpha \\
& +\eta^{2} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}\left(\lambda_{2} \alpha\right)\right|\left|U_{2}\left(\lambda_{3} \alpha\right)-T_{2}\left(\lambda_{3} \alpha\right) \| T_{k}\left(\lambda_{4} \alpha\right)\right| \mathrm{d} \alpha=\eta^{2}\left(A_{4}+B_{4}\right),
\end{aligned}
$$

where $U_{2}\left(\lambda_{3} \alpha\right)$ is given by (3).
Using (7) and the Cauchy-Schwarz inequality,

$$
A_{4} \ll X^{\frac{1}{2}} X^{\frac{1}{k}} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)-U_{2}\left(\lambda_{3} \alpha\right)\right| \mathrm{d} \alpha \ll X^{\frac{1}{2}} X_{k}^{\frac{1}{k}}\left(\int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2} \mathrm{~d} \alpha\right)^{\frac{1}{2}}\left(\int_{\mathcal{M}}\left|S_{2}\left(\lambda_{3} \alpha\right)-U_{2}\left(\lambda_{3} \alpha\right)\right|^{2} \mathrm{~d} \alpha\right)^{\frac{1}{2}}
$$

Using Lemmas 1 and 2 (these will give us some conditions on P but the choice we will make in (13) makes all things work), we have

$$
A_{4} \ll X^{\frac{1}{2}+\frac{1}{k}}(X \log X)^{\frac{1}{2}}(\log X)^{-\frac{A}{2}}=X^{1+\frac{1}{k}}(\log X)^{\frac{1}{2}-\frac{A}{2}}=o\left(X^{\frac{1}{k}+1}\right)
$$

as long as $A>1$. Again using (7) and (8),

$$
\begin{aligned}
B_{4} & \ll X^{\frac{1}{k}} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}\left(\lambda_{2} \alpha\right)\right|\left|U_{2}\left(\lambda_{3} \alpha\right)-T_{2}\left(\lambda_{3} \alpha\right)\right| \mathrm{d} \alpha \\
& \ll X^{\frac{1}{k}} \int_{0}^{\frac{1}{X}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}\left(\lambda_{2} \alpha\right)\right| \mathrm{d} \alpha+X_{k}^{\frac{1}{k}+1} \int_{\frac{1}{X}}^{P / X} \alpha\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}\left(\lambda_{2} \alpha\right)\right| \mathrm{d} \alpha .
\end{aligned}
$$

Recalling that $|\alpha| \leq \frac{P}{X}$ on \mathcal{M} and using the Hölder inequality, trivial bounds and Lemma 6 , we have

$$
\begin{aligned}
B_{4} & \ll X X^{\frac{1}{2}} X^{\frac{1}{k}} \frac{1}{X}+X_{k}^{\frac{1}{k}+1}\left(\int_{1 / X}^{P / X}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2} \mathrm{~d} \alpha\right)^{\frac{1}{2}}\left(\int_{1 / X}^{P / X} \alpha^{4} \mathrm{~d} \alpha\right)^{\frac{1}{4}}\left(\int_{1 / X}^{P / X}\left|\widetilde{S}\left(\lambda_{2} \alpha\right)\right|^{4} \mathrm{~d} \alpha\right)^{\frac{1}{4}} \\
& \ll X^{\frac{1}{2}+\frac{1}{k}}+X^{\frac{3}{2}+\frac{1}{k}}(\log X)^{\frac{1}{2}}\left(\frac{P}{X}\right)^{\frac{5}{4}} X^{\frac{1}{4}}(\log X)^{\frac{c}{4}}=X^{\frac{1}{2}+\frac{1}{k}} P^{\frac{5}{4}}(\log X)^{\frac{1}{2}+\frac{c}{4}}
\end{aligned}
$$

Since we must have $P^{\frac{5}{4}}=o\left(X^{\frac{1}{2}}(\log X)^{-\frac{3}{2}-\frac{c}{4}}\right)$, it follows that

$$
\begin{equation*}
P \leq X_{5}^{2}-\varepsilon \tag{10}
\end{equation*}
$$

is sufficient for our purpose.

3.4 Bound for J_{5}

In order to provide an estimation for J_{5}, we use (9),

$$
J_{5} \ll \eta^{2} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|S_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right|\left|S_{k}\left(\lambda_{4} \alpha\right)-T_{k}\left(\lambda_{4} \alpha\right)\right| \mathrm{d} \alpha .
$$

The two terms are equivalent; then we consider only one of them

$$
\begin{aligned}
J_{5} & \ll \eta^{2} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right| S_{k}\left(\lambda_{4} \alpha\right)-T_{k}\left(\lambda_{4} \alpha\right) \mid \mathrm{d} \alpha \\
< & \eta^{2} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right| S_{k}\left(\lambda_{4} \alpha\right)-U_{k}\left(\lambda_{4} \alpha\right) \mid \mathrm{d} \alpha \\
& +\eta^{2} \int_{\mathcal{M}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right| U_{k}\left(\lambda_{4} \alpha\right)-T_{k}\left(\lambda_{4} \alpha\right) \mid \mathrm{d} \alpha=\eta^{2}\left(A_{5}+B_{5}\right) .
\end{aligned}
$$

Using trivial estimates,

$$
A_{5} \ll X \int_{\mathcal{M}}\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right| S_{k}\left(\lambda_{4} \alpha\right)-U_{k}\left(\lambda_{4} \alpha\right) \mid \mathrm{d} \alpha
$$

then using the Hölder inequality, for any fixed $A>2$ by Lemmas 1 and 2 we have

$$
\begin{aligned}
A_{5} & \ll X\left(\int_{\mathcal{M}}\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|^{4}\right)^{\frac{1}{4}}\left(\int_{\mathcal{M}}\left|S_{2}\left(\lambda_{3} \alpha\right)\right|^{4} \mathrm{~d} \alpha\right)^{\frac{1}{4}}\left(\int_{\mathcal{M}}\left|S_{k}\left(\lambda_{4} \alpha\right)-U_{k}\left(\lambda_{4} \alpha\right)\right|^{2} \mathrm{~d} \alpha\right)^{\frac{1}{2}} \\
& \ll X X^{\frac{1}{4}}(\log X)^{\frac{c}{4}} X^{\frac{1}{4}}(\log X)^{\frac{1}{2}} \frac{P}{X} \mathcal{J}_{k}\left(X, \frac{X}{P}\right)^{\frac{1}{2}}<_{A} X^{1+\frac{1}{k}}(\log X)^{\frac{1}{2}+\frac{c}{4}-\frac{A}{2}}=o\left(X_{k}^{\frac{1}{k}+1}\right),
\end{aligned}
$$

provided that $\frac{X}{P} \geq X^{1-\frac{5}{66}+\varepsilon}$ (condition of Lemma 2), that is,

$$
\begin{equation*}
P \leq X^{\frac{5}{6 k}}-\varepsilon . \tag{11}
\end{equation*}
$$

Now we turn to B_{5} : by (8) we have

$$
B_{5} \ll \int_{0}^{1 / X}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right| \mathrm{d} \alpha+X \int_{1 / X}^{P / X} \alpha\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right| \mathrm{d} \alpha
$$

Using trivial estimates and Lemma 6

$$
\begin{aligned}
B_{5} \ll & \left.\left(\int_{0}^{1 / X}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2} \mathrm{~d} \alpha\right)^{\frac{1}{2}}\left(\int_{0}^{1 / X}\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|^{4} \mathrm{~d} \alpha\right)^{\frac{1}{4}} \int_{0}^{1 / X}\left|S_{2}\left(\lambda_{3} \alpha\right)\right|^{4} \mathrm{~d} \alpha\right)^{\frac{1}{4}} \\
& +X \frac{P}{X}\left(\int_{1 / X}^{P / X}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2} \mathrm{~d} \alpha\right)^{\frac{1}{2}}\left(\int_{1 / X}^{P / X}\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|^{4} \mathrm{~d} \alpha\right)^{\frac{1}{4}}\left(\int_{1 / X}^{P / X}\left|S_{2}\left(\lambda_{3} \alpha\right)\right|^{4} \mathrm{~d} \alpha\right)^{\frac{1}{4}} \\
& \ll \\
& =X \log X)^{\frac{1}{2}\left(X \log ^{c} X\right)^{\frac{1}{4}}\left(X \log ^{2} X\right)^{\frac{1}{4}}+P(X \log X)^{\frac{1}{2}}\left(X \log ^{c} X\right)^{\frac{1}{4}}\left(X \log ^{2} X\right)^{\frac{1}{4}}+P X(\log X)^{1+\frac{c}{4}} .}
\end{aligned}
$$

Then we need

$$
\begin{equation*}
P=o\left(X_{k}^{1}-\varepsilon\right) . \tag{12}
\end{equation*}
$$

Collecting all the bounds for P, that is, (10), (11), (12) we can take

$$
\begin{equation*}
P \leq \min \left(X^{\frac{2}{5}-\varepsilon}, X^{\frac{5}{6 k}}-\varepsilon\right) \tag{13}
\end{equation*}
$$

In fact, if we consider (10) and (11), we should choose the most restrictive condition between the two: if $k \leq \frac{25}{12}, P=X^{\frac{2}{5}-\varepsilon}$, otherwise, if $\frac{25}{12}<k<\frac{14}{5}, P=X^{\frac{5}{6 k}}-\varepsilon$.

4 The trivial arc

From the trivial bound for $S_{k}\left(\lambda_{4} \alpha\right)$, we see that

$$
\begin{aligned}
|\mathcal{I}(\eta, \omega, t)| & \ll \int_{R}^{+\infty}\left|S_{1}\left(\lambda_{1} \alpha\right) \widetilde{S}_{2}\left(\lambda_{2} \alpha\right) S_{2}\left(\lambda_{3} \alpha\right) S_{k}\left(\lambda_{4} \alpha\right) K_{\eta}(\alpha)\right| \mathrm{d} \alpha \\
& \left.\ll X_{k}^{\frac{1}{k}}\left(\int_{R}^{+\infty}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{\frac{1}{2}}\left(\int_{R}^{+\infty}\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{\frac{1}{4}} \int_{R}^{+\infty}\left|S_{2}\left(\lambda_{3} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{\frac{1}{4}} \\
& \ll X_{k}^{\frac{1}{k}}\left(\int_{R}^{+\infty} \frac{\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2}}{\alpha^{2}} \mathrm{~d} \alpha\right)^{\frac{1}{2}}\left(\int_{R}^{+\infty} \frac{\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|^{4}}{\alpha^{2}} \mathrm{~d} \alpha\right)^{\frac{1}{4}}\left(\int_{R}^{+\infty} \frac{\left|S_{2}\left(\lambda_{3} \alpha\right)\right|^{4}}{\alpha^{2}} \mathrm{~d} \alpha\right)^{\frac{1}{4}} \\
& =X_{k}^{\frac{1}{k}} C_{1}^{\frac{1}{2}} C_{2}^{\frac{1}{4}} C_{3}^{\frac{1}{4}} .
\end{aligned}
$$

Using the Prime Number Theorem and the periodicity of $S_{1}(\alpha)$, we have

$$
\begin{equation*}
C_{1}=\int_{R}^{+\infty} \frac{\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2}}{\alpha^{2}} \mathrm{~d} \alpha \ll \int_{\left|\lambda_{1}\right| R}^{+\infty} \frac{\left|S_{1}(\alpha)\right|^{2}}{\alpha^{2}} \mathrm{~d} \alpha \ll \sum_{n \geq\left|\lambda_{1}\right| R} \frac{1}{(n-1)^{2}} \int_{n-1}^{n}\left|S_{1}(\alpha)\right|^{2} \mathrm{~d} \alpha \ll \frac{X \log X}{\left|\lambda_{1}\right| R} . \tag{14}
\end{equation*}
$$

Using Lemma 6 we can estimate both C_{2} and C_{3}, for brevity we leave C_{3} to the reader,

$$
\begin{equation*}
C_{2}=\int_{R}^{+\infty} \frac{\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|^{4}}{\alpha^{2}} \mathrm{~d} \alpha \ll \int_{\left|\lambda_{2}\right| R}^{+\infty} \frac{\left|\widetilde{S}_{2}(\alpha)\right|^{4}}{\alpha^{2}} \mathrm{~d} \alpha \ll \sum_{n \geq\left|\lambda_{2}\right| R} \frac{1}{(n-1)^{2}} \int_{n-1}^{n}\left|\widetilde{S}_{2}(\alpha)\right|^{4} \mathrm{~d} \alpha \ll \frac{X(\log X)^{c}}{\left|\lambda_{2}\right| R} \tag{15}
\end{equation*}
$$

Collecting (14) and (15),

$$
|\mathcal{I}(\eta, \omega, t)| \ll X^{\frac{1}{k}}\left(\frac{X \log X}{R}\right)^{\frac{1}{2}}\left(\frac{X(\log X)^{c}}{R}\right)^{\frac{1}{4}}\left(\frac{X \log ^{2} X}{R}\right)^{\frac{1}{4}} \ll \frac{X^{1+\frac{1}{k}}(\log X)^{1+\frac{c}{4}}}{R}
$$

Hence, remembering that $|\mathcal{I}(\eta, \omega, t)|$ must be $o\left(\eta^{2} X^{\frac{1}{k}+1}\right)$, i.e., of the main term, the choice

$$
\begin{equation*}
R=\frac{(\log X)^{1+c}}{\eta^{2}} \tag{16}
\end{equation*}
$$

is admissible.

5 The minor arc

In [15], Section 4 it is proven that the measure of the set where $\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{\frac{1}{2}}$ and $\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|$ are both large for $\alpha \in m$ is small, exploiting the fact that the ratio $\lambda_{1} / \lambda_{2}$ is irrational.

Lemma 7. [22, Theorem 3.1] Let α be a real number and a, q be positive integers satisfying $(a, q)=1$ and $\left|\alpha-\frac{a}{q}\right|<\frac{1}{q^{2}}$. Then

$$
S_{1}(\alpha) \ll\left(\frac{X}{\sqrt{q}}+\sqrt{X q}+X^{\frac{4}{5}}\right) \log ^{4} X
$$

We now state some considerations about Lemma 7:
Corollary 1. [14, Corollary 2.7] Suppose that $X \geq Z \geq X^{1-\frac{1}{5}+\varepsilon}$ and $\left|S_{1}\left(\lambda_{1} \alpha\right)\right|>Z$. Then there are coprime integers (a, q) = 1 satisfying

$$
1 \leq q \leq\left(\frac{X^{1+\varepsilon}}{Z}\right)^{2}, \quad\left|q \lambda_{1} \alpha-a\right| \ll\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z}\right)^{2}
$$

Lemma 8. [15, Lemma 1] Suppose that $X^{\frac{1}{2}} \geq Z \geq X^{\frac{1}{2}-\frac{1}{14}+\varepsilon}$ and $\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|>Z$. Then there are coprime integers $(a, q)=1$ satisfying

$$
1 \leq q \leq\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z}\right)^{4}, \quad\left|q \lambda_{2} \alpha-a\right| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z}\right)^{4}
$$

Let us now split m into two subsets \tilde{m} and $m^{*}=m \backslash \tilde{m}$. In turn $\tilde{m}=m_{1} \cup m_{2}$, where

$$
\begin{aligned}
& m_{1}=\left\{\alpha \in m:\left|S_{1}\left(\lambda_{1} \alpha\right)\right| \leq X^{1-\frac{1}{7}+\varepsilon}\right\} \\
& m_{2}=\left\{\alpha \in m:\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right| \leq X^{\left.\frac{1}{2}-\frac{1}{14}+\varepsilon\right\}}\right.
\end{aligned}
$$

Using the Hölder inequality, Lemmas 5-6 and the definition of m_{1}, we obtain

$$
\begin{align*}
&\left|\mathcal{I}\left(\eta, \omega, m_{1}\right)\right|< \int_{m_{1}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right|\left|S_{k}\left(\lambda_{4} \alpha\right)\right| K_{\eta}(\alpha) \mathrm{d} \alpha \\
&<\left(\max _{\alpha \in m_{1}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{\frac{1}{2}}\left(\int_{m_{1}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{1 / 4}\left(\int_{m_{1}}\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{1 / 4}\right. \\
& \times\left(\int_{m_{1}}\left|S_{2}\left(\lambda_{3} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{1 / 4}\left(\int_{m_{1}}\left|S_{k}\left(\lambda_{4} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{1 / 4} \tag{17}\\
& \ll X^{\frac{3}{7}+\varepsilon}(\eta X \log X)^{\frac{1}{4}}\left(\eta X \log ^{c} X\right)^{\frac{1}{4}}\left(\eta X \log ^{2} X\right)^{\frac{1}{4}}\left(\eta X^{\varepsilon} \max \left(X_{k}^{2}, X^{\frac{4}{k}-1}\right)\right)^{\frac{1}{4}} \\
&= \eta X^{\frac{33}{28}}+2 \varepsilon \\
& \max \left(X^{\frac{1}{2 k}}, X_{k}^{\frac{1}{-}-\frac{1}{4}}\right) .
\end{align*}
$$

Using the Hölder inequality, Lemmas 5, 6 and the definition of m_{2}, we obtain

$$
\begin{align*}
\left|\mathcal{I}\left(\eta, \omega, m_{2}\right)\right| & \ll \int_{m_{2}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right|\left|S_{k}\left(\lambda_{4} \alpha\right)\right| K_{\eta}(\alpha) \mathrm{d} \alpha \\
& \ll \max _{\alpha \in m_{2}}\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left(\int_{m_{2}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|^{2} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{1 / 2}\left(\int_{m_{2}}\left|S_{2}\left(\lambda_{3} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{1 / 4}\left(\int_{m_{2}}\left|S_{k}\left(\lambda_{4} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{1 / 4} \tag{18}\\
& \ll X_{7}^{\frac{3}{7}+\varepsilon}(\eta X \log X)^{\frac{1}{2}}\left(\eta X \log ^{2} X\right)^{\frac{1}{4}}\left(\eta X^{\varepsilon} \max \left(X_{k}^{\frac{2}{k}}, X_{k}^{\frac{4}{k}-1}\right)\right)^{\frac{1}{4}} \\
& =\eta X^{\frac{33}{28}+2 \varepsilon} \max \left(X_{2 k}^{\frac{1}{2 k}}, X_{k}^{\frac{1}{k}-\frac{1}{4}}\right) .
\end{align*}
$$

Both (17) and (18) must be $o\left(\eta^{2} X^{1+\frac{1}{k}}\right)$, consequently it is clear that for $1<k<2, \eta$ is a negative power of X independently from the value of k and $\psi(k)=\frac{1}{14}$. Then we have the following most restrictive condition for $k \geq 2$:

$$
\eta=\infty\left(X^{-\psi(k)+\varepsilon}\right)
$$

where $\psi(k)=\frac{14-5 k}{28 k}$. We use the notation $f=\infty(g)$ for $g=o(f)$.
It remains to discuss the set m^{*} in which the following bounds hold simultaneously

$$
\left|S_{1}\left(\lambda_{1} \alpha\right)\right|>X^{\frac{6}{7}+\varepsilon}, \quad\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|>X^{\frac{3}{7}+\varepsilon}, \quad X^{-\frac{3}{5}}<|\alpha| \leq \frac{\log ^{2} X}{\eta^{2}}=R .
$$

Following the dyadic dissection argument as in [3] we divide m^{*} into disjoint sets $E\left(Z_{1}, Z_{2}, y\right)$ in which, for $\alpha \in E\left(Z_{1}, Z_{2}, y\right)$, we have

$$
Z_{1}<\left|S_{1}\left(\lambda_{1} \alpha\right)\right| \leq 2 Z_{1}, \quad Z_{2}<\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right| \leq 2 Z_{2}, \quad y<|\alpha| \leq 2 y,
$$

where $Z_{1}=2^{k_{1}} X^{\frac{6}{7}+\varepsilon}, Z_{2}=2^{k_{2}} X^{\frac{3}{7}}+\varepsilon$ and $y=2^{k_{3}} X^{-\frac{3}{4}-\varepsilon}$ for some non-negative integers k_{1}, k_{2}, k_{3}.
It follows that the number of disjoint sets are, at the most, $\ll \log ^{3} X$. Let us define \mathcal{A} as a shorthand for the set $E\left(Z_{1}, Z_{2}, y\right)$; we have the following result about the Lebesgue measure of \mathcal{A} following the same lines of Lemma 6 in [23]:

Lemma 9. Let $\varepsilon>0$. We have $\mu(\mathcal{A}) \ll y X^{\frac{18}{7}+3 \varepsilon} Z_{1}^{-2} Z_{2}^{-4}$, where $\mu(\cdot)$ denotes the Lebesgue measure.

Proof. If $\alpha \in \mathcal{A}$, by Corollary 1 and Lemma 8 there are coprime integers $\left(a_{1}, q_{1}\right)$ and (a_{2}, q_{2}) such that

$$
\begin{gather*}
1 \leq q_{1} \ll\left(\frac{X^{1+\varepsilon}}{Z_{1}}\right)^{2}, \quad\left|q_{1} \lambda_{1} \alpha-a_{1}\right| \ll\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2}, \tag{19}\\
1 \leq q_{2} \ll\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{4}, \quad\left|q_{2} \lambda_{2} \alpha-a_{2}\right| \ll X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{4} . \tag{20}
\end{gather*}
$$

We remark that $a_{1} a_{2} \neq 0$ otherwise we would have $\alpha \in \mathcal{M}$. In fact, if $a_{1}=0$, recalling the definitions of Z_{1} and (19), we get

$$
|\alpha| \ll q_{1}^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2} \ll X^{-5 / 7}
$$

otherwise, if $a_{2}=0$ recalling the definitions of Z_{2} and (20)

$$
|\alpha| \ll q_{2}^{-1} X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{4} \ll X^{-5 / 7} .
$$

It means that on the minor arc

$$
\begin{equation*}
|\alpha| \gg X^{-\frac{5}{7}}+\varepsilon . \tag{21}
\end{equation*}
$$

Now, we can further split m^{*} into sets $I\left(Z_{1}, Z_{2}, y, Q_{1}, Q_{2}\right)$ where, on each set, $Q_{j} \leq q_{j} \leq 2 Q_{j}$. In the opposite direction, for a given quadruple $a_{1}, q_{1}, a_{2}, q_{2}$, the inequalities (19)-(20) define a subset of α of length

$$
\mu(I) \ll \min \left(Q_{1}^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2}, Q_{2}^{-1} X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{4}\right) .
$$

By taking the geometric mean we can write

$$
\begin{equation*}
\mu(I) \ll Q_{1}^{-\frac{1}{2}} Q_{2}^{-\frac{1}{2}} X^{-\frac{1}{2}}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{2} \ll \frac{X^{1+3 \varepsilon}}{Q_{1}^{\frac{1}{2}} Q_{2}^{\frac{1}{2}} Z_{1} Z_{2}^{2}} . \tag{22}
\end{equation*}
$$

Now we need a lower bound for $Q_{1}^{\frac{1}{2}} Q_{2}^{\frac{1}{2}}$: by (19) and (20)

$$
\begin{aligned}
\left|a_{2} q_{1} \frac{\lambda_{1}}{\lambda_{2}}-a_{1} q_{2}\right| & =\left|\frac{a_{2}}{\lambda_{2} \alpha}\left(q_{1} \lambda_{1} \alpha-a_{1}\right)-\frac{a_{1}}{\lambda_{2} \alpha}\left(q_{2} \lambda_{2} \alpha-a_{2}\right)\right| \\
& \ll q_{2}\left|q_{1} \lambda_{1} \alpha-a_{1}\right|+q_{1}\left|q_{2} \lambda_{2} \alpha-a_{2}\right| \\
& \ll Q_{2}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{1}}\right)^{2}+Q_{1} X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{Z_{2}}\right)^{4} .
\end{aligned}
$$

Remembering that $Q_{1} \ll\left(\frac{X^{1+\varepsilon}}{Z_{1}}\right)^{2}, Q_{2} \ll\left(\frac{X_{2}^{1}+\varepsilon}{Z_{2}}\right)^{4}, Z_{1} \gg X_{7}^{\frac{6}{7}}, Z_{2} \gg X_{7}^{\frac{3}{7}+\varepsilon}$, we have

$$
\begin{equation*}
\left|a_{2} q_{1} \frac{\lambda_{1}}{\lambda_{2}}-a_{1} q_{2}\right|<\left(\frac{X^{\frac{1}{2}+\varepsilon}}{X^{\frac{3}{7}}+\varepsilon}\right)^{4}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{X_{7}^{6}+\varepsilon}\right)^{2}+\left(\frac{X^{1+\varepsilon}}{X_{7}^{\frac{6}{7}}+\varepsilon}\right)^{2} X^{-1}\left(\frac{X^{\frac{1}{2}+\varepsilon}}{X_{7}^{3}+\varepsilon}\right)^{4} \ll \frac{X^{2+4 \varepsilon} X^{1+2 \varepsilon}}{X^{\frac{12}{7}+4 \varepsilon} X^{\frac{12}{7}+2 \varepsilon}} \ll X^{-\frac{3}{7}-6 \varepsilon}<\frac{1}{4 q} \tag{23}
\end{equation*}
$$

We recall that $X=q^{7 / 3}$. Hence by (23), Legendre's law of best approximation for continued fractions implies that $\left|a_{2} q_{1}\right| \geq q$ and by the same argument, for any pair α, α^{\prime} having distinct associated products $a_{2} q_{1}$ (see Watson [24]),

$$
\left|a_{2}(\alpha) q_{1}(\alpha)-a_{2}\left(\alpha^{\prime}\right) q_{1}\left(\alpha^{\prime}\right)\right| \geq q
$$

thus, by the pigeon-hole principle, there is at most one value of $a_{2} q_{1}$ in the interval $[r q,(r+1) q)$ for any positive integer r. Hence, $a_{2} q_{1}$ determines a_{2} and q_{1} to within X^{ε} possibilities (from the bound for the divisor function) and consequently also $a_{2} q_{1}$ determines a_{1} and q_{2} to within X^{ε} possibilities from (23).

Hence, we obtain a lower bound for $q_{1} q_{2}$, remembering that $Q_{j} \leq q_{j} \leq 2 Q_{j}$:

$$
q_{1} q_{2}=a_{2} q_{1} \frac{q_{2}}{a_{2}} \gg \frac{r q}{|\alpha|} \gg r q y^{-1}
$$

for the quadruple under consideration. As a consequence, we obtain from (22), that the total length of the part of the subset $I\left(Z_{1}, Z_{2}, y, Q_{1}, Q_{2}\right)$, with $a_{2} q_{1} \in[r q,(r+1) q)$, is

$$
\mu(I) \ll X^{1+3 \varepsilon} Z_{1}^{-1} Z_{2}^{-2} r^{-\frac{1}{2}} q^{-\frac{1}{2}} y^{\frac{1}{2}}
$$

Now, we sum on every interval to get an upper bound for the measure of \mathcal{A} :

$$
\mu(\mathcal{A}) \ll X^{1+3 \varepsilon} Z_{1}^{-1} Z_{2}^{-2} q^{-\frac{1}{2}} y^{\frac{1}{2}} \sum_{1 \leq r \ll q^{-1} y X^{4+6 \varepsilon} Z_{1}^{-2} Z_{2}^{-4}} r^{-\frac{1}{2}}
$$

By standard estimation we obtain

$$
\sum_{1 \leq r \ll q^{-1} y X^{4+6 \varepsilon} Z_{1}^{-2} Z_{2}^{-4}} r^{-\frac{1}{2}} \ll\left(q^{-1} y X^{4+6 \varepsilon} Z_{1}^{-2} Z_{2}^{-4}\right)^{\frac{1}{2}},
$$

then

$$
\mu(\mathcal{A}) \ll y X^{3+6 \varepsilon} Z_{1}^{-2} Z_{2}^{-4} q^{-1} \ll y X^{3+6 \varepsilon} Z_{1}^{-2} Z_{2}^{-4} X^{-\frac{3}{7}} \ll y X^{18}+6 \varepsilon Z_{1}^{-2} Z_{2}^{-4}
$$

This concludes the proof of the lemma.
Using Lemma 9, we finally are able to get a bound for $I(\eta, \omega, \mathcal{A})$:

$$
\begin{align*}
|I(\eta, \omega, \mathcal{A})| & \ll \int_{\mathcal{A}}\left|S_{1}\left(\lambda_{1} \alpha\right)\right|\left|\widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|\left|S_{2}\left(\lambda_{3} \alpha\right)\right|\left|S_{k}\left(\lambda_{4} \alpha\right)\right| K_{\eta}(\alpha) \mathrm{d} \alpha \\
& \ll\left(\int_{\mathcal{A}}\left|S_{1}\left(\lambda_{1} \alpha\right) \widetilde{S}_{2}\left(\lambda_{2} \alpha\right)\right|^{2} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{\frac{1}{2}}\left(\int_{\mathcal{A}}\left|S_{2}\left(\lambda_{3} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{\frac{1}{4}}\left(\int_{\mathcal{A}}\left|S_{k}\left(\lambda_{4} \alpha\right)\right|^{4} K_{\eta}(\alpha) \mathrm{d} \alpha\right)^{\frac{1}{4}} \tag{24}
\end{align*}
$$

$$
\begin{aligned}
& \ll\left(\min \left(\eta^{2}, \frac{1}{y^{2}}\right)\right)^{\frac{1}{2}}\left(\left(Z_{1} Z_{2}\right)^{2} \mu(\mathcal{A})\right)^{\frac{1}{2}}\left(\eta X \log ^{2} X\right)^{\frac{1}{4}}\left(\eta X^{\varepsilon} \max \left(X^{\frac{2}{k}}, X^{\frac{4}{k}-1}\right)\right)^{\frac{1}{4}} \\
& \ll \eta Z_{2}^{-1} X^{\frac{9}{7}+2 \varepsilon} X^{\frac{1}{4}}+2 \varepsilon \\
& \max \left(X^{\frac{1}{2 k}}, X^{\frac{1}{k}-\frac{1}{4}}\right) \ll \eta X^{\frac{6}{7}+2 \varepsilon} X^{\frac{1}{4}+2 \varepsilon} \max \left(X^{\frac{1}{2 k}}, X^{\frac{1}{k}-\frac{1}{4}}\right) \\
& \ll \eta X^{\frac{31}{28}+4 \varepsilon} \max \left(X^{\frac{1}{2 k}}, X_{k}^{\frac{1}{k}-\frac{1}{4}}\right),
\end{aligned}
$$

so $\eta=\infty\left(\max \left(X^{-\frac{1}{14}}, X^{-\frac{14-5 k}{28 k}+\varepsilon}\right)\right)$ is the optimal choice.

Acknowledgements: I wish to thank my PhD supervisor Prof. Alessandro Zaccagnini for his professional guidance and valuable support and Prof. Alessandro Languasco for his fruitful suggestions which improved my article. This is a part of my PhD dissertation. I also thank the referees for several suggestions.

Conflict of interest: Author states no conflict of interest.

References

[1] J. Brüdern, R. Cook, and A. Perelli, The values of binary linear forms at prime arguments, in: Proceedings of the Sieve Methods, Exponential Sums and Their Application in Number Theory, Cambridge University Press, Cambridge, 1997, pp. 87-100, DOI: https://doi.org/10.1017/CB09780511526091.007.
[2] R. Cook and A. Fox, The values of ternary quadratic forms at prime arguments, Mathematika 48 (2001), no. 1-2, 137-149, DOI: https://doi.org/10.1112/S002557930001439X.
[3] G. Harman, The values of ternary quadratic forms at prime arguments, Mathematika 51 (2004), no. 1-2, 83-96, DOI: https://doi.org/10.1112/S0025579300015527.
[4] R. Cook, The value of additive forms at prime arguments, J. Théor. Nombres Bordeaux 13 (2001), no. 1, 77-91.
[5] R. Cook and G. Harman, The values of additive forms at prime arguments, Rocky Mountain J. Math. 36 (2006), no. 4, 1153-1164, DOI: https://doi.org/10.1216/rmjm/1181069409.
[6] R. Vaughan, Diophantine approximation by prime numbers, I, Proc. Lond. Math. Soc. 3 (1974), no. 2, 373-384.
[7] R. Baker and G. Harman, Diophantine approximation by prime numbers, J. Lond. Math. Soc. 2 (1982), no. 2, 201-215, DOI: https://doi.org/10.1112/jlms/s2-25.2.201.
[8] G. Harman, Diophantine approximation by prime numbers, J. Lond. Math. Soc. 2 (1991), no. 2, 218-226, DOI: https://doi.org/10.1112/jlms/s2-44.2.218.
[9] K. Matomäki, Diophantine approximation by primes, Glasg. Math. J. 52 (2010), no. 1, 87-106, DOI: https://doi.org/10. 1017/S0017089509990176.
[10] A. Languasco and A. Zaccagnini, A Diophantine problem with prime variables, in: V. KumarMurty, D. S. Ramana, and R. Thangadurai (eds.), Highly Composite: Papers in Number Theory, Proceedings of the International Meeting on Number Theory, celebrating the 60th Birthday of Professor R. Balasubramanian (Allahabad, 2011), RMS Lecture Notes Series., vol. 23, pp. 157-168, 2016.
[11] A. Languasco and A. Zaccagnini, On a ternary Diophantine problem with mixed powers of primes, Acta Arith. 159 (2013), no. 4, 345-362, DOI: https://doi.org/10.4064/aa159-4-4.
[12] W. Li and T. Wang, Diophantine approximation with one prime and three squares of primes, Ramanujan J. 25 (2011), no. 3, 343-357, DOI: https://doi.org/10.1007/s11139-010-9290-x.
[13] A. Languasco and A. Zaccagnini, A Diophantine problem with a prime and three squares of primes, J. Number Theory 132 (2012), no. 12, 3016-3028, DOI: https://doi.org/10.1016/j.jnt.2012.06.015.
[14] Z. Liu and H. Sun, Diophantine approximation with one prime and three squares of primes, Ramanujan J. 30 (2013), no. 3, 327-340, DOI: https://doi.org/10.1007/s11139-012-9426-2.
[15] Y. Wang and W. Yao, Diophantine approximation with one prime and three squares of primes, J. Number Theory 180 (2017), 234-250, DOI: https://doi.org/10.1016/j.jnt.2017.04.013.
[16] H. Davenport and H. Heilbronn, On indefinite quadratic forms in five variables, J. Lond. Math. Soc. s1-21 (1946), no. 3, 185-193, DOI: https://doi.org/10.1112/jlms/s1-21.3.185.
[17] G. Harman and A. V. Kumchev, On sums of squares of primes, Math. Proc. Cambridge Philos. Soc., Cambridge Univ Press, 140 (2006), 1-13.
[18] R. Vaughan, Diophantine approximation by prime numbers, II, Proc. Lond. Math. Soc. s3-28 (1974), no. 3, 385-401, DOI: https://doi.org/10.1112/plms/s3-28.3.385.
[19] A. Languasco and V. Settimi, On a Diophantine problem with one prime, two squares of primes and s powers of two, Acta Arith. 154 (2012), no. 4, 385-412, DOI: https://doi.org/10.4064/aa154-4-4.
[20] A. Gambini, A. Languasco, and A. Zaccagnini, A diophantine approximation problem with two primes and one k-power of a prime, J. Number Theory 188 (2018), 210-228, DOI: https://doi.org/10.1016/j.jnt.2018.01.002.
[21] G. Rieger, Über die Summe aus einem Quadrat und einem Primzahlquadrat, J. Reine Angew. Math. 231 (1968), 89-100, DOI: https://doi.org/10.1515/crll.1968.231.89.
[22] R. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Mathematics vol. 125, 2nd ed., Cambridge University Press, Cambridge, England, 1997, DOI: https://doi.org/10.1017/CBO9780511470929.
[23] Q. Mu, Diophantine approximation with four squares and one kth power of primes, Ramanujan J. 39 (2016), no. 3, 481-496, DOI: https://doi.org/10.1007/s11139-015-9740-6.
[24] G. Watson, On indefinite quadratic forms in five variables, Proc. Lond. Math. Soc. s3-3 (1953), no. 1, 170-181, DOI: https://doi.org/10.1112/plms/s3-3.1.170.

[^0]: * Corresponding author: Alessandro Gambini, Dipartimento di Matematica 'Guido Castelnuovo’, P.le Aldo Moro 5, Sapienza Università di Roma, Rome, Italy, e-mail: alessandro.gambini@uniroma1.it

