We consider the symmetric exclusion process on the d-dimensional lattice with initial data invariant with respect to space shifts and ergodic. It is then known that as t diverges the distribution of the process at time t converges to a Bernoulli product measure. Assuming a summable decay of correlations of the initial data, we prove a quantitative version of this convergence by obtaining an explicit bound on the Ornstein d-distance. The proof is based on the analysis of a two species exclusion process with annihilation.

Quantitative ergodicity for the symmetric exclusion process with stationary initial data / Bertini, Lorenzo; Cancrini, Nicoletta; Posta, Gustavo. - In: ELECTRONIC COMMUNICATIONS IN PROBABILITY. - ISSN 1083-589X. - 26:none(2021). [10.1214/21-ECP421]

Quantitative ergodicity for the symmetric exclusion process with stationary initial data

Bertini, Lorenzo;Cancrini, Nicoletta;Posta, Gustavo
2021

Abstract

We consider the symmetric exclusion process on the d-dimensional lattice with initial data invariant with respect to space shifts and ergodic. It is then known that as t diverges the distribution of the process at time t converges to a Bernoulli product measure. Assuming a summable decay of correlations of the initial data, we prove a quantitative version of this convergence by obtaining an explicit bound on the Ornstein d-distance. The proof is based on the analysis of a two species exclusion process with annihilation.
2021
exclusion process; Ornstein distance; speed of convergence to equilibrium
01 Pubblicazione su rivista::01a Articolo in rivista
Quantitative ergodicity for the symmetric exclusion process with stationary initial data / Bertini, Lorenzo; Cancrini, Nicoletta; Posta, Gustavo. - In: ELECTRONIC COMMUNICATIONS IN PROBABILITY. - ISSN 1083-589X. - 26:none(2021). [10.1214/21-ECP421]
File allegati a questo prodotto
File Dimensione Formato  
Bertini_Quantitative-ergodicity_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 364.05 kB
Formato Adobe PDF
364.05 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1570428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact