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Abstract—PATTA is the first privacy attack based on network
traffic analysis in Information-Centric Networking. PATTA aims
to automatically identify the category of requested content by
sniffing the communication towards the first hop router. PATTA
applies text processing and machine learning techniques to con-
tent names in content-oriented architectures. We evaluate PATTA
in a simulated network, achieving an accuracy in determining a
real-time content category equal to 96%.

Index Terms—Information-Centric Networking, Named Data
Networking, network traffic analysis, user privacy attack.

I. INTRODUCTION

Network traffic analysis is the process of monitoring the
packets exchanged in a communication to identify possible
anomalies [17]. Its application has been investigated by re-
searchers in the TCP/IP protocol with the purpose of vio-
lating user’s privacy by retrieving information. Despite their
purpose, all its existing applications rely on a set of features
contained in network packets or in the exchanged traffic.
For example, the identification of a visited website occurs
through Machine Learning (ML) classifiers trained over a
set of network traffic information, such as the destination
IP address [10]; the activities performed by a user on a
mobile device can be determined by supervised ML classi-
fiers applied on multiple network data flows [11], [18]. The
selection of the most suitable algorithm in order to construct
the classifier’s model depends on different criteria, such as
size of the available dataset, classification speed, nature of
the dataset. Some possible and widely used classifiers are:
Support Vector Machine (SVM), Artificial Neural Networks
(ANN), Naiı̈ve Bayes (NB), Multinomial Naı̈ve Bayes (MNB),
k-Nearest Neighbors (kNN). Some countermeasures against
traffic analysis, such as The Onion Router (TOR) [2] or traffic
morphing [20], have been proposed. Nevertheless, Dyer et
al. [12] showed these countermeasures still fail when coarse-
grained side-channels attacks are applied. Furthermore, Cai et
al. [8] demonstrated that a website fingerprinting attack has
50% probability of success while using HTTPOS [13] and
randomized pipelining over TOR. Panchenko et al. [16] also
proposed a fingerprinting attack even under a TOR anonymity
system. To this end, Panchenko et al. [15] showed that simple
features extracted from TOR traffic statistics and a careful
selection of the training set can allow the attacker to achieve
really good fingerprinting results even in Internet scale.

Even if widely studied in existing Internet architecture, to
the best of our knowledge, so far nobody has investigated
its feasibility in Information-Centric Networking (ICN), which
motivated us to research this further. ICN, born to overcome
the limitations of the current Internet (e.g., the availability of
IP addresses, the increasing number of network devices, the
lack of security defence mechanisms), encounters Named Data
Networking (NDN) [21] architecture as the most successful
one. Despite the benefits, researchers have already identified
several threats targeting the user privacy [5], [6], [9], among
which some concern the NDN naming schema [14]: content
names are visible to the network and they contain seman-
tic information about the content itself, inhibiting privacy
practices. In this scenario, an attacker can map the content
requested by the victim to its category, by only observing the
content names specified in the interest packet. Furthermore,
the attacker gets rid of the problem of plural names used
to refer to the same content by using automatic approaches
that allow her to define content’s category. In this paper,
we propose the first Privacy Attack Through Traffic Analysis
(PATTA) in the NDN architecture. PATTA relies on both
text processing techniques and ML approaches to infer the
category of the content that a victim requests. In particular,
PATTA involves a set of supervised ML classifiers trained over
the most significant segments of a predefined set of content
names, extracted through a Term Frequency-Inverse Document
Frequency (TF-IDF) approach. Thereafter, an attacker sniffs
the communication between the victim and the first hop router
and makes use of the trained classifiers to classify categories
of requested contents, achieving an accuracy up to 96%. The
contributions of this paper are: (i) design and implementation
of PATTA; (ii) evaluation and proofness of the feasibility of
PATTA in a simulated scenario; (iii) release of the dataset of
PATTA1.

II. BACKGROUND

A. NDN Overview

In NDN, the basic communication model is changed with
respect to the current Internet architecture. The communication
entities that produce data are called producers, while the ones
that request data are called consumers. Instead of addressing

1https://gitlab.com/bardhienkeleda/icn-patta-dataset.git
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hosts in order to deliver packets to the receiver, in NDN the
consumers request the content by using unique application-
layer names. Content can be requested by consumers issuing
an interest request packet that carries the content name, while
producers respond to the interest request by using data packets.
The communication follows a pull approach: a data packet
reaches the consumer only upon receiving a request for that
content.

B. Text Processing Techniques

TF-IDF [22] is a widely used Natural Language Process-
ing (NLP) technique for text classification. It measures the
importance of one (or a set) of document(s) by returning a
score, which increases according to how many times a word
is present in a text and decreases with the frequency of times
it is found in the complete set of documents. There are other
text processing techniques such as Bag of Words (BoW) [19]
and Google Word2Vec [4]. The former is a basic model used
in NLP since it produces a vector containing word occurrences
and discarding the order. Instead, the latter places the words
into feature space and their location is determined by their
meaning.

III. ASSUMPTIONS

A. System Model

We consider a generic NDN network with a set of con-
sumers, all connected to the first hop router, and a producer.
In particular, we assume that the entities participating in the
network do not rely on privacy preserving techniques. Con-
sumer issues content requests following Zipf distribution [7]
with a frequency of 1 request/second. Additionally, we assume
that Name field in the interest request packet is not encrypted.

B. Threat Model

For the attack scenario we consider a victim issuing content
interest requests and an attacker sniffing the outgoing victim’s
traffic between the victim and the first router. While sniffing,
the attacker extracts the significant features of the sniffed
network packets and uses automatic classification tools to infer
the victim’s requested content. The attacker aims to discover
the content’s category that the victim is requesting among a
set of sensitive content categories. Privacy of a single user can
be disrupted by the attacker being able to deduce the category
of the content that the user is requesting, among which also
sensitive content. Similarly, an attacker can use this attack to
disrupt the privacy of a group of users. The attacker is able
to eavesdrop the network traffic passing through the wireless
link connecting the victim or victims with the first hop router.
Also, she does not need to have knowledge about the rest of
the network, i.e., routers and producers.

IV. PATTA ATTACK OVERVIEW

PATTA exploits one of the crucial characteristics of NDN
paradigm, i.e., the self-explanatory nature of content names.
For example, a name containing a component entitled video is

expected to refer to a video content. PATTA is flexible to multi-
ple content names associated to the same content by producers.
PATTA achieves this by using ML in conjunction with text
processing. PATTA encompasses two main phases: classifiers’
setup and real-time classification. In the former, the attacker
collects victim’s requests for (sensitive) contents. Then, she
goes through a preprocessing phase. During the preprocessing,
she initially filters the collected dataset to keep only names of
the target contents. Then, she further transforms the format
of collected traffic from TCP/IP into NDN. Finally, she labels
the dataset and splits it into training, testing and flexibility
sets. On the training set, she first performs a feature extraction
procedure through two text processing techniques, to identify
the most significant segments in content interest names. Then,
she uses the identified features to train ML classifiers. At the
end of the training phase, the attacker tests the obtained models
on the testing set. The latter phase starts with a network traffic
capturing during which the attacker sniffs the outgoing traffic
between the victim and the first hop router. The real-time
network traffic requires a preprocessing, i.e., to consider only
the interest requests without taking into account the responses
from the producer and thereafter prepares a set of features,
namely, a set of the most important interest name segments.
These features are obtained using the same text processing
techniques used in the classifiers’ setup phase. Afterwards, the
attacker uses the obtained features of observed traffic together
with the already trained ML classifiers to classify the victim’s
real-time interest requests.

V. CLASSIFIERS SETUP

A. Traffic Collection

To obtain our dataset, we collect a TCP/IP traffic and
afterwards transform into the NDN format. Due to the sim-
ilarity of NDN content names with URLs, we leverage the
website scraping technique to collect URLs contained in a
set of websites belonging to the following categories: Adults,
Arts & Entertainment, Education, Faith & Beliefs, News and
Technology. In order to choose the websites for each category,
we follow some websites classification lists. For example,
for News category, we scrape the top 20 journalism brands
according to Forbes. In particular, we pick 300 websites and
design an automated Python script to visit them. For each
website, the script visits its homepage and all the links it
contains. We expect that the number of links visited for
each page varies depending on the considered category. For
example, for News category, we visit 21 websites and obtain
2608 URLs. For the Faith and Beliefs category, even though
we pick a higher number of websites to be scraped, i.e.,
35 websites, we obtain a smaller number of instances, i.e.,
1153 instances. The full number of selected websites and
obtained instances for each category is represented in Table I.
We use an Ubuntu 20.04 TLS machine to run the automated
script, Mozilla 81.0 as a browser for traffic generation and
Wireshark [3] as traffic sniffing tool.



B. Dataset Preprocessing

For preprocessing task, we filter HTTP and HTTPS traffic
using Wireshark. This procedure is performed for each gener-
ated traffic file in a Comma-Separated Values (CSV) format.
All these files are merged into the final dataset. Furthermore,
we filter out the traffic of those websites that do not contain
links in their homepage. Then, for each website homepage and
for all links contained in it, we assign the category name as its
label. Next, we proceed with the transformation of traffic from
HTTP requests to NDN interests. Each HTTP/HTTPS request
for a certain webpage becomes an NDN interest having the
same structure. In particular http, htpps words are transformed
into ndn and other special characters such as ? are transformed
into /. At the end of this step, for each category, we randomly
pick one domain for each category and create the flexibility
set. The remaining domains are merged into a unique dataset
that is moreover split in 70% for training and 30% for testing.

C. Feature Selection

For each NDN content name in the dataset, TF-IDF creates a
BoW, while the corpus is the union of all bags of words. Each
word of the corpus gets a TF-IDF score. During the creation
of both BoW and corpus, we perform text cleaning to remove
special characters, insignificant words, and very frequent-small
length words (e.g., ndn, www, com), which could disrupt the
classifier’s performance. For the feature selection task, along
with TF-IDF, we make use of N-grams, a text representation
mainly used in auto completion sentence and auto spell check
systems. The use of N-grams during TF-IDF calculation allows
to keep as much useful information as possible from the tree-
like structure of NDN content names, maintaining also the
sequential order of name components. We use sequences of
terms one component long (i.e., unigrams) and two component
long (i.e., bigrams) or a combination of both unigrams and
bigrams. Finally, we discard words which are shorter than
three, random words without a meaning in English dictionary
and words with TF-IDF score smaller than the threshold
chosen after different experimentation with different threshold
values.

D. ML Classifiers Training

To train the ML classifiers, we only exploit supervised
learning algorithms due to their good performance on clas-
sification tasks and the labeled dataset. All ML models are
trained using the features selected from the previous step. We
train 18 different models, varying the number of features and
the configuration of N-grams: 1-grams, 2-grams or both 1-
grams and 2-grams. Then, we proceed with a two-step testing
of the trained classifiers: firstly, using instances belonging to
the same website domains used during training and secondly,
using instances belonging to website domains different from
the ones used during training. By doing so, we aim to evaluate
the generalization capabilities of the trained classifiers. Table II
shows the accuracy obtained on the testing set for 18 classi-
fiers. The accuracy score of the model increases with respect
to the increasing number of features for the three models, i.e.,

Linear-Support Vector Machine (L-SVM), MNB and SVM.
We additionally computed f1-score for all the classifiers and
the results showed that it is aligned with accuracy score.
Therefore, for evaluation we stick only with accuracy score.
Next, we calculated the accuracy of the classifiers on the
flexibility set and Table III shows the results. The achievement
of high accuracy scores for classifiers, such as MNB, SVM and
L-SVM, even in unseen domains during training demonstrates
the capability of our classifiers to correctly categorize with
high probability new content based on word’s importance. At
the end of this step, we select the best performing classifiers
in terms of accuracy, in both testing and flexibility sets.

TABLE I: Number of domains and instances for each category.
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TABLE II: Classifier accuracy over the testing set.
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SVM 91,84% 93, 20%∗ 60,64% 66,07% 91,89% 93,09%

∗ Best performing model of the line † Best performing model of the column

TABLE III: Classifier accuracy over the flexibility set.
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∗ Best performing model of the line † Best performing model of the column

VI. REAL-TIME CLASSIFICATION

Here, we present the results of the real-time classification
phase during which we use mini-NDN [1]. For the experiments



we consider three different scenarios, one for each of the best
performing classifiers: SVM, MNB and L-SVM. For each of
the considered scenarios, we then consider two configurations:
only 1-grams used with 1785 features and both (1, 2)-grams
with 2700 features. We exclude 2-grams due to their results.
For each scenario, we run five simulations lasting 600 seconds
each, while considering one or five victims. Each victim
connected to the first hop router issues 1 request/second
following a Zipf distribution with α = 0.95 and picks the
requests from the obtained union of testing and flexibility set.
Table IV shows the results of classification while both one or
five victims are connected to the first hop router. In the former
case, we achieve good results for all three classifiers and in
particular for SVM classifier which achieves up to 96% of
accuracy. For the latter case instead, similarly to what might
happen in a real scenario, due to a higher number of requests
for content issued by a group of victims, the attacker might not
capture the whole traffic generated by victims. According to
our simulations, with 5 victims requesting content following
Zipf distribution, where each of them issues 1 request/second
and with five simulations for each configuration of classifiers,
the attacker captures 90% of the victims’ traffic. Even in this
case, with 91% accuracy the attacker is successful in inferring
the contents requested by the victims. Due to the results we
showed before and also in Table IV, we conclude that, by
carefully training the classifiers, the attacker is able to achieve
really good classification results.

TABLE IV: Classifier’s accuracy tested on 1-grams with 1785
features and (1,2)-grams with 2700 features for 1 and 5
victims.

Classifier
Model

1-grams
1785 features

(1, 2)-grams
2700 features

L-SVM V1: 87,34%
V5: 84,53%

V1: 91,74%
V5: 88,00%

MNB V1: 92,16%
V5: 89,01%

V1: 92,65%
V5: 88,81%

SVM V1: 89,33%
V5: 80,99%

V1: 96,19%
V5: 91,14%

V1: One victim V5: Five victims

VII. CONCLUSIONS

In this paper, we proposed and evaluated PATTA, a novel
privacy attack in NDN. PATTA makes use of a promising
approach since we investigated a text processing technique
such as TF-IDF that allows us to correlate NDN content
name segments with the category content being requested. By
relying on this technique, the category recognition capabilities
of our attack are robust also in case of possible changes in
the content names and in the presence of totally new content
names. In our work, we first trained a set of supervised learn-
ing classifiers based on the relevance of segments composing
the content name and we achieved recognition results up to
96%. Subsequently, we transferred our findings into a full

NDN simulated environment in order to prove the feasibility
of our attack. According to our empirical results, the attacker
is able to analyse in real time the generated traffic by the
victim and achieves 96% when only 1 victim is considered or
91% with 5 victims. Future work shall further investigate the
feasibility of attacks in the case of a higher number of victims
connected to the first hop router. Furthermore, we also leave
room for implementation of the attack in a real scenario.
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