The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution – comparable to semiconductor detectors – and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined.

CUORE opens the door to tonne-scale cryogenics experiments / Adams, D. Q.; Alduino, C.; Alessandria, F.; Alfonso, K.; Andreotti, E.; Avignone, F. T.; Azzolini, O.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Barucci, M.; Beeman, J. W.; Bellini, F.; Benato, G.; Beretta, M.; Bersani, A.; Biare, D.; Biassoni, M.; Bragazzi, F.; Branca, A.; Brofferio, C.; Bryant, A.; Buccheri, A.; Bucci, C.; Bulfon, C.; Camacho, A.; Camilleri, J.; Caminata, A.; Campani, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Capodiferro, M.; Cappelli, L.; Cardani, L.; Cariello, M.; Carniti, P.; Carrettoni, M.; Casali, N.; Cassina, L.; Celi, E.; Cereseto, R.; Ceruti, G.; Chiarini, A.; Chiesa, D.; Chott, N.; Clemenza, M.; Conventi, D.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Crescentini, C.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; D'Aguanno, D.; Dafinei, I.; Datskov, V.; Davis, C. J.; Corso, F. D.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Dompe, V.; Di Vacri, M. L.; Di Paolo, L.; Drobizhev, A.; Ejzak, L.; Faccini, R.; Fang, D. Q.; Fantini, G.; Faverzani, M.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fu, S. H.; Fujikawa, B. K.; Gaigher, R.; Ghislandi, S.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Goett, J.; Gorla, P.; Gotti, C.; Guandalini, C.; Guerzoni, M.; Guetti, M.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E. V.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, R. G.; Huang, H. Z.; Iannone, M.; Ioannucci, L.; Johnston, J.; Kadel, R.; Keppel, G.; Kogler, L.; Kolomensky, Y. G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, R.; Ma, L.; Ma, Y. G.; Maiano, C.; Maino, M.; Marini, L.; Martinez, M.; Amaya, C. M.; Maruyama, R. H.; Mayer, D.; Mazza, R.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Nagorny, S. S.; Napolitano, T.; Nastasi, M.; Nikkel, J.; Nisi, S.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; Nutini, I.; O'Donnell, T.; Olcese, M.; Olivieri, E.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagan, S.; Pagliarone, C. E.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pedrotta, R.; Pelosi, A.; Perego, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Quitadamo, S.; Reindl, F.; Rimondi, F.; Risegari, L.; Rosenfeld, C.; Rossi, C.; Rusconi, C.; Sakai, M.; Sala, E.; Salvioni, C.; Sangiorgio, S.; Santone, D.; Schaeffer, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Sharma, V.; Singh, V.; Sisti, M.; Smith, A. R.; Speller, D.; Stivanello, F.; Surukuchi, P. T.; Taffarello, L.; Tatananni, L.; Tenconi, M.; Terranova, F.; Tessaro, M.; Tomei, C.; Ventura, G.; Vetter, K. J.; Vignati, M.; Wagaarachchi, S. L.; Wallig, J.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Wise, T.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.. - In: PROGRESS IN PARTICLE AND NUCLEAR PHYSICS. - ISSN 0146-6410. - (2021), p. 103902. [10.1016/j.ppnp.2021.103902]

CUORE opens the door to tonne-scale cryogenics experiments

Bellini F.;Casali N.;Cosmelli C.;Dafinei I.;Dompe V.;Faccini R.;Fantini G.;Vignati M.;
2021

Abstract

The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution – comparable to semiconductor detectors – and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined.
2021
Cryogenic temperatures; Dilution refrigerator; Low temperature calorimeter; Neutrinoless double beta decay; Rare event searches; Ton-scale detector
01 Pubblicazione su rivista::01a Articolo in rivista
CUORE opens the door to tonne-scale cryogenics experiments / Adams, D. Q.; Alduino, C.; Alessandria, F.; Alfonso, K.; Andreotti, E.; Avignone, F. T.; Azzolini, O.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Barucci, M.; Beeman, J. W.; Bellini, F.; Benato, G.; Beretta, M.; Bersani, A.; Biare, D.; Biassoni, M.; Bragazzi, F.; Branca, A.; Brofferio, C.; Bryant, A.; Buccheri, A.; Bucci, C.; Bulfon, C.; Camacho, A.; Camilleri, J.; Caminata, A.; Campani, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Capodiferro, M.; Cappelli, L.; Cardani, L.; Cariello, M.; Carniti, P.; Carrettoni, M.; Casali, N.; Cassina, L.; Celi, E.; Cereseto, R.; Ceruti, G.; Chiarini, A.; Chiesa, D.; Chott, N.; Clemenza, M.; Conventi, D.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Crescentini, C.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; D'Aguanno, D.; Dafinei, I.; Datskov, V.; Davis, C. J.; Corso, F. D.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Dompe, V.; Di Vacri, M. L.; Di Paolo, L.; Drobizhev, A.; Ejzak, L.; Faccini, R.; Fang, D. Q.; Fantini, G.; Faverzani, M.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fu, S. H.; Fujikawa, B. K.; Gaigher, R.; Ghislandi, S.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Goett, J.; Gorla, P.; Gotti, C.; Guandalini, C.; Guerzoni, M.; Guetti, M.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E. V.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, R. G.; Huang, H. Z.; Iannone, M.; Ioannucci, L.; Johnston, J.; Kadel, R.; Keppel, G.; Kogler, L.; Kolomensky, Y. G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, R.; Ma, L.; Ma, Y. G.; Maiano, C.; Maino, M.; Marini, L.; Martinez, M.; Amaya, C. M.; Maruyama, R. H.; Mayer, D.; Mazza, R.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Nagorny, S. S.; Napolitano, T.; Nastasi, M.; Nikkel, J.; Nisi, S.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; Nutini, I.; O'Donnell, T.; Olcese, M.; Olivieri, E.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagan, S.; Pagliarone, C. E.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pedrotta, R.; Pelosi, A.; Perego, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Quitadamo, S.; Reindl, F.; Rimondi, F.; Risegari, L.; Rosenfeld, C.; Rossi, C.; Rusconi, C.; Sakai, M.; Sala, E.; Salvioni, C.; Sangiorgio, S.; Santone, D.; Schaeffer, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Sharma, V.; Singh, V.; Sisti, M.; Smith, A. R.; Speller, D.; Stivanello, F.; Surukuchi, P. T.; Taffarello, L.; Tatananni, L.; Tenconi, M.; Terranova, F.; Tessaro, M.; Tomei, C.; Ventura, G.; Vetter, K. J.; Vignati, M.; Wagaarachchi, S. L.; Wallig, J.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Wise, T.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.. - In: PROGRESS IN PARTICLE AND NUCLEAR PHYSICS. - ISSN 0146-6410. - (2021), p. 103902. [10.1016/j.ppnp.2021.103902]
File allegati a questo prodotto
File Dimensione Formato  
Adams_CUORE opens the door_2021.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1571455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 14
social impact