We consider the following Dirichlet problem(formula persented) and f non-negative and non-decreasing. We show existence and uniqueness of solutions uλ for any λ and discuss their asymptotic behavior as λ → −∞. In the expansion of uλ large solutions naturally appear.

ASYMPTOTIC BEHAVIOR of MINIMAL SOLUTIONS of −∆u = λf(u) AS λ → −∞ / Battaglia, L.; Gladiali, F.; Grossi, M.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 41:2(2020), pp. 681-700. [10.3934/dcds.2020293]

ASYMPTOTIC BEHAVIOR of MINIMAL SOLUTIONS of −∆u = λf(u) AS λ → −∞

Grossi M.
2020

Abstract

We consider the following Dirichlet problem(formula persented) and f non-negative and non-decreasing. We show existence and uniqueness of solutions uλ for any λ and discuss their asymptotic behavior as λ → −∞. In the expansion of uλ large solutions naturally appear.
2020
Asymptotic analysis; Dirichlet problem; entire solutions; large solutions; minimal solutions
01 Pubblicazione su rivista::01a Articolo in rivista
ASYMPTOTIC BEHAVIOR of MINIMAL SOLUTIONS of −∆u = λf(u) AS λ → −∞ / Battaglia, L.; Gladiali, F.; Grossi, M.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 41:2(2020), pp. 681-700. [10.3934/dcds.2020293]
File allegati a questo prodotto
File Dimensione Formato  
Battaglia_Asymptotic-behavior_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 507.79 kB
Formato Adobe PDF
507.79 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1572633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact