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Abstract. We consider the following Dirichlet problem{
−∆u = λf(u) in Ω

u = 0 on ∂Ω
, (Pλf )

with λ < 0 and f non-negative and non-decreasing.

We show existence and uniqueness of solutions uλ for any λ and discuss their
asymptotic behavior as λ → −∞. In the expansion of uλ large solutions

naturally appear.

1. Introduction and main results. In this paper we consider the problem{
−∆u = λf(u) in Ω
u = 0 on ∂Ω

, (Pλf )

where λ is a real parameter, Ω is a smooth bounded domain of RN with N ≥ 2 and
f is a real function satisfying the following assumption,

f non-decreasing, f(0) > 0, f |0<f<f(0) is C1. (1.1)

In this setting Crandall and Rabinowitz ([11], Section 4, see also [21]) prove for
0 < λ < λ∗ and f convex the existence of a branch uλ of stable positive solutions,
i.e. satisfying

λ1

(
−∆− λf ′(uλ)I

)
> 0,

(here λ1 demotes the first eigenvalue with zero Dirichlet boundary conditions). This
branch is minimal, in the sense that any other solution u of (Pλf ) verifies u ≥ uλ.
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There is a huge literature about minimal, non-minimal and stable solutions to (Pλf ),
see [13] as an example. We just recall some results about two nonlinearities which
play an important role in this paper:

• f(t) =
(
(t− t0)+

)p
with p ≥ 1 and t0 < 0 (Problem of confined plasma). A

lot of authors studied this problem ([1, 5, 7, 25]) where the set {u > t0} is the
plasma and the set {u < t0} is the vacuum.

• f(t) = et (the Liouville equation). There is a very large literature mainly
when Ω ⊂ R2, see for instance [4, 14, 16, 24]. Much less is known in higher
dimensions ([18]). Observe that in this case the function v = −u solves
−∆v = −λe−v, an equation which has been derived in [17] in the study of
the stationary states for a model of evolution of the electronic density in the
plasma (see also [8, 9]).

The aim of this paper is to complete the study of the branch of stable solutions
by considering the case λ < 0. Of course in this event by the maximum principle
we get that u < 0 in Ω.

Quite surprisingly, this case was not considered in the literature and we will see
that some new and interesting phenomena occur. It is easy to show that for any
λ < 0 there exists a unique solution uλ to (Pλf ). So the interesting problem is to
study the asymptotic behavior of uλ as λ→ −∞.

In order to state our first result let us introduce the following number:

t0 := inf{t ∈ (−∞, 0) : f(t) > 0} ∈ [−∞, 0). (1.2)

We observe that t0 is the same number which appears in the plasma problem and
t0 = −∞ in the Liouville equation. Next theorem gives a description of the solution
to (Pλf ) for any f verifying (1.1).

Theorem 1.1. Assume f satisfies (1.1). Then, for any λ < 0, (Pλf ) has a unique
stable solution uλ.

Moreover, t0 < uλ(x) < 0 for any x ∈ Ω, where t0 is defined by (1.2), and

uλ(x) →
λ→−∞

t0 in L∞loc(Ω). (1.3)

By the definition of f we have that if f > 0 then t0 = −∞ and so there is a
full blow-up of the solution uλ in Ω (these is the case of f(t) = et). On the other
hand, for solutions of the confined plasma problem described before, we get that
uλ(x) →

λ→−∞
t0 in Ω.

This means that when λ is negative, i.e. we have negative pressure, there is no
vacuum in Ω and so no free boundary appears (see [7]).

An interesting property of the solution uλ for t0 ∈ R is the following (see Propo-
sition 2.3)

λf(uλ)→ 0 as λ→ −∞.
However note that this is not true if t0 = −∞ (see Example 4.1).

The result in (1.3) is not surprising if one looks at the functional

Jλ(v) :=
1

2

ˆ
Ω

|∇v|2dx− λ
ˆ

Ω

F (v)dx (1.4)

associated with (Pλf ) for F (s) =

ˆ s

t0

f(t)dt. It is easy to see that Jλ is coercive

and uλ is the minimum. The presence of the positive constant −λ in front of the
potential term suggests that it is convenient for uλ to minimize it, i.e. to reach
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the value t0 even if this increases the kinetic term which becomes infinite near
the boundary. Indeed in the examples 3.2 (case ii) and 4.1 (case i) we find that

Jλ(uλ) = (C + o(1))
√
−λ as λ→ −∞ and both the kinetic and the potential term

gives a contribution of order
√
−λ.

This phenomenon has some similarities with the Ginzburg-Landau problem

Jε(v) :=
1

2

ˆ
Ω

|∇v|2dx+
1

ε2

ˆ
Ω

F (v)dx

where f is a double well potential and the minimizers uε are characterized by a
phase transition among the two zeroes of the potential term, say ±1.

In our case, obviously, there is not phase transition, since f has the geometry of
a single well and indeed Theorem 1.1 says that uλ → t0χΩ in L∞loc.

Nevertheless, since in our case uλ = 0 on the boundary, we think that some of
the characteristics of the double well potential should appear near ∂Ω.

Since t0 < v < 0 a simple observation and the coarea formula gives

Jλ(v) ≥
√
−λ
ˆ

Ω

√
2F (v)|∇v|dx =

√
−λ
ˆ 0

t0

(ˆ
Ω∩{v=s}

√
2F (s)dHn−1(y)

)
ds

=
√
−λ
ˆ 0

t0

√
2F (s)Hn−1({v = s})ds

where Hn−1 is the n− 1-dimensional Hausdorff measure. Hence if uλ minimizes Jλ
it is natural to expect that, far from the boundary uλ → t0, which is the unique
zero of the potential F (v). It is likewise natural to expect that near the boundary
the solution uλ should minimize Hn−1({v = s}) i.e. the level sets are of minimal
perimeter among the ones that converges to ∂Ω.

What it should be natural to expect is that uλ(x) = uλ (d(x, ∂Ω)) where d(x, ∂Ω)
is the distance of the point x from the boundary which is what happen for the double
well potential.

Next aim is to improve Theorem 1.1 computing a more detailed asymptotic
behavior of the expansion (1.3).

Even if our analysis in this paper does not allow to obtain information near ∂Ω
what we will see is that all solutions v of the limit problems which arise in the
refined study of uλ as λ → ∞ have this nice geometrical property that near the
boundary v(x) = v (d(x, ∂Ω)).

As expected the value of t0 and the shape of f will play a crucial role. For this
reason we will state our results by separating the case in which t0 is finite from that
where t0 = −∞.

1.1. The case t0 ∈ R. In this case from Theorem 1.1 we have that the solution
uλ → t0 in Ω. The aim of this section is to improve (1.3) computing the additional
terms of the expansion.

The model nonlinearity is f(t) =
(
(t− t0)+

)p
with p ≥ 0 and t0 negative.

As remarked before this problem was studied by many people as λ > 0 and
p ≥ 1. For p > 1 we just recall [1] and the references therein and if p = 1 we
mention [25, 5, 3, 7]. In this last paper it was also studied the asymptotic behavior
of the solution as λ→ +∞. In this case the region occupied by the plasma, namely
{x ∈ Ω such that uλ > −t0} has diameter converging to 0. We will see that as
λ is negative the opposite phenomenon occurs. On the other hand, as λ → −∞,
p = 1 is a threshold for our problem where the behavior changes dramatically. In
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particular, if p > 1 large solutions v appear in the expansion of the solution. Let
us recall that v is a large solution in Ω if it satisfies{

∆v = g(v) in Ω
v(x) →

x→∂Ω
+∞ (1.5)

There is a massive literature about existence, uniqueness and asymptotic analysis
of solutions v to (1.5), so it is impossible to give en exhaustive list of references.
We just recall the seminal papers by Keller [19] and Osserman [23] where it was
proved that if g is a positive, continuous, non-decreasing function then (1.5) admits
solutions if and only if the following Keller-Osserman condition holds:ˆ +∞

t1

dt√´ t
t1
g(s)ds

< +∞, (1.6)

for some t1 > 0. The uniqueness of large solutions has been established under
some additional assumptions on f and the regularity of the domain Ω (see [12]
for references and new results). Here we quote the result in [2] where the authors
proved the uniqueness of the large solution to (1.5) when g(t) = tp and p > 1 and
[20] in the case when g(t) = et.

Now we are in position to state our result.

Theorem 1.2. Let uλ be the unique solution to (Pλf ). Assume there exists some
γ(α) →

α→0+
0 such that

g0(t) ≤ f(αt+ t0)

γ(α)
→

α→0+
tp, with p ≥ 0 locally uniformly in t > 0, (1.7)

for some g0 satisfying (1.6) Then the following alternative holds:

(i) If
γ(α)

α
→

α→0+
0, then

uλ = t0 + αλ
(
v + o(1)

)
as λ→ −∞ in C1

loc(Ω),

where v is the unique large solution to (1.5) with g(t) = tp, for some αλ →
λ→−∞

0+.

(ii) If
γ(α)

α
6→

α→0+

0 and in addition:

– either Ω is a ball,
– or Ω ⊂ R2 and/or Ω is strictly convex and

f(αt+ t0)

γ(α)
≤ Ctq for some C > 0, 0 ≤ q ≤ 1, t > 0; (1.8)

then,

uλ(x) = t0 + αλ

(
v

(
x− xλ
ελ

)
+ o(1)

)
as λ→ −∞ in C1

loc(RN ),

where v is an entire solution to{
∆v = vp in RN
v ≥ v(0) = 1.

, (1.9)

for some αλ, ελ →
λ→−∞

0 and xλ being a minimum point of uλ.
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Even if the convergence in Theorem 1.2 does not allow to obtain information on
the behavior of uλ near the boundary of Ω, we observe here that the large solution
to (1.5) satisfies

lim
x→x0

ψ(u(x))

d(x, ∂Ω)
= 1,

where x0 ∈ ∂Ω. Here ψ is a function which depends only on the nonlinear term g
in (1.5), see [2].

Remark 1.3. The assumption that Ω is planar or strictly convex is essential to
have xλ →

λ→−∞
x0 ∈ Ω, as in in the paper [15] by Gidas, Ni and Nirenberg (see

Corollary 3 and the Problem stated just below it). In the case of a ball, one does
not even need to assume (1.8), essentially because all solutions are radial.

Notice that if Ω is a ball, then the solution of (1.9) is also radially symmetric.
So it is uniquely determined as the solution to the O.D.E.

v′′(r) +
N − 1

r
v′(r) = v(r)p in R

v′(0) = 0
v(0) = 1.

Remark 1.4. The assumption
f(αt+ t0)

γ(α)
→

α→0+
tp in (1.7) is rather general and

it is satisfied when the nonlinearity f decay at zero at t0 as a power or slowlier.
Indeed it is equivalent to ask that

f(αt+ t0)

γ(α)
→
α→0

g(t) for some g.

See Lemma A.1 for details. Observe that the condition that
f(αt+ t0)

γ(α)
is bounded

from below by g0 in (1.7) is needed only in case (i).
When, instead, the nonlinearity f decay at zero faster, as in the case of

f(t) =

{
0 for t < t0

e−
1

t−t0 for t0 < t < 0

we still have that a large solution appears in the expansion of uλ. However we have
to modify (1.7) assuming there exists α(β) ≥ 0 such that

α(β) →
β↘t0

0,
f(β)

α(β)
→
β↘t0

0

and

g0(t) ≤ f(α(β)t+ β)

f(β)
→
β↘t0

g(t) locally uniformly for t > − sup
β

β − t0
α(β)

,

(1.10)

for some g0 satisfying (1.6), and we get

uλ(x) = βλ + αλ
(
v + o(1)

)
as λ→ −∞ in C1

loc(Ω),

where v is the large solution to (1.5), corresponding to g(t). In this case an expo-
nential function g(t) can appear in the limit problem.

Due to the important role played by the nonlinearity f(t) =
(
(t− t0)+

)p
we

would like to state Theorem 1.2 expressly for this case. Note that p > 1 corresponds
to the case (i) in Theorem 1.2 and p ≤ 1 to (ii).
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Corollary 1.5. Let λ < 0 and uλ be the unique negative solution to{
−∆u = λ

(
(u− t0)+

)p
in Ω

u = 0 on ∂Ω.

Then the following alternative holds:

(i) If p > 1, then

uλ = t0 +
v + o(1)

(−λ)
1
p−1

as λ→ −∞ in C∞loc(Ω),

where v is the unique positive solution to{
∆v = vp in Ω
v(x) →

x→∂Ω
+∞ ;

(ii) If 0 ≤ p ≤ 1 and Ω is either planar or strictly convex, then setting αλ =

uλ(xλ)− t0 and ελ =

√
α1−p
λ

−λ
we have that

uλ (ελx+ xλ) = t0 + αλ
(
v + o(1)

)
in C∞loc

(
RN
)
,

where v is a solution to (1.9). When Ω is the unit ball instead

uλ(r) = t0 + αλv

(
r

ελ

)
is the explicit solution to (Pλf ) if αλ is such that αλv

(
1

ελ

)
= −t0.

Remark 1.6. Our result applies also to suitable perturbation of
(
(t− t0)+

)p
,

namely f(t) =
(
(t− t0)+

)p
+
(
(t− t0)+

)q
with q > p > 0 or when f is given

by (t− t0)p log2(t− t0) for t > t0. The expansion of uλ is the same as in (i) or (ii)

of Corollary 1.5 and g0(t) =
(
t+
)p

.

It will be interesting to remove the monotonicity assumption on f at least in the
case of an asymptotic linear problem as in the paper [22].

1.2. The case t0 = −∞. In this case Theorem 1.2 only says that uλ → −∞ in
Ω. Our aim is to give a more precise expansion of uλ and we will see that a crucial
role is played by the limit of f(t) as t → −∞. Let us recall that f is positive and
increasing, so the only options are:

• lim
t→−∞

f(t) = c0 > 0

• lim
t→−∞

f(t) = 0

Let us consider the first alternative. We have the following

Theorem 1.7. Let uλ be the unique negative solution to (Pλf ) with f verifying
(1.1) and

lim
t→−∞

f(t) = c0 > 0.

Then we have that

uλ = λ
(
c0 + o(1)

)
φ as λ→ −∞ in C1

loc(Ω)
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where φ is the solution of the torsion problem{
−∆φ = 1 in Ω
φ = 0 on ∂Ω.

(1.11)

The proof of the previous result is not difficult and it follows by the standard
regularity theory. In the other case lim

t→−∞
f(t) = 0 interesting new phenomena

appear.

Theorem 1.8. Let uλ be the unique solution to (Pλf ) with f verifying (1.1) and

lim
t→−∞

f(t) = 0.

Assume there exists some α(β), γ(β) ≥ 0 such that γ(β) →
β→−∞

0 and

f(α(β)t+ β)

γ(β)
→

β→−∞
g(t) locally uniformly in t ∈ R

Then, the following alternative holds:

(i) If
β

α(β)
→

β→−∞
−∞ and in addition

γ(β)

α(β)
→

β→−∞
0 and

f(α(β)t+ β)

γ(β)
≥ g0(t)

for some g0 satisfying (1.6), then

uλ = βλ + αλ
(
v + o(1)

)
as λ→ −∞ in C1

loc(Ω),

where v is the large solution to (1.5), for some βλ →
λ→−∞

−∞, αλ →
λ→−∞

0.

(ii) If
β

α(β)
→

β→−∞
A < 0, then

uλ = αλ
(
v + o(1)

)
as λ→ −∞ in C1

loc(Ω),

where v is the unique (negative) solution to{
∆v = g(v −A) in Ω
v = 0 on ∂Ω

, (1.12)

for some αλ →
λ→−∞

+∞

Here we observe that also in the case (ii) the solution v to (1.12) satisfies

lim
x→x0

|v(x)− ψ(d(x, ∂Ω))| → 0

if ψ is a function which depends only on the nonlinear term g, see [6] as an example.

Remark 1.9. With respect to Theorem 1.2, the statement of Theorem 1.8 has
some differences, also because in this case β cannot be fixed to t0, as the latter
equals +∞. Anyway, some simplifications still occur in case (ii).

In fact, the limit function g(t) is always a negative power of the type
1

(−t)p
for

some p ≥ 0 (see Lemma A.1 for details), and in the case p = 0 we recover the case
of Theorem 1.7. On the other hand, in case (i) other function such as exponentials
appear, as explained later on.

Moreover, it is not hard to see that one can take γ(β) = f(β) (see again Lemma
A.1).
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Finally, local uniform convergence for
f(α(β)t+ β)

γ(β)
can actually be assumed only

for t for which α(β)t+β is negative (as we evaluate f on uλ which attains negative

values), namely t < sup
β

−β
α(β)

.

The model nonlinearity of the case (i) in the previous theorem is f(t) = et. Due
to its importance, it seems useful to state explicitly the result.

Corollary 1.10. Let λ < 0 and uλ a family of negative solutions to{
−∆u = λeu in Ω
u = 0 on ∂Ω.

Then
uλ = − log(−λ) + v + o(1) in C∞loc(Ω) as λ→ −∞

and v is the unique positive solution to{
∆v = ev in Ω
v(x) →

x→∂Ω
+∞. (1.13)

Remark 1.11. If Ω ⊂ R2 is a simply connected domain then the solution v to
(1.13) satisfies

v(x) = 2R(x) + log 8

where R is the Robin function associated to Ω, namely the regular part of the Green
function computed on the diagonal. Our result, jointly with Suzuki’s one (see [24]),
gives a complete description for any λ ∈ R of the bifurcation diagram containing
the minimal branch of (Pλf ) with f(t) = et.

Note that our results does not depend on the dimension of the space, differently
from the case where λ > 0 (see [18] for example).

Remark 1.12. Some example of nonlinearity f where the previous theorem applies
are the following:

• f(t) = et|t|
p−1

with αλ =
1

p(−βλ)p−1
and βλ verifying (−βλ)p−1eβλ(−βλ)p−1

=

− 1

pλ
.

So we get uλ =
vλ

(−βλ)p−1
+ βλ.

• f(t) = (1 + |t|)pet with αλ = 1 and βλ verifying (−βλ)peβλ = − 1

λ
.

So we get uλ = vλ + βλ.

The paper is organized as follows: in Section 2 we prove Theorem 1.1. In Section
3 we discuss the case t0 ∈ R and prove Theorem 1.2 and in Section 4 we prove
Theorem 1.7 and 1.8. At the end of the both sections we give some examples
where explicity solutions are provided. Finally in the Appendix we show that our
assumptions on the nonlinearity f are quite general.

2. General properties of the solution uλ. In this section we prove Theorem
1.1. We start showing some properties of the solution uλ.

Lemma 2.1. Assume f satisfies (1.1). Then for any λ < 0, (Pλf ) has a unique
classical solution which is strictly negative in Ω.
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Proof. As in [11] existence for small λ can be proved applying the implicit function
Theorem to F (λ, u) : (−∞, 0]× C2,α(Ω) ∩ C0(Ω)→ C0,α(Ω) defined as

F (λ, u) = ∆u+ λf(u)

at its trivial zero (λ0, u0) = (0, 0), as the linearized operator F ′(0, 0) : v 7→ ∆v
is invertible. Here C2,α(Ω), C0,α(Ω) are the usual Holder spaces and C0(Ω) is the
subspace of the continuous functions on Ω that satisfy u = 0 on ∂Ω. As λ < 0 then
uλ < 0 by the weak and strong maximum principle.

More generally, the branch of solutions can be extended at any (λ0, u0) with
λ0 < 0; in fact, the linearized operator is

F ′(λ0, u0) : v 7→ ∆v + λ0f
′(u0)v;

therefore, being λ0 < 0 and f ′(u0) ≥ 0, for any v 6≡ 0 one hasˆ
Ω

(F ′(λ0, u0)v)v =

ˆ
Ω

(∆v + λ0f
′(u0)v)v =

ˆ
Ω

(
−|∇v|2 + λ0f

′(u0)v2
)
< 0.

This proves the injectivity of F ′(λ0, u0) and hence that the branch of solutions is a
regular curve in a neighborhood of any of its point.

Finally, let us show that such a branch exists for every λ ≤ 0. Set Iλ := {λ <
0 such that F (λ, uλ) = 0} and λ∗ = inf Iλ.

We want to show that if λ∗ ∈ R then λ∗ is a minimum for Iλ which contradicts
the definition of λ∗ since we have already proved that the branch of solutions can
be extended from any of its point.

By definition there exists a sequence (λn, un) with λn → λ∗ such that F (λn, un) =
0. By the maximum principle, any solution u to (Pλf ) is not positive, therefore
f(un) ≤ f(0) and (λ∗− δ)f(0) ≤ −∆un ≤ 0 for some δ > 0 when n is large enough;
hence, by standard elliptic estimates, un converges in C2,α(Ω) to some u∗ ∈ C0(Ω)
satisfying F (λ∗, u∗) = 0. This proves existence for any λ.

To show the uniqueness of the solution for λ < 0, take two solutions u, v to (Pλf )
and consider their difference u− v: it solves{

−∆(u− v) = λ(f(u)− f(v)) in Ω
u− v = 0 on ∂Ω

.

By testing this equation versus u− v, we getˆ
Ω

|∇(u− v)|2 =

ˆ
Ω

(−∆(u− v))(u− v) = λ

ˆ
Ω

(f(u)− f(v))(u− v).

Since we are taking a non-decreasing f , we have (f(u)− f(v))(u− v) ≥ 0, therefore

we get

ˆ
Ω

|∇(u−v)|2 ≤ 0, which is possible only if u ≡ v. This proves the uniqueness

and concludes the proof.

Next lemma is a comparison principle which is well known as λ ≥ 0. On the
other hand the same proof holds for λ < 0 as well.

Lemma 2.2. Let Ω1 ⊂ Ω2 and u1, u2 be solutions to

−∆ui = gi(ui) in Ωi, i = 1, 2,

such that u2(x) ≤ u1(x) on ∂Ω1, where g1, g2 are locally Lipschitz functions, g1

nonincreasing, g2(t) ≤ g1(t) for any t. Then,

u2(x) ≤ u1(x), ∀x ∈ Ω1.
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Moreover, either one has Ω1 = Ω2, g1 ≡ g2, u2(x) = u1(x) on ∂Ω1, or u2(x) < u1(x)
for any x ∈ Ω1.

Proof. The difference u1 − u2 solves{
−∆(u1 − u2) = g1(u1)− g2(u2) in Ω1

u1 − u2 ≥ 0 on ∂Ω1
.

By writing

g1(u1)− g2(u2) =
g1(u1)− g1(u2)

u1 − u2
(u1 − u2) + g1(u2)− g2(u2),

since g1(u2) ≥ g2(u2), then u1 − u2 also satisfies −∆(u1 − u2) + c(x)(u1 − u2) ≥ 0

with c(x) = −g1(u1)− g1(u2)

u1 − u2
≥ 0 by the monotonicity of g1. Therefore the weak

and strong maximum principle gives u1 − u2 ≥ 0, with the strict inequality unless
Ωi, gi, ui|∂Ωi all coincide.

Proof of Theorem 1.1. Existence and uniqueness of a negative solution follows from
Lemma 2.1.

The stability of the solution uλ is an easy consequence of the fact that λ is
negative and f non-decreasing. Moreover, applying Lemma 2.2 with Ω1 = Ω2 = Ω
and gi = λif we get uλ2(x) < uλ1(x) for any x ∈ Ω and λ2 < λ1 and therefore the
monotonicity in λ gives the existence of a pointwise limit u0(x) = lim

λ→−∞
uλ(x).

We are left with showing that such a limit equals t0 for all x; since the mono-
tonicity of uλ is strict, this would give the inequality uλ > t0.

Let us start with the case when Ω = BR is any ball, whose center is omitted for
simplicity. As u has constant sign, the Gidas-Ni-Nirenberg Theorem [15] gives that
u is radial and radially increasing.

We first show that u0 ≥ t0 in the case t0 ∈ R, whereas if t0 = −∞ it is trivial.
By contradiction, we assume uλ(x) < t0 for x ∈ BRλ and uλ(x) = t0 for x ∈ ∂BRλ ,
for some λ < 0 and Rλ ∈ (0, R). Therefore, uλ solves −∆uλ = λf(uλ) in BRλ but,
since f(t) = 0 for t ≤ t0, u ≡ t0 also solves the same equation in BRλ and the
solution is unique in view of Lemma 2.1; hence, uλ ≡ t0 on BRλ and we found a
contradiction.

Now we prove u0 ≤ t0, which jointly with the previous inequality gives u0 ≡ t0
in BR. If not, uλ ≥ t1 > t0 on some BR1 ⊂ BR for any λ < 0; the monotonicity of
f yields −∆uλ = λf(uλ) ≤ λf(t1), and clearly uλ ≤ 0 on ∂BR1 . Therefore we may
apply the comparison principle to uλ and λf(t1)φ, with φ being the unique solution
to (1.11) in BR1

, to get uλ ≤ λf(t1)φ: since f(t1) > 0, we get uλ →
λ→−∞

−∞ a.e.

on BR1 , contradicting uλ ≥ t1.
Finally, the convergence is locally uniform in BR1

because, since uλ is radially
increasing, for any r < R one has

sup
Br

|uλ − t0| = uλ(r)− t0 →
λ→−∞

0,

and when t0 = −∞
sup
Br

uλ = uλ(r) →
λ→−∞

−∞.

Now, let us consider a generic domain Ω. We consider two balls BR1 ⊂ Ω ⊂ BR2

and the solutions ui,λ to (Pλf ) on BRi : by applying twice Lemma 2.2 with g1 = g2 =
λf we get u2,λ ≤ uλ ≤ u1,λ on BR1

. Since we already proved that ui,λ →
λ→−∞

t0 in
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L∞loc (BRi) for both i’s, we deduce uλ →
λ→−∞

t0 in L∞loc(BR1) and, since the choice of

BR1 is arbitrary, also in L∞loc(Ω).

In the case when t0 ∈ R we can improve Theorem 1.1 getting the following result:

Proposition 2.3. Let uλ be the unique solution to (Pλf ) for λ < 0. Assume f
satisfies (1.1) and that t0 ∈ R. Then

λf(uλ) →
λ→−∞

0 a.e. in Ω, (2.1)

and uλ →
λ→−∞

t0 in C1
loc(Ω).

Proof. First we prove that for every compact set K ⊂ Ω there exists a constant CK
such that

sup
K
|λf(uλ)| ≤ CK . (2.2)

By contradiction let us assume that (2.2) does not hold. Then there exists points
xλ ∈ K such that λf(uλ(xλ))→ −∞ and, up to a sub-sequence xλ → x ∈ K.

We take Br be a ball centered in x and such that B2r ⊂ Ω. We call u1,λ the

radial solution to (Pλf ) in B2r. We know by the proof of Theorem 1.1 that u1,λ is
radially increasing and that uλ < u1,λ in B2r. The monotonicity of f then gives

λf(uλ(x)) > λf(u1,λ(x))

in B2r and since xλ ∈ B2r for λ large enough then λf(u1,λ(xλ)) →
λ→−∞

−∞. By

the monotonicity of u1,λ we also have that

λf(u1,λ(x)) < λf(u1,λ(xλ))→ −∞

for every x ∈ B2r such that |x− x| > |xλ − x|. In particular we have that, denoting
by Ar = Br \B r

2
, λf(u1,λ(x))→ −∞ in Ar.

Last step is to show that this cannot happen. Let M > 0. There exists λ < 0
such that

λf(u1,λ(x)) < −M in Ar for every λ < λ.

We let zM be the solution to −∆zM = −M in Ar with Dirichlet boundary con-
ditions. Then by the weak and strong maximum principle we have u1,λ < zM in
Ar and zM = −Mφ where φ is the unique solution to (1.11) in Ar. Since M is
arbitrary this gives a contradiction with

t0 < u1,λ(x) < −Mφ(x)

which proves (2.2). In order to show (2.1) remark that the r.h.s. of the equation
satisfied by uλ is uniformly bounded in every compact set K of Ω. The standard
regularity theory then say that uλ−t0 is uniformly bounded in W 2,p(K) per every p,
and that, up to a sub-sequence uλ− t0 →

λ→−∞
0 in C1(K). By the weak formulation

of (Pλf ) we then get that λf(uλ) →
λ→−∞

0 a.e. in Ω.

3. Second order expansion of the solution uλ: The case t0 ∈ R. The aim of
this section is to improve estimate (1.3) in Theorem 1.2.

Proof of Theorem 1.2.
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(i) By the assumptions on α, γ(α) we have − α

γ(α)
→
α↘0

−∞. Therefore, after a

re-labeling, the ratio − α

γ(α)
will decrease monotonically and, for any λ� 0,

there will be some αλ such that λ = − αλ
γ(αλ)

.

By such a choice, the function vλ defined by

vλ =
uλ − t0
αλ

will solve 
∆vλ =

f(αλvλ + t0)

γ(αλ)
in Ω

vλ = − t0
αλ

on ∂Ω
(3.1)

and, by construction, satisfies vλ > 0. Next we show that vλ is bounded from
above.

Observe that it is not restrictive to assume that g0 ≥ 0 and non-decreasing

in such a way (1.6) still holds. In view of the assumption
f(αt+ t0)

γ(α)
≥ g0(t),

we can use Lemma 2.2 to get vλ ≤ v0,λ, with the latter solving{
∆v0,λ = g0(v0,λ) in Ω

v0,λ = − t0
αλ

on ∂Ω.

Let us introduce the large solution v0 which satisfies{
∆v0 = g0(v0) in Ω
v0(x) →

x→∂Ω
+∞. (3.2)

We have v0,λ ≤ v0 in Ω (and, actually v0,λ →
λ→−∞

v0) and the boundedness of

v0 gives that vλ is uniformly bounded from above in L∞loc(Ω). The boundedness
of v0 on compact sets of Ω follows comparing v0 with the large solution v0,ρ

to (3.2) in a small ball Bρ centered in x0 ∈ Ω and contained in Ω. By Lemma
2.2 0 < v0 < v0,ρ and v0,ρ is strictly increasing in the radial variable. This
implies that v0 is bounded in the ball B ρ

2
.

Since vλ is bounded in L∞loc(Ω) and ∆vλ is uniformly bounded for bounded
vλ, it will converge in C1

loc(Ω) to some function v, and in view of the limit
(1.7), v will solve ∆v = vp. Last step is to prove that v(x) →

x→∂Ω
+∞. Define

g̃(t) := sup
λ<0

f(αλt+ t0)

γ(αλ)
and because the latter converges for any t, we have

g̃(t) < +∞ for any t. Therefore one may define ṽλ as the solution to{
∆ṽλ = g̃ (ṽλ) in Ω

ṽλ = − t0
αλ

on ∂Ω
, (3.3)

and since g̃ is non-negative and non-decreasing, arguing as in Lemma 2.1 we

get vλ ≥ ṽλ, and since − t0
αλ

→
λ→−∞

+∞, we conclude that v(x) →
x→∂Ω

+∞,

namely v is indeed a large solution.
(ii) We first consider the case where Ω is any domain of R2 or a convex domain

of RN with N ≥ 3 and (1.8) holds. Let us take an absolute minimum point
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xλ ∈ Ω and set αλ := minuλ− t0 = uλ(xλ)− t0; due to Theorem 1.1, we have
αλ →

λ→−∞
0 and lim

λ→−∞
xλ = x0 ∈ Ω by Remark 1.3. Now, since we assume

γ(α)

α
6→
α↘0

0, then we set ελ :=

√
αλ

−λγ(αλ)
→

λ→−∞
0.

The rescaled function vλ defined by

vλ(x) =
uλ (ελx+ xλ)− t0

αλ

solves  ∆vλ =
f(αλvλ + t0)

γ(αλ)
in

Ω− xλ
ελ

vλ(x) ≥ vλ(0) = 1
.

where
Ω− xλ
ελ

→ RN by Remark 1.3.

We have that vλ satisfies

−∆vλ + c(x)vλ = 0 (3.4)

with c(x) =
f(αλvλ + t0)

γ(αλ)vλ
≤ Cvq−1

λ with 0 ≤ q ≤ 1 by (1.5).

Since vλ ≥ 1 we get that |c(x)| ≤ C. The Harnack inequality applied to
(3.4) in any ball BR then gives

sup
BR

vλ < CH inf
BR

vλ = CH

and so vλ is uniformly bounded on every compact set of RN . Using (1.7) we
can pass to the limit getting that vλ → v in C1

loc

(
RN
)

where v is a weak
solution to (1.9) concluding the proof under the assumption (1.8).
Let us prove the convergence of vλ in the case Ω = BR is a ball; in this case
vλ is radial and solves

v′′λ(r) +
N − 1

r
v′λ(r) =

f(αλvλ(r) + t0)

γ(αλ)
0 < r <

R

ελ
v′λ(0) = 0
vλ(0) = 1

. (3.5)

Because of the uniform convergence to g, there exist sequences Mn and λn
with Mn → +∞ and λn → −∞ such that

sup
0<t≤Mn

∣∣∣∣f(αλnt+ t0)

γ(αλn)
− g(t)

∣∣∣∣ →n→∞ 0. (3.6)

Therefore a comparison argument gives vλn(r) ≤ v0(r) as long as vλn(r) ≤
Mn, with v0 solving

v′′0 (r) +
N − 1

r
v′0(r) = g(v0(r)) + 1 r ∈ R

v′0(0) = 0
v0(0) = 1

.

We have that v0 is well-defined for any r because g does not satisfy the con-
dition (1.6) (see Theorem 4 in [19]). Now taking rn such that vλn(rn) = Mn,
one has v0(rn) ≥ Mn →

n→∞
+∞ and then rn →

n→∞
+∞. Therefore, for any

fixed r > 0 we have, for large n, r ≤ rn and vλn(r) ≤ v0(r) ≤ C. Since vλn is
bounded in L∞loc we can pass to the limit in (3.5) and vλn will also converge to
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the solution v to (1.9). Since from every sequence λn → −∞ we can extract

a subsequence λ̃n that satisfies (3.6) then vλ converges to the solution v.

Remark 3.1. In the case of a more general decay of the function f , as when (1.10)
holds instead of (1.7), we can argue as in the proof of Theorem 1.2 (i) choosing

λ = − αλ
f(βλ)

and replacing the function vλ with

vλ :=
uλ − βλ
αλ

.

As in the previous case one can find that vλ is bounded from above since vλ < v0.

To prove that vλ is bounded by below we define g̃(t) := sup
t0<β<0

f(α(β)t+ β)

f(β)
and

because the latter converges for any t, we have g̃(t) < +∞ for any t. Therefore one
may define ṽ as the solution to{

∆ṽ = g̃ (ṽ) in Ω
ṽ = 0 on ∂Ω

. (3.7)

Since g̃ is non-negative and non-decreasing, arguing as in Lemma 2.1 we have that
ṽ is uniquely defined and belongs to L∞(Ω); therefore, Lemma 2.2 yields vλ ≥ ṽ on
Ω, namely vλ is also uniformly bounded from below. The convergence of vλ to v
then follows as in the previous case. The only difference is that v is a large solution
to (1.5).

We end this section with two examples where Theorem 1.2 applies. In this case
we exhibit explicitly the solutions.

Example 3.2.

(i) f(t) =
(
(t+ 1)+

)N+2
N−2 , Ω = B1 ⊂ RN , N ≥ 3.

We are in the first alternative of Theorem 1.2, with t0 = −1, α(β) = β + 1,

g0(t) = g(t) = (t+ 1)
N+2
N−2 . In this case we have explicit solutions given by

uλ(x) =

(
δλ − 1

δλ − |x|2

)N−2
2

− 1

δλ :=
N2 − 2N − 2λ+

√
N(N − 2)(N(N − 2)− 4λ)

−2λ
.

and

uλ(x)→ −1 in L∞loc(B1).

Taking βλ := −1 + (−λ)
1
p−1 , αλ := (−λ)

1
p−1 , we have

vλ(x) :=
uλ + 1

(−λ)
1
p−1

−1 =

(
λ2(δλ − 1)

δλ − |x|2

)N−2
2

−1 →
λ→−∞

(
N(N − 2)

1− |x|2

)N−2
2

−1 =: v(x),

the latter being the unique large solution to ∆v = (v + 1)
N+2
N−2 in Ω.

(ii) f(t) = (t+ 1)+, Ω = (−1, 1) ⊂ R.
We are in the second alternative of Theorem 1.2, with γ(α) = α and g(t) =

t. In fact, explicit solutions are given by

uλ(x) =
cosh

(√
−λx

)
cosh

√
−λ

− 1
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and

uλ(x)→ −1 in L∞loc(−1, 1).

Taking αλ = uλ(0) + 1 =
1

cosh
√
−λ

, xλ = 0 and ελ =
1√
−λ

, we have

vλ(x) =
uλ

(
x√
−λ

)
+ 1

uλ(0) + 1
≡ coshx := v(x),

the latter being the solution to v′′(x) = v(x) x ∈ R
v(0) = 1
v′(0) = 0

.

In the case of the same nonlinearity on Ω = B1 ⊂ RN , N ≥ 2, the same
argument holds true with coshx being replaced with the solution to

v′′(r) +
N − 1

r
v′(r) = v(r)

v(0) = 1
v′(0) = 0.

(3.8)

Using the last statement in Corollary 1.5 we can compute the explicit solutions
to (Pλf ) for any λ, which are given by

uλ(r) =
1

v
(√
−λ
)v (√−λr)− 1

where v the unique radial solution to (3.8).

For N = 3, since it is known that v(r) =
sinh r

r
, we have that

uλ(r) =
1

sinh
√
−λ

sinh
(√
−λr

)
r

− 1.

A simple computation then gives

Jλ(uλ) =
1

2

ˆ
B1

|∇uλ|2 − λ(uλ + 1)2dx = (2π + o(1))
√
−λ

as λ→∞ if Jλ is as defined in (1.4).

4. Refined expansions of the solution uλ: The case t0 = −∞. In this section
we split the proof in two parts, according the limit of f(t) at −∞. Let us start with
the case where the limit at −∞ is positive.

4.1. The case lim
t→−∞

f(t) = c0 > 0. In this case second order estimates for the

solution uλ will be provided without additional assumptions on f .

Proof of Theorem 1.7. Denote by vλ =
uλ
λ

. It verifies,{
−∆vλ = f(uλ) in Ω

vλ = 0 on ∂Ω.
(4.1)

By the properties of f we get that

c0 ≤ f(uλ) ≤ f(0)
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and then by the standard regularity theory we get that there exists φ such that
vλ → φ in C1(Ω). Moreover, by Theorem 1.1 and lim

t→−∞
f(t) = c0 > 0 we get that

f(uλ)→ c0 in L∞loc(Ω).

Passing to the limit in (4.1) the claim follows.

Next we consider the other case.

4.2. The case lim
t→−∞

f(t) = 0. Here the argument are very similar to that in

Theorem 1.2. We will sketch the main points.

Proof of Theorem 1.8.

(i) Since
γ(β)

α(β)
→

β→−∞
0, without loss of generality we may assume the ratio to

decrease monotonically and, for λ � 0, we take βλ, αλ = α(βλ) such that

λ = −α(βλ)

γ(βλ)
.

We define vλ :=
uλ − βλ
α(βλ)

, which will solve
∆vλ =

f(αλvλ + βλ)

γ(βλ)
in Ω

vλ = −βλ
αλ

on ∂Ω
,

and we have the inequalities ṽ ≤ vλ ≤ v0 in Ω, with v0, ṽ respectively defined
by (3.2), (3.7). From this we deduce vλ is locally uniformly bounded in Ω and
converges to some solution v to ∆v = g(v); finally, we take ṽλ solving ∆ṽλ = g̃ (ṽλ) in Ω

ṽλ = −βλ
αλ

on ∂Ω
,

therefore from the inequality vλ ≥ ṽλ and
−βλ
αλ

→
λ→−∞

+∞ we deduce v|∂Ω =

+∞.

(ii) Since
β

α(β)
≥ A− 1, we must have α(β) →

β→−∞
+∞, hence again

γ(β)

α(β)
→

β→−∞
0; we may assume the latter limit to decrease monotonically and take βλ so

that −λ =
α(βλ)

γ(βλ)
. Therefore, vλ :=

uλ
α(βλ)

solves ∆vλ =
f(α(βλ)vλ)

γ(βλ)
in Ω

vλ = 0 on ∂Ω.

By assumption, we have vλ ≤ 0 and moreover
f(α(βλ)t)

γ(βλ)
→

λ→−∞
g(t − A)

locally uniformly in t, therefore one may define g̃(t) := sup
λ

f(α(βλ)t)

γ(βλ)
< +∞.

Since g̃(t) →
t→0

+∞ and it increases monotonically for any t < 0, there exists

a solution ṽ to {
∆ṽ = g̃ (ṽ) in Ω
ṽ = 0 on ∂Ω,
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which is uniformly bounded in Ω (see Theorem 1.1 in [10] for details).
Therefore, vλ ≥ ṽ hence it is uniformly bounded in C

(
Ω
)

and, in view of
the convergence of f , it will converge to the solution to (1.12).

As in the previous section we end with two examples where explicit solutions are
provided:

Example 4.1.

(i) f(t) = et on Ω = B1 ⊂ R2.
We are in the first alternative of Theorem 1.8, with α(β) = 1 and g(t) =

g0(t) = et. In fact, explicit solutions are given by

uλ(x) = log
8δλ

−λ (δλ − |x|2)
2 , δλ = 1 +

4 + 2
√

4− 2λ

−λ
= 1 +

2
√

2 + o(1)√
−λ

.

Taking βλ = log(−λ), αλ = 1, we have

vλ(x) = log
8δλ

(δλ − |x|2)
2 →
λ→−∞

log
8

(1− |x|2)
2 =: v(x),

the latter being the large solution to ∆v = ev on Ω. Moreover a straightfor-
ward computation gives that

Jλ(uλ) :=
1

2

ˆ
Ω

|∇uλ|2dx− λ
ˆ

Ω

(euλ − 1) dx =
(
2
√

2ωN + o(1)
)√
−λ (4.2)

where ωN is the area of the unit ball in RN .

(ii) f(t) =
1

(1− v)3
on Ω = (−1, 1) ⊂ R.

We are in the second alternative of Theorem 1.8, with p = 3, γ(α) = α3.
In fact, explicit solutions are given by

uλ(x) = 1−

√
1 +

−2λ

1 +
√

1− 4λ
(1− x2).

Taking αλ =
1

(−λ)
1
4

, we have

vλ(x) =
uλ(x)

(−λ)
1
4

→
λ→−∞

−
√

1− x2 =: v(x),

the latter being the solution to

 v′′ =
1

(−v)3
in (−1, 1)

v(1) = v(−1) = 0
.

Appendix A. Appendix. In this Appendix we show that the assumption on f
considered in Theorems 1.2, 1.8 are rather general. In fact, they occur any time
one has the following asymptotic homogeneity condition:

f(α(β)t+ β)

γ(β)
→
β↘t0

g(t) (A.1)

locally uniformly for − sup
β

β − t0
α(β)

< t < sup
β

−β
α(β)

, for some g 6≡ 0,

for some α(β), γ(β) > 0, with f satisfying (1.1) and (1.2) defined by t0.
On the other hand, condition (A.1) seems to be necessary in order to pass to the

limit in the equation (Pλf ), after taking a rescalement.
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Lemma A.1. Assume f satisfies (1.1), t0 is defined by (1.2) and there exist and
α(β), γ(β) > 0 such that (A.1). Then,

1. In (A.1), one can take without restriction γ(β) = f(β) and g satisfying g(0) =
1;

2. If t0 ∈ R, then (A.1) can hold only of α(β) →
β↗t0

0;

3. If t0 ∈ R and lim
β↘t0

β − t0
α(β)

= t ∈ R>0, then g(t) =
((
t+ t

)+)p
for some p > 0

and
f(α(β)t+ t0)

f(β)
→
β↘t0

tp locally uniformly in t > 0;

4. If t0 = +∞ and lim
b→−∞

−β
α(β)

= −t ∈ R<0, then g(t) =
1((

t− t
)+)p for some

p ≥ 0 and
f(α(β)t)

f(β)
→
β↘t0

1

(−t)p
locally uniformly in t < 0.

Proof. 1. Because of the convergence at t = 0, one has
f(β)

γ(β)
→
β↘t0

g(0), therefore

f(α(β)t+ β)

f(β)
→
β↘t0

g(t)

g(0)
.

2. If t0 ∈ R and α(β) ≥ δ0 > 0 on a sub-sequence, then we would get:

g(1) = lim
β↘t0

f(α(β) + β)

f(β)
≥ f(δ0 + β)

f(β)
.

Since f(δ0) > f(t0) = 0, then passing to the limit on the right-hand side we
would get +∞, hence a contradiction.

3. Since β = t0 + α(β)
(
t+ o(1)

)
, then for any t, ε > 0 we will have, for β

close enough to t0, α(β)
(
t+ t− ε

)
+ t0 ≤ α(β)t + β ≤ α(β)

(
t+ t+ ε

)
+ t0;

therefore, by the monotonicity of f ,

lim sup
β↘t0

f
(
α(β)

(
t+ t− ε

)
+ t0

)
f(β)

≤ g(t) ≤ lim inf
β↘t0

f(α(β)
(
t+ t+ ε

)
+ t0)

f(β)
.

As ε is arbitrary and g is continuous, we conclude that
f
(
α(β)

(
t+ t

)
+ t0

)
f(β)

→
β↘t0

g(t). Now, we take β̃ such that α
(
β̃
)

= 2α(β) and compute the previous limit

with 2t+ t in place of t:

g
(
2t+ t

)
= lim
β↘t0

f
(
α(β)

(
2t+ 2t

)
+ t0

)
f(β)

= lim
β↘t0

f
(
2α(β)

(
t+ t

)
+ t0

)
f(β)

= lim
β↘t0

f
(
α
(
β̃
) (
t+ t

)
+ t0

)
f
(
β̃
) f

(
β̃
)

f(β)
.

Since α
(
β̃
)

= 2α(β)→ 0, we have β̃ → t0, hence the first factor of the right-

hand side goes to g(t); therefore we get, for any t, we have g
(
2t+ t

)
= Lg(t),

with L := lim
f
(
β̃
)

f(β)
. Because of the uniform convergence, g is continu-

ous, and it is also non-negative, non-decreasing and satisfies the condition

g
(
2t+ t

)
= Lg(t): it must be of the kind g(t) = C

((
t+ t

)+)p
for some
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C > 0, p ≥ 0, and g(0) = 0 implies C = 1. The final limit follows by passing
from t+ t to t.

4. We argue similarly as before. Since β = α(β)
(
−t+ o(1)

)
, then

f
(
α(β)

(
t− t

)
+ t0

)
f(β)

→
β↘t0

g(t). We take β̃ such that α
(
β̃
)

= 2α(β), and in this case we have

β̃ → −∞ because the latter goes to +∞. Therefore, as before,

g
(
2t− t

)
= lim
β→−∞

f
(
2α(β)

(
t− t

))
f(β)

= lim
β↘t0

f
(
α
(
β̃
) (
t− t

))
f
(
β̃
) f

(
β̃
)

f(β)
= Lg(t),

which implies g is of a power type and the rest of the statement.
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