We propose a framework for designing observers for noisy nonlinear systems with global convergence properties and performing robustness and noise sensitivity. This framework comes out from the combination of a state norm estimator with a chain of filters, adaptively tuned by the state norm estimator. The state estimate is sequentially processed through the chain of filters. Each filter contributes to improve by a certain amount the estimation error performances of the previous filter in terms of noise sensitivity and this amount is quantitatively evaluated using a comparison criterion which considers the ratio of the asymptotic error norm bounds of two consecutive filters in the chain. A recursive algorithm is given for implementing the chain of filters and guaranteeing a sequential error performance optimization process. Simulations show the effectiveness of these chains of filters

Performance optimization via sequential processing for nonlinear state estimation of noisy systems / Battilotti, Stefano. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 67:6(2022), pp. 2957-2972. [10.1109/TAC.2021.3095461]

Performance optimization via sequential processing for nonlinear state estimation of noisy systems

Stefano Battilotti
2022

Abstract

We propose a framework for designing observers for noisy nonlinear systems with global convergence properties and performing robustness and noise sensitivity. This framework comes out from the combination of a state norm estimator with a chain of filters, adaptively tuned by the state norm estimator. The state estimate is sequentially processed through the chain of filters. Each filter contributes to improve by a certain amount the estimation error performances of the previous filter in terms of noise sensitivity and this amount is quantitatively evaluated using a comparison criterion which considers the ratio of the asymptotic error norm bounds of two consecutive filters in the chain. A recursive algorithm is given for implementing the chain of filters and guaranteeing a sequential error performance optimization process. Simulations show the effectiveness of these chains of filters
2022
noisy systems; nonlinear dynamics; observers;
01 Pubblicazione su rivista::01a Articolo in rivista
Performance optimization via sequential processing for nonlinear state estimation of noisy systems / Battilotti, Stefano. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 67:6(2022), pp. 2957-2972. [10.1109/TAC.2021.3095461]
File allegati a questo prodotto
File Dimensione Formato  
Battilotti_postprint_Performance_2021.pdf

accesso aperto

Note: 10.1109/TAC.2021.3095461
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 772.97 kB
Formato Adobe PDF
772.97 kB Adobe PDF
Battilotti_Performance_2021.pdf

solo gestori archivio

Note: Early Access
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 878.97 kB
Formato Adobe PDF
878.97 kB Adobe PDF   Contatta l'autore
Battilotti_Performance_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 816.85 kB
Formato Adobe PDF
816.85 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1560909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact