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Concentration phenomena for the fractional Q-curvature equation
in dimension 3 and fractional Poisson formulas

Azahara DelaTorre, Maŕıa del Mar González, Ali Hyder and Luca Martinazzi

Abstract

We study the compactness properties of metrics of prescribed fractional Q-curvature of order 3
in R3. We will use an approach inspired from conformal geometry, seeing a metric on a subset of
R3 as the restriction of a metric on R4

+ with vanishing fourth-order Q-curvature. We will show
that a sequence of such metrics with uniformly bounded fractional Q-curvature can blow up on
a large set (roughly, the zero set of the trace of a non-positive bi-harmonic function Φ in R4

+), in
analogy with a four-dimensional result of Adimurthi–Robert–Struwe, and construct examples of
such behaviour. In doing so, we produce general Poisson-type representation formulas (also for
higher dimension), which are of independent interest.

1. Introduction

Consider a Riemannian manifold (M, g). A classical problem in differential geometry is to
conformally transform the metric g in such a way that the scalar curvature of the new metric
coincides with a given function K. When (M, g) is the round sphere, this corresponds to the
intensely studied Nirenberg problem, or when K is chosen to be constant we have a so-called
uniformization problem.

Similar problems arise and have been (and are being) studied with the Riemannian scalar
curvature replaced by other notions of curvature, among which the Q-curvature. For instance,
the uniformization problem for closed manifolds of even dimension 2m ! 4 has been addressed
in [22, 34], under the assumption that the total Q-curvature

∫
M Qg dvolg is not a multiple

of the constant Λ1 := (2m− 1)! vol(S2m), which is the total Q-curvature of S2m. Removing
this assumption, the problem is still open, to the best of our knowledge. A fundamental tool
in approaching this, and other prescribed curvature problems, is the so-called blow-up (or
concentration) analysis of a sequence of metrics with prescribed curvature. For instance, in the
seminal paper [9] Brézis and Merle studied the case of the Gaussian curvature in dimension 2:

Theorem 1.1 [9]. Given an open subset Ω of R2, assume that (uk) ⊂ L1
loc(Ω) is a sequence

of weak solutions to

−∆uk = Kke
2uk in Ω (1.1)
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with Kk ! 0 and such that ‖Kk‖L∞(Ω) " κ̄ and ‖e2uk‖L1(Ω) " Ā, for κ̄, Ā positive constants.
Then, up to subsequences, either

1. uk is bounded in L∞
loc(Ω), or

2. there is a finite (possibly empty) set B = {x1, . . . , xN} ⊂ Ω (the blow-up set) such that
uk(x) → −∞ locally uniformly in Ω \B, and

Kke
2uk ∗

⇀
N∑

i=1

αiδxi for some numbers αi ! 2π, (1.2)

where
∗
⇀ denotes the weak-∗ convergence in the sense of Radon measures.

In (1.1) the function Kk is the Gaussian curvature of the metric e2uk |dx|2, having area
‖e2uk‖L1(Ω) " Ā. The constant 2π on the right-hand side of (1.2) corresponds to the half of
the total Gaussian curvature of S2, a feature that will appear again.

That case (1.2) actually occurs can be easily seen by considering the function

u(x) = log
2

1 + |x|2 ,

and then defining uk(x) = u(kx) + log k. Each uk solves (1.1) in Ω = R2 with Kk ≡ 1 and
‖e2uk‖L1(R2) = 4π, so that e2uk

∗
⇀ 4πδ0.

In higher even dimension 2m one can replace equation (1.1) with

(−∆)muk = Qke
2muk in Ω ⊂ R2m, (1.3)

having the geometric interpretation that Qk is the Q-curvature of the conformal metric
e2uk |dx|2 on Ω. In spite of similar scaling properties, as discovered by Adimurthi, Robert
and Struwe [4], equation (1.3) exhibits a richer blow-up behaviour than (1.1) when 2m = 4. In
particular blow-up is possible not only on isolated points but also on hyperplanes or, in general,
on zero sets of non-positive bi-harmonic functions, see [4, 28]. This was later generalized to
arbitrary even dimension 2m ! 4 in [32]. For a finite set S1 ⊂ Ω define

K(Ω, S1) := {ϕ ∈ C∞(Ω \ S1) : ϕ " 0, ϕ )≡ 0, ∆mϕ ≡ 0}, (1.4)

and for a function ϕ ∈ K(Ω, S1) set

Sϕ := {x ∈ Ω \ S1 : ϕ(x) = 0}. (1.5)

Theorem 1.2 [4, 32]. Let (uk) be a sequence of solutions to (1.3) for some m ! 1 under
the bounds

‖Qk‖L∞(Ω) " C,

∫

Ω
e2mukdx " C. (1.6)

Then the set

S1 :=

{
x ∈ Ω : lim

r↓0
lim sup
k→∞

∫

Br(x)
|Qk|e2muk dy ! Λ1

2

}
, where Λ1 := (2m− 1)! vol(S2m),

is finite (possibly empty) and, up to a subsequence, either

(i) (uk) is bounded in C2m−1,α
loc (Ω \ S1), or

(ii) there exists a function ϕ ∈ K(Ω, S1) and a sequence βk → +∞ as k → +∞ such that

uk

βk
→ ϕ locally uniformly in Ω \ S1.

In particular, uk → −∞ locally uniformly in Ω \ (Sϕ ∪ S1).
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In fact, in case (ii) of Theorem 1.2, one can prescribe the blow-up set Sϕ, in the sense that
given any ϕ ∈ K(Ω, ∅), one can construct a sequence (uk) solving (1.3) and (1.6) with uk → +∞
on Sϕ, as shown in [28]. Moreover in the radial case of dimension 6, it was also shown in [29]
that the blow-up set S1 = {0} and Sϕ = {x : |x| = 1} can coexist; see also [23, 31, 34] for the
case of a closed manifold of even dimension 4 and higher.

The problem of prescribing Q-curvature is not confined to even dimensions, but a crucial
difficulty that arises when studying a problem as (1.3) in any odd dimension n is that one has
to deal with the fractional Laplacian operator (−∆)n

2 , which is non-local. This was done in
dimension 1 in the cases of S1 and of the real line by Da Lio, Martinazzi and Rivière [20, 21].
In particular, the following compactness result is proven:

Theorem 1.3 [20]. Let (uk) ⊂ L 1
2
(R) be a sequence of solutions to

(−∆)
1
2uk = Kke

uk in R (1.7)

and assume that

‖Kk‖L∞ " C,

∫

R
eukdx " C. (1.8)

Up to a subsequence assume that Kk
∗
⇀ K∞ in L∞(R). Then there exists a finite (possibly

empty) set B := {x1, . . . , xN} ⊂ R such that, up to extracting a further subsequence, one of
the following alternatives holds:

(i) uk → u∞ in W 1,p
loc (R \B) for p < ∞, where

Kke
uk ∗

⇀ K∞eu∞ +
N∑

i=1

πδxi . (1.9)

(ii) uk → −∞ locally uniformly in R \B and

Kke
uk ∗

⇀
N∑

j=1

αjδxj , for some α1, . . . ,αN ! π. (1.10)

The geometric interpretation of (1.7) is not in terms of intrinsic curvatures, but rather
of the curvature of Φ|S1 : S1 → C, where Φ : D → C is a conformal immersion of the unit
disc of the complex plane. The constant π appearing in (1.9) and (1.10) corresponds to half
the total curvature of S1 and is the one-dimensional analog of the constant Λ1

2 appearing in
Theorem 1.2. It arises as consequence of a pinching phenomenon, as already described in [21].
Note that Theorem 1.3 is more general than Theorem 1.1 as no assumption on the sign of Kk

is made and, in fact, to have N > 0 in case (i) it is necessary that Kk changes sign near the
blow-up points.

In this paper we shall focus on the three-dimensional case. In particular, on the three-
dimensional analog of (1.3), suitably defined. Instead of the geometric interpretation of (1.7)
in terms of conformal immersions, we will consider the function u to be the trace of a function
defined in all of the half-space R4

+. This leads to a different geometric interpretation in terms
of conformal geometry and fractional Q-curvature, which is the natural setting to understand
(1.3) and a curved generalization on it.

More precisely, let us denote any point X ∈ R4 by X = (x, y) = (x1, x2, x3, y) and set R4
+ =

{(x, y) : y > 0}. We will identify R3 = {(x, y) : y = 0} = ∂R4
+. In the following, ∆ will denote

the Laplacian in R4
+ and ∆x the Laplacian in R3.
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Assume that U ∈ C∞(R4
+) is a solution to the problem





∆2U = 0 in R4

+,

∂yU(·, 0) = 0 on R3.
(1.11)

Let u be its Dirichlet data u = U |R3 . If U ∈ W 2,2(R4
+), then, as we shall see, U is characterized

by the Poisson representation formula

U(x, y) =
4
π2

∫

R3

y3

(y2 + |x− x̃|2)3u(x̃) dx̃, (1.12)

and one can define

L 3
2
U :=

1
2

lim
y→0

∂y∆U. (1.13)

Then it is known (see Proposition 6.1 in Section 6) that

L 3
2
U = (−∆x)

3
2u, (1.14)

where the 3
2 -fractional Laplacian is defined as the operator with Fourier symbol |ξ|3.

On the other hand, to have more general geometric phenomena, we will need to admit
functions with polynomial growth at infinity and thus, not in the energy space. Thus we define
the broader class

Ls(Rn) :=
{
u ∈ L1

loc(Rn) :
∫

Rn

|u(x)|
1 + |x|s dx < ∞

}
.

The fractional Laplacian of a function u ∈ Ls(Rn) can be defined distributionally. More
precisely, we say that u ∈ L6(R3) is a distributional solution to (−∆x) 3

2u = w in R3 if
∫

R3
u(−∆)

3
2φ dx =

∫

R3
wφ dx for all φ ∈ C∞

c (R3). (1.15)

In addition, L 3
2

can also be defined in a distributional sense for functions in a space larger
than W 2,2(R4

+). In order to do so, given u ∈ L6(R3), we first define U ∈ L1
loc(R4

+) to be a weak
solution to





∆2U = 0 in R4

+,

U(·, 0) = u, ∂yU(·, 0) = 0 on R3,
(1.16)

if
∫

R4
+

U∆2ϕ dX = −
∫

R3
u∂y∆ϕ dx, (1.17)

holds for every ϕ ∈ C∞
c (R4

+) with ϕ = ∂yϕ = 0 on R3, compare to Proposition 2.1.
Note that if we admit functions U with polynomial growth, uniqueness is lost, in the sense

that (1.16) has more than one solution for every u ∈ L6(R3). Of course this is not the case if
we restrict to solutions as in (1.12), and we will discuss this in Proposition 2.1.

Definition 1.4. We say that a function U ∈ L1
loc(R4

+) is a representable (weak) solution
of (1.11) if it can be defined as the Poisson integral (1.12) for a function u ∈ L6(R3).

Let now Σ0 be an open connected domain in R3.
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Definition 1.5. A function U ∈ L1
loc(R4

+) weakly solving (1.16) for some u ∈ L6(R3) is a
weak solution to

L 3
2
U = w, in Σ0

for some w ∈ L1
loc(R3) if

∫

R4
+

U∆2ψ dX = 2
∫

R3
wψ dx−

∫

R3
u∂y∆ψ dx, (1.18)

for every test function ψ ∈ C∞
c (R4

+ ∪ Σ0) satisfying ∂yψ = 0 on Σ0.

Now we can recover (1.14) for functions u in the larger space L6(R3). More precisely, from
the arguments in Proposition 2.1 we will obtain that for u ∈ L6(R3), the function U defined by
(1.12) satisfies L 3

2
U = (−∆) 3

2u, where both quantities are defined distributionally as indicated
above by (1.18) and (1.15), respectively. Note that maximum principles and removability
theorems for weak solutions of higher order fractional Laplacian equations have been considered
in [6].

With these definitions in mind, we would like to study the (localized) non-linear equation





∆2U = 0 in R4
+,

U(·, 0) = u, ∂yU(·, 0) = 0 in R3,

L 3
2
U = Q(x)e3u on Σ0,

(1.19)

on an open connected domain Σ0 ⊂ R3. As we have seen, this is equivalent to the equation

(−∆x)
3
2u = Q(x)e3u in Σ0. (1.20)

The interpretation of (1.20) in conformal geometry will be further explained in Section 6
(see [11, 16, 17] and the survey [14]). Indeed, on the boundary M3 of a four-dimensional
manifold it is possible to define a third-order curvature, the T -curvature, in relation to a
four-dimensional Gauss–Bonnet formula for manifolds with boundary [19]. This T -curvature
satisfies the conformal property

P gu + T g = T g̃e3u, (1.21)

under the conformal change of metric g̃ = e2ug, where P is a third-order boundary operator,
corresponding to the (fourth-order) Paneitz operator on the four-dimensional ambient manifold.
Thus, (1.21) can be understood as a prescribing curvature problem (see [25] for the related
fractional Yamabe equation). In the flat setting, (1.21) reduces to (1.20) for a conformal metric
g̃ = e2u|dx|2 on R3.

In some particular cases, this operator P can be understood as the limit γ → 3/2 of the
conformal fractional Laplacian Pγ (see, for instance, [13, 15], the survey [24] and the references
therein for the necessary background). Pγ is a non-local operator with principal symbol the
same as (−∆M )γ and, in the flat case, Pγ = (−∆x)γ .

Our main theorem studies concentration phenomena for the Liouville equation (1.20) in
dimension 3. In analogy with Theorem 1.2 we will see that solutions can blow up on isolated
points and also on the zero set of certain bi-harmonic functions. More precisely, let us set

K(Σ0) :=
{
H ∈ C∞(R4

+ ∪ Σ0) : ∆2H = 0, H " 0, in R4
+,

H )≡ 0, ∂yH = 0 on R3, L 3
2
H = 0 on Σ0

}
.

(1.22)
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Theorem 1.6. Let (Uk) ⊂ L1
loc(R4

+) be a sequence of representable functions satisfying





∆2Uk = 0 in R4
+,

Uk(·, 0) = uk, ∂yUk(·, 0) = 0 in R3,

L 3
2
Uk = Qke

3uk on Σ0,

(1.23)

and Qk is uniformly bounded in L∞(Σ0). We assume that
∫

Σ0

e3uk dx " C (1.24)

and
∫

R3

u+
k (x)

1 + |x|6 dx " C. (1.25)

Set

S1 :=

{
x̄ ∈ Σ0 : lim

ε→0+
lim inf
k→∞

∫

Bε(x̄)
|Qk|e3uk dx ! Λ1

2

}
, Λ1 = 2|S3| = 4π2.

Then S1 is a finite set and, up to a subsequence, one of the following is true:

(i) Uk → U∞ in C2,α
loc (R4 ∪ (Σ0 \ S1)) for any α ∈ [0, 1);

(ii) there exist Φ ∈ K(Σ0) and numbers βk → ∞ such that

Uk

βk
→ Φ in C2,α

loc ((R4
+ ∪ Σ0) \ S), S = SΦ ∪ S1,

where SΦ := {x ∈ Σ0 : Φ(x) = 0}. Moreover SΦ has dimension at most 2.

Finally, if for some x̄ ∈ S1 there is a neighbourhood V of x̄ such that Qk ! 0 in V for every
k, then necessarily case (ii) occurs.

After the completion of this work, the third author [27] showed that under the additional
condition ‖∇Qk‖C0 " C, in case (ii) of the theorem one has the following quantization result:
up to a subsequence

Qke
3uk ⇀

∑

x̄∈S1\SΦ

4π2Nx̄δx̄ in Σ0 \ SΦ

for some Nx̄ ∈ N \ {0}.

Remark 1.7. Since the operator (−∆x) 3
2 is non-local, the extra assumption (1.25) is

needed in order to control the behaviour of uk outside of Σ0 (where the equation lives), but
it does not prevent concentration happening. Indeed, take u to be the model concentration
solution to (1.20) in R3 with finite volume condition

∫
R3 e3u dx < ∞. This is, of the form

u(x) ≈ − log |x|− c|x|2, c ! 0. Then uk(x) = u(kx) + log k also satisfies the same equation
with the same volume. Now we define Uk using the extension (1.12). Clearly Uk satisfies the
assumptions of Theorem 1.6.

Remark 1.8. Let us make a comment on localization. Note that if h is a harmonic function
in R3 then H(x, y) = h(x)y2 ∈ H, where we have defined

H :=
{
H ∈ C∞(R4

+) : ∆2H = 0 in R4
+, H = ∂yH = 0 on R3, L 3

2
H = 0 on Σ0

}
. (1.26)

One could localize the first two equations in (1.19) to a subset Σ = Ω ∩ {y ! 0}, where Ω is
a smoothly bounded open subset of R4 intersecting R3 × {0}. However, by working on R4

+
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with globally defined representable solutions we avoid the presence of bi-harmonic functions
belonging to the kernel (1.26) and the extension function U is unique for each u. In other words,
if for a solution U of (1.19) one removes the representability assumption, we could construct a
sequence Uk = U ± ky2 (or Uk = U + Hk with Hk ∈ H) still solving (1.19). Here the sequence
(Uk) is unbounded, however, (uk) is bounded. This is in agreement, again, with the general
fact that the fractional Laplacian is a non-local operator.

Several ideas in the proof of Theorem 1.6 rely on the paper [4] on concentration phenomena
for a fourth-order Liouville’s equation in dimension 4. Both are inspired from the two-
dimensional case [9, 30], where the main step is to prove a Brezis–Merle estimate. This is
done in Lemma 3.1.

As in the two-dimensional case [9, 36], alternative (i) cannot happen with S1 )= ∅ if the Qk

are non-negative (see Lemma 4.1). However, if the functions Qk are allowed to change sign
then alternative (i) can occur with S1 )= ∅. More precisely, we have the following example.

Proposition 1.9. Fix Σ0 = B1 the unit ball in R3. There exist sequences {Uk}, {Qk} of
solutions to problem (1.23), satisfying ‖Qk‖L∞(Σ0) " C and the volume bound (1.24), such
that

uk(0) → ∞ as k → ∞,

S1 = {0} and {Uk} is bounded in C2,α
loc (R4 ∪ (Σ0 \ S1)) for any α ∈ [0, 1).

We next show that case (ii) of Theorem 1.6 is non-trivial:

Proposition 1.10. Let Φ ∈ K(Σ0) solve ∂yΦ(x, 0) = 0 for every x ∈ R3. Assume further
that Φ is representable and set

SΦ := {x ∈ Σ0 : Φ(x) = 0}.

Then, given a sequence (Qk) ⊂ L∞(Σ0) with ‖Qk‖L∞(Σ0) " C, there exists a sequence of

solutions (Uk) ⊂ C0(R4
+) to (1.23) such that Uk → ∞ on SΦ and case (ii) of Theorem 1.6

holds with S1 = ∅.

The crucial difficulty in the proofs in this paper is the fact that the operator (−∆x) 3
2 is non-

local, and some of the usual arguments for elliptic local problems cannot be used. We are able
to deal with this issue by passing to a local equation in the extension. While this is a common
procedure to handle the fractional Laplacian (−∆x)γ in Rn, for powers γ ∈ (0, 1), here we
present the corresponding scheme for higher powers of the Laplacian γ ∈ (0, n

2 ]. In particular,
we obtain explicit formulas for solutions of the poly-harmonic equation in the upper half-space
such as (1.11), in terms of its Dirichlet data and its Neumann-type data (1.13). These formulas
are valid in any odd dimension n.

Proposition 1.11. Let n = 2m + 1 be an odd integer. For U ∈ Wm+1,2(Rn+1
+ ) we consider

the extension problem

∆m+1U = 0, in Rn+1
+ (1.27)

with the (natural) boundary conditions





∆jU(x, 0) =
m!Γ(m + 1

2 − j)
(m− j)!Γ(m + 1

2 )
(∆x)jU(x, 0) for 1 " j " [n/4],

∂y∆jU(x, 0) = 0 for 0 " j " m− [n/4] − 1,

(1.28)
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and the Dirichlet condition

U = f on Rn. (1.29)

Then a solution can be written by the Poisson formula

U(x, y) =
∫

Rn

Kn
2
(x− x̃, y)f(x̃) dx̃, (1.30)

where

Kn
2
(x, y) := κn

yn

(y2 + |x|2)n
, κn =

Γ(n)
Γ(n2 )π n

2
. (1.31)

If one considers the extension problem (1.27)-(1.28) with a Neumann-type condition

−
Γ(m + 1

2 )
m!

√
π

lim
y→0

∂y∆mU = w on Rn, (1.32)

instead of (1.29) then a solution can be written as

U(x, y) =
∫

Rn

K̃n
2
(x− x̃, y)w(x̃) dx̃,

where

K̃n
2
(x, y) = κ̃n log

1
y2 + |x|2 , κ̃n =

1
2nΓ(n2 )π n

2
. (1.33)

This paper is structured as follows: in Section 2 we prove the two representation formulas that
are needed for the proof of the main theorem, that is contained in Section 3. Then, in Section 5
we consider the existence result from Proposition 1.10. Finally, Section 6 is of independent
interest, and it contains the proof of the representation formulas from Proposition 1.11 using
techniques from conformal geometry. Moreover, we explain here the geometric content of (1.20).

2. Representation formulas (in dimension n = 3)

General representation formulas for poly-harmonic functions in the upper half-space were given
in Proposition 1.11. However, these are proven using Fourier transform arguments and are well
suited for energy solutions U ∈ Wm,2(Rn+1

+ ). In the following, we concentrate on bi-harmonic
functions in dimension n + 1 = 4, and move outside the energy class. More precisely, we prove
the following uniqueness result (note that this is not the sharpest possible statement, but it is
enough for our purposes):

Proposition 2.1. Given u ∈ L6(R3) (compare to Definition 1.4), the function

U(x, y) =
∫

R3
K 3

2
(x− x̃, y)u(x̃) dx̃, (2.1)

with

K 3
2
(x, y) =

4
π2

y3

(y2 + |x|2)3

solves (1.16) weakly in the sense that (1.17) holds for every ϕ ∈ C∞
c (R4

+) with ϕ = ∂yϕ = 0
on R3. Moreover U is the unique weak solution to (1.16) (that is, (1.17)) among the functions

U ∈ L1
loc(R4

+) satisfying the bound

|U(X)| + y|∂yU(X)| + y2|∆U(X)| " C(1 + |X|N ), lim
y→∞

U(x, y)
y2

= 0 ∀x ∈ R3,

for some N ! 1.
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Proof. That U as defined in (2.1) solves (1.16) in the strong sense when u ∈ C∞
c (R3) follows

from (1.30) for n = 3. The general case is proven by approximation. More precisely, set uε = u ∗
ρε, where ρε is the standard mollifier as ε → 0, and Uε be the corresponding Poisson extension.
Then use that uε → u in L6(R3), which implies that Uε → U converges in L1

loc. The uniqueness
part follows at once from Proposition 2.2. #

Proposition 2.2. Let U ∈ L1
loc(R4

+) be a weak solution to (1.16) with u = 0. Then U has
a bi-harmonic extension on R4. Moreover, if U satisfies

|U(X)| + y|∂yU(X)| + y2|∆U(X)| " C(1 + |X|N ), lim
y→∞

U(x, y)
y2

= 0 ∀x ∈ R3, (2.2)

for some N ! 1, then U ≡ 0.

Proof. We shall follow [5, Lemma 2.3]. We define the distribution

〈Ũ ,ϕ〉 :=
∫

R4
+

U(X)
{
ϕ(X) − 5ϕ(X∗) + 6y(∂yϕ)(X∗) − y2(∆ϕ)(X∗)

}
dX, ϕ ∈ C∞

c (R4),

where for X = (x, y) ∈ R3 × R we have set X∗ = (x,−y). We claim that Ũ is the unique bi-
harmonic extension of U in R4. Uniqueness follows immediately since bi-harmonic distributions
are analytic.

First we show that Ũ is indeed an extension of U . For every ϕ ∈ C∞
c (R4

+) we have

〈Ũ ,ϕ〉 =
∫

R4
+

Uϕ dX,

and hence U = Ũ on R4
+. Next, to show that Ũ is bi-harmonic in the weak sense, we compute

for ϕ ∈ C∞
c (R4)

〈Ũ ,∆2ϕ〉 =
∫

R4
+

U(X)
{
∆2ϕ(X) − 5∆2ϕ(X∗) + 6y(∂y∆2ϕ)(X∗) − y2∆3ϕ(X∗)

}
dX

=
∫

R4
+

U(X)∆2Φ(X) dX,

where

Φ(X) := ϕ(X) − ϕ(X∗) − y2∆ϕ(X∗) − 2y(∂yϕ)(X∗).

Note that Φ|R4
+
∈ S. Therefore

〈Ũ ,∆2ϕ〉 = 0 for every ϕ ∈ C∞
c (R4),

in other words, Ũ is bi-harmonic in R4.
Now we prove the second part of the proposition. From the definition one can show that

Ũ(X) = −U(X∗) − 2y(∂yU)(X∗) − y2(∆U)(X∗) for X ∈ R4
−.

It follows from the growth assumptions on U and its derivatives that |Ũ(X)| " C(1 + |X|N ),
and therefore, by Liouville theorem we obtain that Ũ is a polynomial, that is, we can write

Ũ(X) =
N∑

i=0

Pi(x)yi,

for some polynomials Pi in R3. The boundary conditions U = ∂yU = 0 on R3 imply that P0 ≡
0 ≡ P1. Finally, the assumption U(x, y) = o(y2) implies that Pi ≡ 0 for i ! 2. This completes
the proof. #
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Remark 2.3. Proposition 2.2 holds true if the growth assumption (2.2) is replaced by
∫

B+
R

(|U(X)| + y|∂yU(X)| + y2|∆U(X)|) dX " CRN , lim
y→∞

U(x, y)
y2

= 0, (2.3)

for every R ! 1, x ∈ R3 and for some N ! 1. In fact, using the first condition in (2.3), one can
show that the bi-harmonic function Ũ is a polynomial. Then, as before, we have that Ũ ≡ 0.

We note here that formulas for higher order extension problems in the ball have been
considered in [1, 2].

Next, we give an expression for a solution to (1.16) in terms of its third-order Neumann data
L 3

2
U given in a subset Σ0 ⊂ R3. Recall, from Proposition 1.11 and the subsequent discussion,

that
1

2π2
(−∆x)

3
2 log

1
|x| = δ0 in R3.

Then it is natural to define, for w ∈ L1(Σ0),

V (x, y) =
1

2π2

∫

Σ0

log
(

1 + |x̃|
|(x, y) − (x̃, 0)|

)
w(x̃) dx̃, (x, y) ∈ R3 × R. (2.4)

It is easy to see that V ∈ C∞(R4 \ Σ̄0) and V is well defined for almost every (x, 0) ∈ Σ0.

Definition 2.4. An open set Ω ⊂ R4 shall be called admissible if it is bounded and Ω ∩
R3 $ Σ0.

Lemma 2.5. Given w ∈ L1(Σ0) and V given by (2.4) we have (note that (ii) and (iii) are
to be understood in weak sense):

(i) ∆2V = 0 in R4 \ Σ̄0;
(ii) ∂

∂yV (·, 0) = 0 in R3;

(iii) L 3
2
V = w on Σ0;

(iv)
∫
Ω |V (x, y)| dxdy " C(Ω,Σ0)‖w‖L1(Σ0) for every bounded domain Ω ⊂ R4.

Proof. Most of the statements in this lemma are contained in the proof of Proposition 1.11.
However, let us give a direct proof.

Since log | · | is a fundamental solution for ∆2 in R4, we have (i). Next, differentiating under
the integral sign, from (2.4), one has

∂

∂y
V (x, y) = − 1

2π2

∫

Σ0

y

|x− x̃|2 + y2
w(x̃) dx̃.

In order to prove (ii) and (iii) we can first assume that w ∈ L1(Σ0) ∩ C0(Σ̄0) and in the general
case approximate w in L1(Σ0) with a sequence of continuous functions, and pass to the limit
in (1.17) and (1.18). Then (ii) follows by dominated convergence theorem (with dominating
function w(x̃)

|x−x̃|2 ).
Again differentiating under the integral sign we get

∆V (x, y) = − 1
π2

∫

Σ0

1
|x− x̃|2 + y2

w(x̃) dx̃. (2.5)

This gives

∂

∂y
∆V (x, y) =

2
π2

∫

Σ0

y

(|x− x̃|2 + y2)2
w(x̃) dx̃, y )= 0.
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Now we fix x ∈ Σ0. Since w ∈ C0(Σ0), given ε > 0 we have w(x̃) = w(x) + oε on Bε(x), with
oε → 0 as ε → 0. Therefore, since limy→0

∫
Σ0\Bε(x) (y/|x− x̃|2 + y2)w(x̃) dx̃ = 0,

lim
y→0

∂

∂y
∆V (x, y) =

2
π2

(w(x) + oε) lim
y→0

∫

Bε(x)⊂R3

y

(|x− x̃|2 + y2)2
dx̃

=
2
π2

(w(x) + oε)
∫

R3

1
(|z|2 + 1)2

dz

ε→0−−−→ 2w(x),

and this yields (iii). Note that in the second last to last line we have used that
∫

R3

1
(1 + |z|2)2

dz = |S2|
∫ ∞

0

r2

(1 + r2)2
dr = 4π

∫ ∞

0
r

(
−1

2(1 + r2)

)′
dr

= 2π
∫ ∞

0

1
1 + r2

dr = π2.

To prove (iv) we use Fubini’s theorem and get
∫

Ω
|V (x, y)| dxdy "

∫

Σ0

|w(x̃)|
∫

Ω

∣∣∣∣log
1 + |x̃|

|(x, y) − (x̃, 0)|

∣∣∣∣ dxdydx̃ " C(Ω,Σ0)‖w‖L1(Σ0),

as desired. #

3. Proof of Theorem 1.6

The main idea of the proof is similar to the one of [4], namely we will split Uk into the sum of
two functions Vk and Hk, where L 3

2
Hk = 0 and Vk is given as

Vk(x, y) =
1

2π2

∫

Σ0

log
(

1 + |x̃|
|(x, y) − (x̃, 0)|

)
Qk(x̃)e3uk(x̃) dx̃, (x, y) ∈ R3 × R. (3.1)

Then the behaviour of Hk, in particular the local boundedness or unboundedness of its L1

norm, will determine whether we are in case (i) or (ii) of the theorem.
We will use the following notation:

BR(X0) = {(x, y) ∈ R4 : |(x, y) − (x0, y0)| < R}, X0 = (x0, y0) ∈ R4,

BR(x0) = {x ∈ R3 : |x− x0| < R}, x0 ∈ R3.

The following lemma can be seen as a Brezis–Merle-type estimate.

Lemma 3.1. For every K $ (R4 \ S1) there exists p > 1 such that
∫

K∩Σ0

e3pVk(x,0) dx " C(K), (3.2)

uniformly with respect to k.

Proof. For every X ∈ K we can find RX " 1
4 such that

lim inf
k→∞

∫

B2RX
(X)∩Σ0

|Qk|e3uk dx <
Λ1

2
.
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By compactness we can extract a finite covering, that is, points X1, . . . , XM such that for
Rj := RXj ,

K ⊂
M⋃

j=1

BRj (Xj)

and up to extracting a subsequence we can assume that

lim sup
k→∞

∫

B2Rj (Xj)∩Σ0

|Qk|e3uk dx <
Λ1

2
(1 − δ),

for some δ = δ(K) > 0. Fix j ∈ {1, . . . ,M}. For X ∈ BRj (Xj) we bound

Vk(X) =
1

2π2

∫

B2Rj (Xj)∩Σ0

log
(

1
|X − (x̃, 0)|

)
Qk(x̃)e3uk(x̃) dx̃

+
1

2π2

∫

Σ0\B2Rj (Xj)
log

(
1 + |x̃|

|X − (x̃, 0)|

)
Qk(x̃)e3uk(x̃) dx̃ + O(1)

= (I)j + (II)j + O(1).

Observe that

|(II)j | " C| logRj | ‖Qke
3uk‖L1(Σ0) " Cj(K).

Assuming that

αk := ‖Qke
3uk‖L1(B2Rj (Xj)∩Σ0) > 0

(otherwise (I)j = 0), we can use Jensen’s inequality with

dµk(x̃) =
|Qk(x̃)|e3uk(x̃)

αk
dx̃,

and using that for k large enough
αk

2π2
" (1 − δ),

we get, for p < 1
1−δ ,

∫

BRj (Xj)∩Σ0

e3pVk(x) dx

" C̃j

∫

BRj (Xj)∩Σ0

exp

{
3pαk

2π2

∫

B2Rj (Xj)∩Σ0

log
(

1
|X − (x̃, 0)|

)
dµ(x̃)

}
dx

" C̃j

∫

BRj (Xj)

∫

B2Rj (Xj)∩Σ0

1
|X − (x̃, 0)|3p(1−δ)

dµ(x̃) dx

" C ′
j ,

with C ′
j depending on p, hence on K. Summing over j we conclude the proof of (3.2). #

Now we are ready for the proof of Theorem 1.6. First recall the definition of Vk from (3.1)
and set hk := uk − vk where uk := Uk|R3 and vk := Vk|R3 . We also define Hk by the Poisson
representation formula (2.1)

Hk(X) :=
∫

R3
K 3

2
(x− x̃, y)hk(x̃) dx̃, X = (x, y) ∈ R4

+.
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Note that, thanks to Proposition 2.1, we have Uk = Vk + Hk. Indeed, setting

Ṽk(X) :=
∫

R3
K 3

2
(x− x̃, y)vk(x̃) dx̃, X = (x, y) ∈ R4

+,

we see that
{

∆2(Vk − Ṽk) = 0 in R4
+,

Vk − Ṽk = 0 = ∂y(Vk − Ṽk) on R3,

thanks to Proposition 2.1 and Lemma 2.5. Since Vk and Ṽk satisfy (2.3), by Proposition 2.2 we
conclude that Vk = Ṽk. In particular, as Uk is representable, we have that Uk = Vk + Hk.

We now extend Hk on R4
− by setting Hk(x, y) := Hk(x,−y). From Lemma 2.5, Proposi-

tion 1.11 and (1.23) it follows that

lim
y→0

∂

∂y
Hk(x, y) = 0 = lim

y→0

∂

∂y
∆Hk(x, y) for every x ∈ Σ0.

Therefore,

∆2Hk = 0 in R4 \ (Σc
0 × {0}),

or, equivalently, ∆2Hk = 0 in Ω for every admissible Ω ⊂ R4. Since
∫

R3

|vk(x)|
1 + |x|6 dx " C

∫

Σ0

|Qk(x̃)|e3uk(x̃)

∫

R3

|log |x− x̃||
1 + |x|6 dxdx̃ " C,

we have
∫

R3

h+
k

1 + |x|6 dx "
∫

R3

u+
k + |vk|
1 + |x|6 dx " C,

thanks to assumption (1.25). This implies that, for Ω $ R4,
∫

Ω
H+

k dxdy " C

∫

R3

h+
k (x̃)

1 + |x̃|6

∫

Ω

y3(1 + |x̃|6)
(|x− x̃|2 + y2)3

dxdydx̃ " C(Ω). (3.3)

In the last inequality we have used that for every (x, y) ∈ Ω

y3(1 + |x̃|6)
(|x− x̃|2 + y2)3

" C(Ω)

{
1 for dist(x̃,Ω ∩ Σ0) ! 1,

y3

(|x−x̃|2+y2)3 for dist(x̃,Ω ∩ Σ0) " 1.

For a given X0 = (x0, 0) ∈ Σ0 we let R0 > 0 be such that B2R0(x0) ⊂ Σ0 and set

βk =
∫

BR0 (X0)
|Hk| dxdy.

Case 1: βk )→ ∞. Then, we claim that up to a subsequence,

Hk → H in C((Ω) for every / ! 0, Ω admissible, (3.4)

Indeed, up to a subsequence, βk " C so that, by elliptic estimates (see Lemma A.1), up to
extracting a further subsequence we get Hk → H in C(

loc(BR0(X0)) for every / ! 0 and for
a smooth function H. Consider now X1 ∈ BR0(X0) and any R1 > 0 such that BR1(X1) is
admissible. Applying Pizzetti formula (A.1) we have

1
|BR1(X1)|

∫

BR1 (X1)
Hk(X) dX = Hk(X1) +

R2
1

12
∆Hk(X1).

Then, since |Hk(X1)| " C and |∆Hk(X1)| " C, the integral on the left-hand side is bounded,
and considering (3.3) we obtain

∫

BR1 (X1)
|Hk| dX " C
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with a constant depending on BR1(X1). Again by the same elliptic estimates we have, up to
a subsequence, Hk → H in C(

loc(BR1(X1)) for / ! 0. Now, in order to prove (3.4) it suffices
to cover the compact set Ω with a finite number of balls BRi(Xi), i = 0, . . . , N , such that
Xi ∈ BRi−1(Xi−1) and use induction to prove that Hk converges in C((BRi(Xi)) for every
0 " i " N and / ! 0.

We now prove that, up to a subsequence, Uk → U∞ in C2,α
loc (R4

+ ∪ (Σ0 \ S1)) for a function
U∞ ∈ C2,α(R4

+). To show this, consider a point x0 ∈ Σ0 \ S1. By the previous discussion and
by Lemma 3.1 we have that for r > 0 sufficiently small e3uk = e3vke3hk is uniformly bounded
in Lp(Br(x0)) for some p > 1. Inserting this into (3.1) and taking into account the bound
‖Qk‖L∞ " C gives the bound

‖vk‖L∞(B r
2
(x0)) " C,

with C independent of k. This in turn implies that ‖uk‖L∞(B r
2
(x0)) " C. By a covering

argument, we have proven that uk is locally uniformly bounded in Σ0 \ S1. Inserting this
information into (3.1) we finally get uniform bounds of the form

‖Vk‖C2,α(Ω) " C(α,Ω), α ∈ [0, 1), Ω admissible, S1 ∩ Ω = ∅, (3.5)

hence by Ascoli’s theorem, up to a subsequence, Uk = Vk + Hk converges in C2,α
loc (R4

+ ∪ (Σ0 \
S1)).

Case 2: If βk → ∞, recalling (3.3), we must have

βk % O(1) +
∫

BR0 (X0)

∫

R3
K(x− x̃, y)h−

k (x̃) dx̃dxdy

= O(1) +
4
π2

∫

R3
h−
k (x̃)

∫

BR0 (X0)

y3

(y2 + |x− x̃|2)3 dxdydx̃

≈ O(1) +
∫

R3

h−
k (x̃)

1 + |x̃|6 dx̃

≈
∫

R3

h−
k (x̃)

1 + |x̃|6 dx̃,

where for positive sequences (ak) and (bk) the notation ak ≈ bk means bk
C " ak " Cbk and

ak % bk means ak " Cbk for a constant C > 0 not depending on k. Also note that

βk & −
∫

BR0 (X0)
Hk dX =

∫

BR0 (X0)

∫

R3
K(x− x̃, y)(h−

k (x̃) − h+
k (x̃)) dx̃dxdy

= O(1) +
∫

BR0 (X0)

∫

R3
K(x− x̃, y)h−

k (x̃) dx̃dxdy.

Thus

βk ≈
∫

R3

h−
k

1 + |x|6 dx ≈
∫

R3

hk

1 + |x|6 dx. (3.6)

By elliptic estimates (Lemma A.1) we have (up to a subsequence) Hk
βk

→ Φ in C(
loc(BR(X0)),

and using Pizzetti’s formula again together with a covering as in Case 1, we also get

Hk

βk
→ Φ in C((Ω), / ! 0,
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for every Ω admissible, where the bi-harmonic function Φ satisfies

Φ " 0,
∫

BR(X0)
|Φ| dX = 1, ∂yΦ = ∂y∆Φ = 0 on Σ0.

We claim that the set SΦ := {x ∈ Σ0 : Φ(x) = 0} has empty interior in R3. Indeed, assume
by contradiction that B2ε(ξ) ⊂ SΦ for some ε > 0 and ξ ∈ Σ0. Then ∆xΦ = 0 on Bε(ξ). Since
∆2Φ = 0, Φ " 0 and Φ )≡ 0, Pizzetti’s formula implies that ∂2

yyΦ(ξ, 0) < 0 on SΦ. In particular,
for r small enough

∫ r

0
Φ(ξ, y) dy =

∂2
yyΦ(ξ, 0)

6
r3(1 + o(1)), as r → 0. (3.7)

We write

Hk(ξ, y) = I1 + I2,

where

Ii(y) :=
∫

Ai

K 3
2
(ξ − x, y)hk(x) dx, A1 := Bε(ξ), A2 := R3 \A1.

Since hk = o(βk) uniformly on A1 and K 3
2
∈ L1(R4

+), we have
∫ r

0
I1(y) dy = o(βk)

∫ r

0

∫

A1

K 3
2
(ξ − x, y) dxdy = o(βk).

For x ∈ A2 and r " ε we obtain
∫ r

0
K 3

2
(ξ − x, y) dy ≈

∫ r

0

y3

(a2 + y2)3
dy, a := |ξ − x| ∈ [ε,∞)

=
1
a2

∫ r
a

0

t3

(1 + t2)3
dt, r " ε " a, y 4→ at

≈ r4

a6
≈ r4

1 + |x|6 .

Therefore, for r " ε
∫ r

0
I2(y) dy ≈ r4

∫

A2

hk(x)
1 + |x|6 dx = O(r4βk)

and thus, for r " ε
∫ r

0

Hk(ξ, y)
βk

dy = O(r4), which yields
∫ r

0
Φ(ξ, y) dy = O(r4),

contradicting (3.7).
Therefore we have proven that Φ|Σ0 )≡ 0. Since S̃Φ := {X ∈ R4 : Φ(X) = 0} is analytic, it

follows that SΦ = S̃Φ ∩ Σ0 has Hausdorff dimension at most 2.
To conclude, we observe that for Ω admissible and K $ Ω \ S̃Φ, we have Φ < 0 in K, hence

Hk = βk(Φ + o(1)) → −∞ in K. In particular Hk → −∞ locally uniformly on Ω \ S̃Φ for every
Ω admissible. Writing e3uk = e3vke3hk , one can apply (3.1) and Lemma 3.1 as in the last
paragraph of Case 1 to prove (3.5). Then we have for K $ Ω \ (SΦ ∪ S1), Ω admissible,

Uk

βk
=

Hk

βk
+

Vk

βk
= Φ + o(1)

with o(1) → 0 uniformly on K, and we are done. #



438 A. DELATORRE, M. D. M. GONZÁLEZ, A. HYDER AND L. MARTINAZZI

Remark 3.2. It follows from (3.6) that the function Φ is strictly negative on R4
+. Indeed,

for a fixed X0 = (x0, y0) ∈ R4
+,

Φ(X0) = lim
k→∞

1
βk

∫

R3
K(x0 − x̃, y0)hk(x̃) dx̃ ≈ lim

k→∞

−1
βk

∫

R3

h−
k (x̃)

1 + |x̃|6 dx̃ ≈ −1.

4. The sign-changing case

Here we comment on alternative (i) in Theorem 1.6. As in the local case, we have:

Lemma 4.1. If Qk ! 0 in a small neighbourhood of some point in S1 )= ∅ then (i)
cannot occur.

Proof. On the contrary, there exists B2δ(x0) $ Σ0 for some x0 ∈ S1 and δ > 0 such that
Qk ! 0 in B2δ(x0) and alternative (i) in Theorem 1.6 occurs. From (3.1), for x ∈ Bδ(x0) we
get

Vk(x, y) =
1

2π2

∫

B2δ(x0)
log

(
1

|(x, y) − (x̃, 0)|

)
Qk(x̃)e3uk(x̃)dx̃ + O(log δ)‖Qk‖L∞(Σ0),

thanks to (1.24). Assuming S1 ∩B2δ(x0) = {x0} we see that vk = Vk|R3 → v∞ in C0
loc(Bδ \

{x0}), where v∞ satisfies

v∞(x) ! log
1

|x− x0|
− C for x ∈ Bδ(x0) \ {x0}.

Therefore, as Hk = O(1) in B2δ(x0),

uk → u∞ ! log
1

|x− x0|
− C for x ∈ Bδ(x0) \ {x0}.

This contradicts to the uniform bound on the volume (1.24). #

Now we look at the sign-changing case and give the proof of Proposition 1.9. Wang [36]
constructed blowing up solutions for the classical case in dimension 2, but the proof heavily
depends on explicit solutions of some ODEs. Though our main idea comes from [36], our proof
seems to be slightly simpler.

Let us start with some preliminary lemmas:

Lemma 4.2. Define

W ε(x) :=
3

4ε3

1
π

∫

{|x̃|!ε}
log

(
1

|x− x̃|

)
dx̃.

Then

W ε(x) = min
{

log
1
ε
, log

1
|x|

}
+ O(1).

Proof. First compute

W ε(0) =
3

4πε3

∫

{|x̃|!ε}
log

1
|x̃| dx̃ =

3
ε3

∫ ε

0
t2 log

1
t
dt = log

1
ε

+
1
3
.

We have the following bound on the gradient:

|∇W ε(x)| " C

ε3

∫

{|x̃|!ε}

dx̃

|x− x̃| "
C

ε
. (4.1)
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This implies that, on the one hand,

W ε(x) = W ε(0) + O(1) for |x| " 2ε.

On the other hand, since

1
|x− x̃| =:

gε(x, x̃)
|x| with

1
2
" gε "

3
2

for |x̃| " ε, |x| ! 2ε,

we obtain

W ε(x) = log
1
|x| + O(1) for |x| ! 2ε,

as desired. #

Lemma 4.3 [27, Lemma 3.5]. Let Ω be a regular bounded domain in Rn and let w be a
solution to

w(x) = κ

∫

Ω
log

(
1

|x− z|

)
Q(z)enw(z) dz + C, enw ∈ L1(Ω),

for some Q ∈ C1(Ω̄) and κ, C ∈ R. Then, setting λ :=
∫
Ω Qenw dz, we have

λ

(
κλ

2
− 1

)
=

1
n

∫

Ω
(x ·∇Q)enw dx− 1

n

∫

∂Ω
Qenw(x · ν) dσ.

Now, for the proof of Proposition 1.9, fix τ > 1.

Lemma 4.4. For every 0 < ρ < 1 there exists a radial solution w = wρ(|x|) for x ∈ R3 to
the problem

w(x) = − 1
2π2

∫

{ρ!|x̃|!1}
log

(
2

|x− x̃|

)
1

|x̃|3τ e
3w(x̃) dx̃ + c, w(1) = 0. (4.2)

In particular, w " 0 in B1, and it is monotone increasing in the radial variable.

Proof. Differentiating under the integral sign we see that the above problem is equivalent
to

{
− ∆w = Fρ(x,w) in B1,

w(1) = 0,
(4.3)

where

Fρ(x,w) := − 1
π2

∫

{ρ!|x̃|!1}

1
|x− x̃|2

1
|x̃|3τ e

3w(x̃) dx̃.

Since F (x,w) " 0 and F (x,w) = O(1) for w " 0, we see that

w(x) = M(|x|2 − 1) and w ≡ 0,

are sub and super solutions to (4.3), respectively, for M >> 1. Thus, there exists a (radially
symmetric) minimal solution w. Take also w̃ to be the integral in (4.2). Then ∆(w̃ − w) = 0
in B1. As w − w̃ is radial, we have that w − w̃ = const. This shows that if w is a solution to
(4.3) then w is also a solution to (4.2), provided we choose c := −w̃(1).

Finally, w " 0 in B1 follows from the boundary condition w(1) = 0 and an application of the
maximum principle. Monotonicity of w is an easy consequence of the integration by parts

|∂Br|w′(r) =
∫

∂Br

∂νw dσ =
∫

Br

∆w dx. #
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Lemma 4.5. Let wρ be a solution to (4.2) with 0 < ρ < 1. Then there exist constants
M0, M1 > 0 such that

λρ :=
∫

{ρ!|x̃|!1}

e3wρ(x̃)

|x̃|3τ dx̃ " M0 and e3wρ(ρ)ρ3−3τ " M1 for every 0 < ρ < 1. (4.4)

Proof. Applying Lemma 4.3 to the integral equation (4.2) with Ω = B1 \Bρ and Q =
− 1

|x|3τ ,

λρ

(
λρ

4π2
− 1

)
= −1

3

∫

Ω

(
x ·∇ 1

|x|3τ

)
e3wρ(x)dx +

1
3

∫

∂Ω

e3wρ(x)

|x|3τ x · ν(x) dσ(x)

= τλρ −
4π
3

(
ρ3−3τe3wρ(ρ) − 1

)
,

that is,

λρ

(
λρ

4π2
− 1 − τ

)
=

4π
3

(
1 − ρ3−3τe3wρ(ρ)

)
" 4π

3
.

The Lemma follows immediately. #

Lemma 4.6. There exists C > 0 such that, for every ρ > 0 small, we have

|wρ(ρ) − wρ(0)| " C, (4.5)

where wρ is given by Lemma 4.4.

Proof. Using (4.2) we obtain

|wρ(0) − wρ(ρ)| "
1

2π2

∫

{ρ!|x̃|!1}

∣∣∣∣log
|x̃|

|xρ − x̃|

∣∣∣∣
e3wρ(x̃)

|x̃|3τ dx̃

=
1

2π2

(∫

{ρ!|x̃|!2ρ}
+
∫

{2ρ<|x̃|!1}

)∣∣∣∣log
|x̃|

|xρ − x̃|

∣∣∣∣
e3wρ(y)

|x̃|3τ dy

=: I1 + I2,

where |xρ| = ρ. Since

1
2
" |x̃|

|xρ − x̃| " 2 for |x̃| ! 2ρ,

we get that I2 " C, thanks to Lemma 4.5. Moreover, as wρ is monotone increasing, we have
that

λρ =
∫

B1\Bρ

e3wρ

|x|3τ dx ! e3wρ(2ρ)

∫

B1\B2ρ

1
|x|3τ dx =

4π
3τ − 3

e3wρ(2ρ)
(
(2ρ)3−3τ − 1

)
,

which gives ρ3−3τe3wρ(2ρ) " C for every ρ ∈ (0, 1). Therefore, again using that wρ is monotone
increasing, we obtain

I1 " Cρ−3

∫

{|x̃|!2ρ}

∣∣∣∣log
|x̃|

|xρ − x̃|

∣∣∣∣dx̃ = C

∫

B2

∣∣∣∣log
|x̃|

|e1 − x̃|

∣∣∣∣dx̃ " C,

and this concludes the proof of the lemma. #
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4.1. Proof of Proposition 1.9

Now, for ε < ρ we set

Wε(x) :=
3πτ
2ε3

1
2π2

∫

{|x̃|!ε}
log

(
1

|x− x̃|

)
dx̃ + cε,

where cε ∈ R is a normalizing constant so that Wε(1) = 1. Note first that, for 0 < ε " 1, we
have cε = 1 + o(1): since log |x− x̃| = o(1) for |x| = 1, |x̃| " ε, we obtain

cε = Wε(1) + o(1)
1
ε3

∫

{|x̃|<ε}
dx̃ = 1 + o(1),

and this yields the claim. Moreover,

Wε(x) = τ min
{

log
1
ε
, log

1
|x|

}
+ O(1), (4.6)

thanks to Lemma 4.2. It follows from the monotonicity of wρ and Lemma 4.5 that µρ :=
e3wρ(0)ρ3−3τ " M1. Therefore, there exists ε := ερ " ρ such that

ρ3τ−3

ε3τ−3
=

M1

µρ
! 1.

For this choice of ερ we set uρ := wρ + Wερ . Then we have that

uρ(0) = log
1
ερ

+ O(1) → ∞ as ρ → 0. (4.7)

From the definition of uρ we have that

(−∆)
3
2uρ = fρ,

where we have defined

fρ(x) :=






3πτ
2ε3

ρ

for |x| " ερ,

−e3wρ(x)

|x|3τ for ρ < |x| < 1,

0 on the rest of R3.

(4.8)

Thus, if we define Qρ := fρ e−3uρ and Uρ the usual Poisson extension (1.12), we have found a
sequence of solutions to (1.23), for ρ → 0. Finally, we would like to show that

|Qρ| " C,

∫

B1

e3uρ dx " C and
∫

R3

u+
ρ (x)

1 + |x|6 dx " C.

To see this, note that

Qρ = −e−3Wερ

|x|3τ = O(1) on B1 \Bρ,

thanks to (4.6). Moreover, recall Lemma 4.6 and the gradient bound (4.1). The estimate
|uρ(x) − uρ(0)| " C on Bερ and (4.7) imply that

|Qρ| " C on Bερ ,

∫

Bερ

e3uρ dx " C.

Again by Lemma 4.6 and the definition of ερ we get
∫

{ερ!|x|!ρ}
e3uρ dx " Ce3wρ(0)

∫

{ερ!|x|!ρ}

dx

|x|3τ " Ce3wρ(0)ε3−3τ
ρ " C,
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and by Lemma 4.5
∫

{ρ!|x|!1}
e3uρ dx " C

∫

{ρ!|x|!1}

1
|x|3τ e

3wρ dx " C.

Finally, λρ " C implies that uρ " C log(2 + |x|) on Bc
1, which leads to

∫

R3

u+
ρ

1 + |x|6 dx " C.

This finishes the proof.

Remark 4.7. With similar arguments it is also possible to obtain a sequence of solutions
with smooth Qρ. For this, one has just to consider a smooth version of the functions χBε/ε

3

and (χB1\Bρ
)/|x|3τ .

5. Proof of Proposition 1.10

Here we prove the existence result of Proposition 1.10. Given Φ ∈ K(Σ0) set φ := Φ|Σ0 . We
shall first look for solutions (uk) to

(−∆x)
3
2uk = Qke

3uk in Σ0

of the form uk = vk + kφ + ck, for some (vk) bounded in C0
loc and real numbers ck = o(k).

Since φ < 0 a.e. in Σ0, we get

λk :=
∫

Σ0

e6kφ dx
k→∞−−−−→ 0.

For ε > 0 (to be chosen later, independent of k) we set

ck :=
1
6

log
ε

λk
if SΦ )= ∅ and ck := 1 if SΦ = ∅.

We claim that ck = o(k) as k → ∞. When SΦ = ∅ and ck = 1 this is obvious. In order to prove
the claim also in the case SΦ )= ∅ we assume, by contradiction, that ck ! 2δk for some δ > 0
and for k large. Then we have

ε =
∫

Σ0

e6kφ+6ck dx !
∫

Σ0

e6k(φ+2δ) dx ! e6kδ|{x ∈ Σ0 : φ(x) ! −δ}| → ∞,

a contradiction.
We define T = Tε,k : C0(Σ̄0) → Σ̄0, that maps v 4→ v̄ where we have set

v̄(x) =
1

2π2

∫

Σ0

log
(

1
|x− x̃|

)
Qk(x̃)e3(kφ(x̃)+ck)e3v(x̃) dx̃, x ∈ R3.

It follows easily that T is compact. By Hölder’s inequality we can now fix ε > 0 small enough
such that

‖T (v)‖C0(Σ0) " 1 for ‖v‖C0(Σ0) " 1.

Then Schauder’s fixed point theorem implies that Tε,k has a fixed point, which we call vk. Note
that vk is defined on R3 and it satisfies

(−∆x)
3
2 vk = Qke

3(vk+kφ+ck) on Σ0.

Let Uk be the extension of uk := vk + kφ + ck on R4
+ using the Poisson formula (2.1). Since Φ

is representable, we can rewrite Uk as

Uk = Ūk + kΦ,
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where Ūk is the extension of vk + ck using the Poisson formula (2.1). It follows that
∫

BR

|Ūk| dX = O(ck) = o(k),

and (as in the previous section) Uk
βk

→ Φ with βk := k.

Remark 5.1. The easiest example of functions Φ ∈ K(Σ0) with SΦ )= ∅ are polynomials.
For instance

Φ(x1, x2, x3, y) = −a1x
2
1 − a2x

2
2 − a3x

2
3, a1, a2, a3 ! 0,

or similar polynomials obtained via translations and rotations.

6. Representation formulas and conformal geometry

In our last section we prove Proposition 1.11. In addition, we explain the relation to the non-
local operator (−∆x)n

2 on Rn, for n odd. Our ideas come from conformal geometry and could
be easily generalized to the curved setting (although there would not be explicit formulas in
general).

We remark that the proofs here involve Fourier transform and are well suited for energy
solutions. Since it is not our objective to develop the whole formulation in Sobolev spaces,
but to simply write an explicit representation formula, we assume enough regularity for the
statements below. A more precise statement (together with a uniqueness result) was already
given in Section 2 for dimension n = 3. In general, we set n

2 = m + 1
2 for m ∈ N, m ! 1. We

note that we are working in a critical dimension and the kernels (1.31) and (1.33) need to be
calculated via analytic continuation as it will be explained below.

Let us first introduce the characterization of the fractional Laplacian (−∆x)γ on Rn as a
Dirichlet-to-Neumann operator for a higher order extension problem in a non-critical dimension
n > 2γ. We will use the notation ∆b = ∆x,y + b

y∂y, b ∈ R. Although there are several references
now [13, 18, 37], the precise statement is taken from [12].

Proposition 6.1 [12, Corollary 6.3]. Let γ ∈ (0, n
2 ) be some non-integer. Let also m <

γ < m + 1, this is, m = [γ], and set b(γ) = 2m + 1 − 2γ. Assume that U ∈ Wm+1,2(Rn+1
+ , yb)

satisfies the equation
{

∆m+1
b U = 0 in Rn+1

+ ,

U = f on Rn,
(6.1)

where f is some function in Hγ(Rn) and furthermore, that





∆j
bU(x, 0) =

m!Γ(γ − j)
(m− j)!Γ(γ)

(∆x)jU(x, 0) for 1 " j " [γ/2],

yb∂y∆j
bU(x, 0) = 0 for 0 " j " m− [γ/2] − 1.

Then we have that

(−∆x)γf = d̃γ lim
y→0

yb∂y∆m
b U(x, y) =: w, (6.2)

where we have defined

d̃γ =
22γΓ(γ −m)

γ 22m+1m!Γ(−γ)
.
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Remark 6.2. In the proposition above one can take γ = n
2 for n odd (via analytic

continuation), which yields that the relation between the Dirichlet data (1.29) and the
Neumann-type condition (1.32) for problems (1.27) and (1.28) is precisely

w = (−∆x)n/2f in Rn.

Note also that if γ = k for k ∈ N, one also recovers the (entire) powers of the Laplacian using
a residue formula at the poles of a meromorphic functional. Since it is not our objective to
consider this case, we refer the reader to [26] for more precise statements.

The interpretation of Proposition 6.1 comes from conformal geometry, since (6.1) is the flat
version of the extension problem for the construction of the conformal fractional Laplacian
Pγ on a manifold Mn, for γ ∈ (0, n

2 ). Pγ is defined as the associated Dirichlet-to-Neumann
operator for an extension problem when M is the boundary of a conformally compact Einstein
manifold X (or, more generally, asymptotically hyperbolic) and, thus, is a non-local operator
on M . In the particular case of Euclidean space Rn it coincides with (−∆x)γ (compare to
(6.2)). The most important property of Pγ is its conformal covariance, this is, if one makes the
conformal change of metric

g̃ = v
4

n−2γ g on M, for some v > 0, (6.3)

then the operator in the new metric can be calculated by the simple intertwining rule

P g̃
γ = v−

n+2γ
n−2γ P g

γ (v ·). (6.4)

We define the fractional curvature of (M, g) as

Qg
γ =

1
n
2 − γ

P g
γ (1). (6.5)

In particular, the conformal property (6.4) yields the Qγ curvature equation

P g
γ (v) =

(
n
2 − γ

)
Qg̃

γ v
n+2γ
n−2γ on M. (6.6)

If M is the Euclidean space Rn, this reduces to the fractional Nirenberg equation

(−∆x)γv = F (x) v
n+2γ
n−2γ on Rn.

The conformal fractional Laplacian Pγ was originally defined in terms of the scattering
operator for the conformally compact Einstein manifold X. This is inspired in four-dimensional
gravitational Physics (see, for instance, the survey [24] and the references therein). Here we will
not attempt to give a full description of this geometric problem, instead, we will concentrate
on the particular case of Euclidean space and explain the relation between the scattering
problem on hyperbolic space and the higher order extensions for the fractional Laplacian from
Proposition 6.1. The hyperbolic metric is written here as g+ = dy2+|dx|2

y2 on the upper half-space
Rn+1

+ .

Proposition 6.3 [13, 18]. Fix γ ∈ (0, n
2 )\N. Let U be a solution to (6.1) with Dirichlet

condition U(·, 0) = f , and set Φ = y
n
2 −γU . Then Φ is the unique solution of the scattering

problem





∆g+Φ +
(

n2

4 − γ2
)
Φ = 0 in Rn+1

+ ,

Φ = y
n
2 −γF + y

n
2 +γG, F,G ∈ C∞(Rn+1

+ ),

F (x, 0) = f on Rn,

(6.7)
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and it satisfies

dγG(x, 0) = w on Rn, (6.8)

where w is the Neumann-type data (6.2). Here the constant is given by

dγ = 22γ Γ(γ)
Γ(−γ)

.

The main idea in the proof of our Proposition 1.11 is to obtain a convolution expression
for the solution of the scattering problem (6.7) and then to relate it back to the original
equation (6.1) using Proposition 6.3. Finally, we will use an analytic continuation argument to
let γ → n/2.

Problem (6.7) has been well studied in conformal geometry. For convenience of the reader,
we will give full details of the arguments. We first recall [15, Theorems 3.1 and 3.2], that relate
the scattering problem to a second-order Bessel-type equation:

Proposition 6.4 [15]. In the notation of Propositions 6.1 and 6.3, let Φ be a solution to
(6.7) and define, as above,

U(x, y) := y−
n
2 +γΦ(x, y), (6.9)

then U is a solution to the new extension problem





∆xU +
1 − 2γ

y
∂yU + ∂yyU = 0 in Rn+1

+ ,

U(x, 0) = f(x) in Rn.

(6.10)

Moreover,

w = (−∆x)γf =
dγ
2γ0

A−1
m lim

y→0
y1−2γ0∂y

[
y−1∂y

(
y−1∂y

(
· · · y−1∂yU

))]
,

where we are taking m + 1 derivatives in the above expression, γ0 = γ −m, and the constant
is given by

Am = 2m(γ − 1) · · · (γ −m + 1).

Using this proposition one can give an explicit expression for the Poisson kernel of the
scattering operator in terms of its Dirichlet data:

Proposition 6.5. Let γ ∈ (0, n
2 ) \ N. Any solution Φ for (6.7) can be written as

Φ(x, y) =
∫

Rn

Kγ(x− x̃, y)f(x̃) dx̃

where the kernel is defined by

Kγ(x, y) := κn,γ
y

n
2 +γ

(y2 + |x|2)n
2 +γ

,

and the constant is

κn,γ =
Γ
(
n
2 + γ

)

Γ(γ)π n
2

.
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Proof. This kind of calculation is quite standard by now, but we provide full details for the
reader. Let U be as in (6.9), which is a solution of equation (6.10). Take Fourier transform ·̂ (in
the variable x) of this equation. Then for any fixed ξ ∈ R we have that Û satisfies the ODE

−|ξ|2Û + 1−2γ
y ∂yÛ + ∂yyÛ = 0,

which after the change of variable

z = |ξ|y (6.11)

becomes

∂zzÛ +
1 − 2γ

z
∂zÛ − Û = 0.

This is a Bessel equation. Lemma A.2 implies that the solution for (6.10) is given by

Û(ξ, y) =
Γ(γ)−1

2γ−1
f̂(ξ)|ξ|γyγKγ(|ξ|y), (6.12)

where Kγ is the modified Bessel function of second kind, or Weber’s function. Taking inverse
Fourier transform we infer

U(x, y) =
Γ(γ)−1

2γ−1(2π)n

∫

Rn

∫

Rn

eiξ·(x−x̃)f(x̃)|ξ|γyγKγ(|ξ|y) dx̃dξ.

This, together with (6.9), yields

Φ(x, y) =
∫

Rn

Kγ(x− x̃, y)f(x̃) dx̃, (6.13)

where we have defined

Kγ(x, y) =
Γ(γ)−1

2γ−1(2π)n
y

n
2

∫

Rn

cos (ξ · x)|ξ|γKγ(|ξ|y) dξ.

It is a straightforward computation to check that this Kγ(x, y) is rotationally invariant (in the
variable x ∈ Rn). Thus we can assume, without loss of generality, that x = |x|e1, e1 ∈ Sn.

Let us assume first that n ! 2. Using polar coordinates (with r = |ξ|) and property (A.4) in
the Appendix, we obtain that

Kγ(x, y) =
Γ(γ)−1

2γ−1(2π)n
|Sn−2| y n

2

∫ ∞

0

∫ π

0
ei|x|r cos θrn−1+γ(sin θ)n−2Kγ(ry) dθ dr

=
2n

2 −γ√π Γ
(
n
2

)

Γ(γ)(2π)n
|Sn−2| y

n
2

|x|n−2
2

∫ ∞

0
r

n
2 +γJn

2 −1(|x|r)Kγ(ry) dr.

Now use property (A.5) to rewrite this kernel as

Kγ(x, y) =
Γ
(
n
2 − 1

2

)
Γ
(
n
2 + γ

)

2Γ(γ)πn− 1
2

|Sn−2| y
n
2 +γ

(y2 + |x|2)n
2 +γ

.
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In the case that n = 1, using (A.3),

Kγ(x, y) =
Γ(γ)−1

2γπ
y

1
2

∫

R
eiξx|ξ|γKγ(|ξ|y) dξ

=
Γ(γ + 1

2 )
Γ(γ)π

√
π
y

1
2+γ

∫

R
eiξx

∫ ∞

0

cos(|ξ|t)
(t2 + y2) 1

2+γ
dt dξ

=
Γ(γ + 1

2 )
2Γ(γ)π

√
π
y

1
2+γ

∫

R
eiξx

∫

R

e−iξt

(t2 + y2) 1
2+γ

dt dξ

=
Γ(γ + 1

2 )
Γ(γ)

√
π

y
1
2+γ

(x2 + y2) 1
2+γ

,

and this completes the proof of the Proposition. #

Remark 6.6. By looking at the Neumann condition for Û given (6.12), recalling the relation
(6.9), one easily obtains (6.8).

Let us comment here on the passing to the limit γ → n
2 in geometric terms, and the

motivation for the Q-curvature equation (1.20). This is done by an analytic continuation
argument as described in [7, 8, 26].

We write the conformal factor in (6.3) as e2u = v
4

n−2γ . Then the fractional curvature equation
(6.6) becomes

1
n−2γ

2

P g
γ (e

n−2γ
2 u) = Qg̃

γ e
n+2γ

2 u on M.

By adding and subtracting a constant (and recalling (6.5)) we obtain

P g
γ

(
e

n−2γ
2 u − 1
n−2γ

2

)
+ Qg

γ = Qg̃
γ e

n+2γ
2 u on M.

Now we can pass to the limit as γ → n/2, at least formally. We arrive to the non-local Liouville
equation

P g
n/2u + Qg

n/2 = Qg̃
n/2 e

nu in M,

for a change of metric g̃ = e2ug. In the particular case that g̃ = e2u|dx|2, the background
curvature vanishes and the equation reduces to

(−∆x)n/2u = Qg̃
n/2(x) enu in Rn. (6.14)

There is a more general interpretation of (6.14) (see [11] for instance). Indeed, for n = 3 it is
the T -curvature equation on R3. The T -curvature is defined on the boundary M3 of a smooth
4-manifold X, and it was introduced in the setting of functional determinants ([16, 17], and
the survey [14]). The pair of the fourth-order Q curvature (the one associated to Paneitz)
and the third-order T curvature constitute the higher dimensional analogue of the pair of
Gauss curvature and boundary geodesic curvature for surfaces with boundary. Indeed, they
are the quantities that appear in the four-dimensional Gauss–Bonnet formula for manifolds
with boundary (see [19]).

The T curvature satisfies the following conformal property: for a conformal change g̃ = e2ug
on M ,

P gu + T g = T g̃e3u on M,
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where P is a third-order boundary operator which generalizes P3/2. In the flat case, all
these coincide.

Proof of Proposition 1.11. We have just constructed a suitable Poisson kernel to recover the
solution Φ of the scattering problem (6.7) from its Dirichlet data f . Using Propositions 6.1 and
6.3 and passing to the limit γ → n

2 we obtain (1.30) (note that (6.1) reduces to the original
problem (1.27), and also their associated boundary conditions, as γ → n/2).

Next, if we wish to recover Φ from its Neumann data (6.8), then it is clear from the symmetry
of the equation that, up to the multiplicative constant dγ , the only change is γ ↔ −γ. Note that
this duality already appeared in [10]. Then we see that the kernel associated to the Neumann
condition, using the notation of Proposition 6.5, is exactly

K′
γ(x, y) := d−1

γ K−γ(x, y) =
κn,−γ

dγ

y
n
2 −γ

(y2 + |x|2)n
2 −γ

=
Γ(n2 − γ)

22γπ
n
2 Γ(γ)

y
n
2 −γ

(y2 + |x|2)n
2 −γ

=:
κ̃n,γ
n
2 − γ

y
n
2 −γ

(y2 + |x|2)n
2 −γ

.

Then, given w, there exist F (x, y) and G(x, y) smooth such that a solution to





∆g+Φ +
(

n2

4 − γ2
)
Φ = 0 in Rn+1

+ ,

Φ = y
n
2 −γF (x, y) + y

n
2 +γG(x, y) in Rn,

satisfying w = dγG(x, 0) can be written as

Φ(x, y) =
∫

Rn

K′
γ(x− x̃, y)w(x̃) dx.

Note, however, that since we have a Neumann problem, Φ is uniquely defined up to addition of
a term of the form Cy

n
2 −γ (this can be seen easily from (6.10)). We will choose this constant

to be able to perform the analytic continuation argument as γ → n/2. Thus we take instead
the new kernel

K̃γ(x, y) = K′
γ(x, y) − κ̃n,γ

(n/2) − γ
y(n/2)−γ

and pass to the limit γ → n/2. Noting that the constant κ̃n,γ extends analytically across
γ = n/2, and that

lim
a→0

(
1

aza
− 1

a

)
= − log z,

we obtain expression (1.33). Finally, remark that the (n/2) − γ factor that appears in this
proof explains the normalization constant in (6.5). #

Appendix

A.1. Pizzetti’s formula

Lemma A.1 [33, 35]. Let ∆mh = 0 in B4R ⊂ Rn. For any x ∈ BR and 0 < r < R− |x| we
have

1
|Br|

∫

Br(x)
h(z)dz =

m−1∑

i=0

cir
2i∆ih(x), (A.1)
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where

c0 = 1, ci = c(i, n) > 0, for i ! 1.

Moreover, for every k ! 0 there exists C = C(k,R) > 0 such that

‖h‖Ck(BR) " C‖h‖L1(B4R).

A.2. A review of Bessel functions

Here we summarize some properties of the Bessel functions, mostly taken from [3].

Lemma A.2. Any solution for the Dirichlet problem





∂zzϕ + 1−2γ
z ∂zϕ− ϕ = 0,

ϕ(+∞) = 0,

ϕ(0) = 1,

(A.2)

can be written as

ϕ(z) =
Γ−1(γ)
2γ−1

zγKγ(z).

Proof. First, rewrite equation (A.2) in terms of ψ(z) = z−γϕ(z) to get

z2∂zzψ + z∂zψ − (z2 + γ2)ψ = 0 in Rn+1
+ .

This is a Bessel equation, thus ψ can be written as a linear combination

ψ(z) = c1Iγ + c2Kγ ,

where Iγ , Kγ are the modified Bessel functions of second kind. These have the following
asymptotic behaviour:

Iγ(z) ∼ 1
Γ(γ + 1)2γ

zγ
(
1 + O(z2)

)
,

Kγ(z) ∼ Γ(γ)
21−γ

z−γ
(
1 + O(z2)

)
+

Γ(−γ)
2γ+1

zγ
(
1 + O(z2)

)
,

for z → 0+. And when z → +∞,

Iγ(z) ∼ 1√
2πz

ez(1 + o(1)),

Kγ(z) ∼
√

π

2z
e−z(1 + o(1)).

Finally, the first Dirichlet condition in (A.2) implies c1 = 0, while the second one fixes the value
of c2 = Γ−1(γ)/2γ−1. #

Some useful properties of the modified Bessel functions are

Proposition A.3.

Kγ(az) =
Γ(γ + 1

2 )(2z)γ
√
πaγ

∫ ∞

0

cos(at)
(t2 + z2) 1

2+γ
dt, for all a with Re(a) > − 1

2 . (A.3)
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Jγ(z) = zγ

2γ
√
πΓ(γ+ 1

2 )

∫ π

0
eiz cos(θ) sin2γ(θ) dθ. (A.4)

∫ ∞

0
rµ+ν+1Kµ(ar)Jν(br) dr =

(2a)µ(2b)νΓ(µ + ν + 1)
(a2 + b2)µ+ν+1

. (A.5)
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