PATTA is the first privacy attack based on network traffic analysis in Information-Centric Networking. PATTA aims to automatically identify the category of requested content by sniffing the communication towards the first hop router. PATTA applies text processing and machine learning techniques to content names in content-oriented architectures. We evaluate PATTA in a simulated network, achieving an accuracy in determining a real-time content category equal to 96%.

ICN PATTA: ICN privacy attack through traffic analysis / Bardhi, Enkeleda; Conti, Mauro; Lazzeretti, Riccardo; Losiouk, Eleonora. - (2021), pp. 443-446. (Intervento presentato al convegno IEEE Conference on Local Computer Networks tenutosi a Edmonton; Canada) [10.1109/LCN52139.2021.9525013].

ICN PATTA: ICN privacy attack through traffic analysis

Enkeleda Bardhi
Primo
;
Riccardo Lazzeretti
;
2021

Abstract

PATTA is the first privacy attack based on network traffic analysis in Information-Centric Networking. PATTA aims to automatically identify the category of requested content by sniffing the communication towards the first hop router. PATTA applies text processing and machine learning techniques to content names in content-oriented architectures. We evaluate PATTA in a simulated network, achieving an accuracy in determining a real-time content category equal to 96%.
2021
IEEE Conference on Local Computer Networks
Information Centric Networking; network traffic analysis; user privacy attack
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
ICN PATTA: ICN privacy attack through traffic analysis / Bardhi, Enkeleda; Conti, Mauro; Lazzeretti, Riccardo; Losiouk, Eleonora. - (2021), pp. 443-446. (Intervento presentato al convegno IEEE Conference on Local Computer Networks tenutosi a Edmonton; Canada) [10.1109/LCN52139.2021.9525013].
File allegati a questo prodotto
File Dimensione Formato  
Bardhi_postprint_ICN_2021.pdf

accesso aperto

Note: DOI: 10.1109/LCN52139.2021.9525013
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 154.06 kB
Formato Adobe PDF
154.06 kB Adobe PDF
Bardhi_ICN_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1580366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact