We propose a capture-recapture model which exploits finite mixtures of logistic regressions to account for latent heterogeneity between groups of individuals, in order to better understand their different propensities to the capture as well as different behavioral patterns. The additional behavioural variation in capture probabilities among individuals within a group is expressed by a suitable time-dependent covariate, which summarises the past individual experience. A real data example and a simulation study illustrate how the proposed model performs.

Mixtures of regressions for size estimation of heterogeneous populations / Caruso, Gianmarco. - (2021), pp. 948-953. (Intervento presentato al convegno 50th edition of the Scientific Meeting of the Italian Statistical Society tenutosi a Pisa).

Mixtures of regressions for size estimation of heterogeneous populations

Gianmarco Caruso
2021

Abstract

We propose a capture-recapture model which exploits finite mixtures of logistic regressions to account for latent heterogeneity between groups of individuals, in order to better understand their different propensities to the capture as well as different behavioral patterns. The additional behavioural variation in capture probabilities among individuals within a group is expressed by a suitable time-dependent covariate, which summarises the past individual experience. A real data example and a simulation study illustrate how the proposed model performs.
2021
50th edition of the Scientific Meeting of the Italian Statistical Society
capture-recapture; population size estimation; finite mixtures of GLM; logit regression
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Mixtures of regressions for size estimation of heterogeneous populations / Caruso, Gianmarco. - (2021), pp. 948-953. (Intervento presentato al convegno 50th edition of the Scientific Meeting of the Italian Statistical Society tenutosi a Pisa).
File allegati a questo prodotto
File Dimensione Formato  
Caruso_Mixtures-of-regressions_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 123.3 kB
Formato Adobe PDF
123.3 kB Adobe PDF
Caruso_Mixtures-of-regressions_frontespizio_2021.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 115.56 kB
Formato Adobe PDF
115.56 kB Adobe PDF
Caruso_Mixtures-of-regressions_indice_2021.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 175.31 kB
Formato Adobe PDF
175.31 kB Adobe PDF
Caruso_Mixtures-of-regressions_quarta_2021.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.15 kB
Formato Adobe PDF
7.15 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1565751
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact