We propose a framework for designing observers for noisy nonlinear systems with global convergence properties and performing robustness and noise sensitivity. This framework comes out from the combination of a state norm estimator with a chain of filters, adaptively tuned by the state norm estimator. The state estimate is sequentially processed through the chain of filters. Each filter contributes to improve by a certain amount the estimation error performances of the previous filter in terms of noise sensitivity and this amount is quantitatively evaluated using a comparison criterion which considers the ratio of the asymptotic error norm bounds of two consecutive filters in the chain. A recursive algorithm is given for implementing the chain of filters and guaranteeing a sequential error performance optimization process. Simulations show the effectiveness of these chains of filters
Performance optimization via sequential processing for nonlinear state estimation of noisy systems / Battilotti, Stefano. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 67:6(2022), pp. 2957-2972. [10.1109/TAC.2021.3095461]
Performance optimization via sequential processing for nonlinear state estimation of noisy systems
Stefano Battilotti
2022
Abstract
We propose a framework for designing observers for noisy nonlinear systems with global convergence properties and performing robustness and noise sensitivity. This framework comes out from the combination of a state norm estimator with a chain of filters, adaptively tuned by the state norm estimator. The state estimate is sequentially processed through the chain of filters. Each filter contributes to improve by a certain amount the estimation error performances of the previous filter in terms of noise sensitivity and this amount is quantitatively evaluated using a comparison criterion which considers the ratio of the asymptotic error norm bounds of two consecutive filters in the chain. A recursive algorithm is given for implementing the chain of filters and guaranteeing a sequential error performance optimization process. Simulations show the effectiveness of these chains of filtersFile | Dimensione | Formato | |
---|---|---|---|
Battilotti_postprint_Performance_2021.pdf
accesso aperto
Note: 10.1109/TAC.2021.3095461
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
772.97 kB
Formato
Adobe PDF
|
772.97 kB | Adobe PDF | |
Battilotti_Performance_2021.pdf
solo gestori archivio
Note: Early Access
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
878.97 kB
Formato
Adobe PDF
|
878.97 kB | Adobe PDF | Contatta l'autore |
Battilotti_Performance_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
816.85 kB
Formato
Adobe PDF
|
816.85 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.