We study the compactness properties of metrics of prescribed fractional $Q$-curvature of order $3$ in $R^3$. We will use an approach inspired from conformal geometry, seeing a metric on a subset of $R^3$ as the restriction of a metric on $R^4_+$ with vanishing fourth-order $Q$-curvature. We will show that a sequence of such metrics with uniformly bounded fractional $Q$-curvature can blow up on a large set (roughly, the zero set of the trace of a nonpositive biharmonic function $Phi$ in $R^4_+$), in analogy with a $4$-dimensional result of Adimurthi-Robert-Struwe, and construct examples of such behaviour. In doing so, we produce general Poisson-type representation formulas (also for higher dimension), which are of independent interest.

Concentration phenomena for the fractional Q-curvature equation in dimension 3 and fractional Poisson formulas / Delatorre, A.; Gonzalez, M. D. M.; Hyder, A.; Martinazzi, L.. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 104:1(2021), pp. 423-451. [10.1112/jlms.12437]

Concentration phenomena for the fractional Q-curvature equation in dimension 3 and fractional Poisson formulas

DelaTorre A.;Martinazzi L.
2021

Abstract

We study the compactness properties of metrics of prescribed fractional $Q$-curvature of order $3$ in $R^3$. We will use an approach inspired from conformal geometry, seeing a metric on a subset of $R^3$ as the restriction of a metric on $R^4_+$ with vanishing fourth-order $Q$-curvature. We will show that a sequence of such metrics with uniformly bounded fractional $Q$-curvature can blow up on a large set (roughly, the zero set of the trace of a nonpositive biharmonic function $Phi$ in $R^4_+$), in analogy with a $4$-dimensional result of Adimurthi-Robert-Struwe, and construct examples of such behaviour. In doing so, we produce general Poisson-type representation formulas (also for higher dimension), which are of independent interest.
2021
Q curvature; non-local Pdes; higher order operator
01 Pubblicazione su rivista::01a Articolo in rivista
Concentration phenomena for the fractional Q-curvature equation in dimension 3 and fractional Poisson formulas / Delatorre, A.; Gonzalez, M. D. M.; Hyder, A.; Martinazzi, L.. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - 104:1(2021), pp. 423-451. [10.1112/jlms.12437]
File allegati a questo prodotto
File Dimensione Formato  
DelaTorre_Concentration-phenomena_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 511.29 kB
Formato Adobe PDF
511.29 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1591019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact