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popolazioni eterogenee

Gianmarco Caruso

Abstract We propose a capture-recapture model which exploits finite mixtures of
logistic regressions to account for latent heterogeneity between groups of individu-
als, in order to better understand their different propensities to the capture as well as
different behavioral patterns. The additional behavioural variation in capture proba-
bilities among individuals within a group is expressed by a suitable time-dependent
covariate, which summarises the past individual experience [3]. A real data example
and a simulation study illustrate how the proposed model performs.
Abstract Si propone un modello cattura-ricattura che sfrutta le misture finite di
regressioni logistiche per spiegare l’eterogeneità latente tra gruppi di individui,
al fine di comprendere meglio le loro differenti propensioni alla cattura. La vari-
abilità tra le probabilità di cattura di individui appartenenti ad uno stesso gruppo
viene espressa mediante un’adeguata covariata tempo-dipendente, che riassume
l’esperienza individuale passata [3]. Le potenzialità del modello proposto vengono
illustrate attraverso un esempio basato su dati reali e uno studio di simulazione.

Key words: capture-recapture, population size estimation, finite mixtures of GLM,
logit regression.

1 Introduction

Capture-recapture methods are widely employed in estimating the size of elusive
populations, whose units are subject to multiple captures across several occasions.

The main idea behind these techniques is to account for the number of unob-
served individuals by suitably modelling and exploiting the capture histories of the
observed units. One assumes that a closed population of unknown size N is sampled
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t times, with independence between individuals. For example, in the common case
of wildlife populations, animals that are captured for the first time are marked and
then released, so that they can be recognizable in future trapping occasions. Sup-
posing that M distinct individuals have been captured across t occasions, data are
collected on a M× t matrix, XXX = [xi j]: in particular, xi j = 1 if individual i is captured
on occasion j, otherwise xi j = 0. The i-th row of the matrix reports the capture his-
tory of the i-th individual. If there are N individuals in the population, then one can
add N−M rows of zeros to the matrix in order to include all the uncaptured indi-
viduals. In the following, one supposes to deal with closed populations, where there
are no births, no deaths and no migrations: this assumption seems to be meaningful
if the first and the last capture occasions are not too far in time and the range where
the population lives is well bounded.

2 The model

One considers a model which allows capture probabilities to vary among individ-
uals and across capture occasions. In addition, here one considers the presence of
unobserved heterogeneity between groups of individuals, in the sense that differ-
ent groups may exhibit different responses to captures. Finite mixtures of logistic
regressions are thus exploited to account for latent heterogeneity and to better un-
derstand different responses by heterogeneous groups of individuals. The additional
variation in capture probabilities among individuals within each group may be ex-
pressed by a suitable time-dependent covariate, which summarises the past individ-
ual experience [6, 3].

In the following, one considers a heterogeneous population of N individuals
which can be partitioned in G subpopulations (or groups), P1, . . . ,PG; namely, the
N individuals are supposed to come from G different subpopulations of unknown
proportions, π1, . . . ,πG, which are non-negative and add up to 1. The proportion πg
represents the a priori probability for an individual to belong to the g-th subpopu-
lation. The observed response xi j is therefore supposed to be generated by a finite
mixture of logistic regressions [11], where the mixture is assumed to be formed by
G components: hence, each mixture component identifies a different group.

Conditional to the group g, the response at occasion j for individual i is given by

xi j|p(g)i j ∼ Bern
(

xi j

∣∣∣p(g)i j

)
, (1)

where p(g)i j is the probability of being captured at occasion j for the i-th individual
belonging to the g-th cluster (i ∈Pg).
If πππ = (π1, . . . ,πG) is the vector of mixture weights, the unconditional probability
distribution of xi j is given by

h
(

xi j

∣∣∣πππ,{p(g)i j

}
g=1,...,G

)
=

G

∑
g=1

πg Bern
(

xi j

∣∣∣p(g)i j

)
, (2)
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for i = 1, . . . ,N and j = 1, . . . , t.
The capture probability p(g)i j depends on the group-specific regression parameters

αg and βg and on the value of the covariate zi j, according to a linear logistic model,
namely

p(g)i j =
exp(αg +βg zi j)

1+ exp(αg +βg zi j)
, (3)

∀i ∈Pg, g = 1, . . . ,G, j = 1, . . . , t [9, 2]. The heterogeneity between groups of in-
dividuals is given by differences in the group-specific regression parameters which
connect the covariate to the conditional expected value of the response: thus, same
levels of the covariate affect the probabilities of recapture of individuals in distinct
groups in different ways.

The time-varying covariate matrix ZZZ = [zi j] can be derived by exploiting the class
of memory-related summaries introduced by [3], so that

zi j = gλ (xi1, . . . ,xi j−1) =
j−1

∑
h=1

λ h−1

∑
j−1
k=1 λ k−1

xih , (4)

which takes values in [0,1]. Notice that zi j = 0 for all partial capture histories such
that (xi1, . . . ,xi j−1) = (0, . . . ,0) and, conventionally, for j = 1 (i.e. the first column
of the matrix Z is composed by all zeros).

As discussed by [3], zi j represents a weighted average of the past trapping expe-
rience for the individual i based on the first j−1 occasions. In particular, for λ = 1,
all past captures has the same impact on the summary, while, for λ > 1, most recent
captures have a greater impact on the summary. A positive value of βg accounts
for trap-happiness type of response to capture while a negative value accounts for
trap-shyness.

3 Unconditional maximum likelihood estimation

Following [10], if PPP=
[

p(g)i j

]
is the matrix of capture probabilities, the unconditional

likelihood for the model (2) is

L(N,PPP,πππ) =
N!

(N−M)!

N

∏
i=1

t

∏
j=1

G

∑
g=1

πg

[
p(g)i j

]xi j
[
1− p(g)i j

]1−xi j
. (5)

Once the number of mixture components G is fixed, inference on N is made through
iterative fitting of the mixture of logistic regressions for each N ∈ {M, . . . ,Nmax},
where Nmax is a high fixed upper bound for the population size [3]. The uncondi-
tional MLE (UMLE) for N is then the maximizer of the profile likelihood function

L̂(N) = L
(
N, P̂PP(N), π̂ππ(N)

)
= sup

πππ,PPP
L(N,PPP,πππ) , (6)
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where the matrix PPP is function of the regression parameters α1, . . . ,αG,β1, . . . ,βG.
Details about fitting of finite mixtures of GLMs are available in [7].

4 Illustration

A real data example and a simulation study are presented in the following, in order
to show how the proposed model performs.

4.1 Real data example

One considers a data set coming from a survey in which snowshoe hares (Lepus
americanus) were repeatedly captured during 6 consecutive days of trapping by
using animal-baited traps. At the end of the sixth day, the number of observed in-
dividual hares was 68. The considered dataset has already been analysed by some
authors (e.g. [1, 5]) and it is available in R package Rcapture.

The proposed model is fitted to hares’ capture histories for different numbers of
mixture components (G = 1,2,3) and for different values of λ (i.e. λ = 1,2). The
choice of λ = 1 yields a time-dependent covariate which represents the relative fre-
quency of the previous capture occurrences, while λ = 2 yields to a time-dependent
covariate which enjoys a connection with Markov models [3]. For fixed G and λ ,
several finite mixtures of logit regressions are fitted for a set of candidate values of
N, by using the functions in the R package flexmix: in particular, the function
initFlexmix allows to repeat the EM algorithm with different starting values
and chooses the solution which maximizes the likelihood.

The results displayed in Table 1 show that the models associated with the lowest
values of the AIC are the ones corresponding to G = 2 components. This is some-
what expected since other authors - like [5] - have already shown the presence of
groups of hares with different capture rates. The model with G = 2 and λ = 1 yields
α̂1 = −1.45, β̂1 = 4.12, α̂2 = −0.75 (all of them associated to a p-value smaller
than 7× 10−3) and β̂2 = −0.75, which appears not to be significantly different by
0 (p = 0.28). These results suggest that initial trap-happiness characterises the first
group of hares, while for the second group no sufficient evidence of behavioural
effects is provided. This indicates that a more parsimonious two-components mix-
ture model with only one group manifesting behavioural effects could be further
elaborated.

The 90% profile likelihood confidence intervals are built following [4], who high-
lights their advantages in a mark-recapture context. Notice that as the number of
components increases, the confidence intervals tend to get wider, due to the flatter
shape of the corresponding profile log-likelihood. This feature is probably due to the
fact that the information provided by the data is insufficient to establish any upper
bound on the number of animals, above all when a complex model is fitted on data
coming from a relative low number of occasions [8].
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Table 1: Unconditional maximum likelihood estimates for the population size, 90% confidence
intervals and AIC index associated with alternative fitted models for different values of G and λ .

G λ N̂ (Nlow, Nupp) AIC

1 1 80 (73, 94) 81.53
2 78 (72, 89) 83.20

2 1 79 (71, 197) 75.72
2 75 (70, 111) 76.69

3 1 80 (72, 178) 81.39
2 76 (70, 146) 82.09

4.2 Simulation study

Motivated by the results of the previous example, a simulation study is carried out in
order to assess the ability of the proposed model in estimating the population size.
Capture histories are generated for two subpopulations of individuals (thus G = 2)
and collected binary entries matrix with N = 100 rows and t columns, where N−M
rows have zero entries. The probability that an individual belongs to the first group is
π1 = 0.33 and the regression parameters are set to α1 =−3, β1 =−2, α2 =−3 and
β2 = 4. Since the probability of first capture is completely determined by the value
of the intercept α , one is implicitly assuming that the first capture probability is the
same for all the individuals of the population, regardless of the group they belong
to. The replication of 20 simulated datasets has been carried out, for different time-
dependent covariate specifications (λ = 1,2) and for different number of occasions
(t = 15,30). For each data set, the true data-generating process is fitted to the data.
From the results reported in 2, it appears that the the empirical confidence intervals
coverage is consistent with its theoretical counterpart. The population size seems to
be slightly overestimated, though the bias decreases with the number of occasions,
as expected.

Table 2: Simulation study with 20 simulated data sets for several model specifications, determined
by different numbers of occasions (t = 15,30) and different values of λ . The table contains: av-
erage and median of the UML estimates of N (respectively, Nave and Nmed), root mean square
error (rmse), percentage of 95% confidence intervals coverage (CI coverage), average length of the
confidence intervals (lCI).

t λ Nave Nmed lCI CI coverage rmse

15 1 110.0 88.0 122.6 0.95 49.0
2 113.9 120.0 71.5 0.95 31.7

30 1 104.7 104.5 56.2 0.90 14.5
2 108.9 100.5 46.4 0.95 22.7
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5 Final remarks and further developments

The proposed model appears a flexible extension of the one proposed in [3], allow-
ing for the presence of latent heterogeneity between groups of individuals by means
of group-specific regression parameters. Some possible further developments should
involve a more in-depth study of the groups composition, along with a more flexible
and parsimonious model which accounts for the possibility that some groups are not
subject to behavioural effects, as suggested from the real data example. Moreover,
a more extensive simulation study should be carried out, mainly in order to assess
whether a model misspecification could be correctly identified when the popula-
tion is composed by heterogeneous groups. Still through simulation studies, it can
be interesting to investigate whether the better performances (in terms of AIC) of
the proposed model on real data are indeed reliable; or whether, on the other hand,
the AIC may tend to favour one model against the other. A Bayesian alternative
might be proposed too, in order to overcome possible annoying problems due to the
flatness of the profile likelihood when G is large.
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