Performance optimization via sequential processing
for nonlinear state estimation of noisy systems

Stefano Battilotti

Abstract—We propose a framework for designing observers
for noisy nonlinear systems with global convergence properties
and performing robustness and noise sensitivity. This framework
comes out from the combination of a state norm estimator with
a chain of filters, adaptively tuned by the state norm estimator.
The state estimate is sequentially processed through the chain of
filters. Each filter contributes to improve by a certain amount
the estimation error performances of the previous filter in terms
of noise sensitivity and this amount is quantitatively evaluated
using a comparison criterion which considers the ratio of the
asymptotic error norm bounds of two consecutive filters in
the chain. A recursive algorithm is given for implementing the
chain of filters and guaranteeing a sequential error performance
optimization process. Simulations show the effectiveness of these
chains of filters.

Index Terms—Noisy systems, nonlinear dynamics, observers.

I. INTRODUCTION

ESIGNING state observers with (semi)global conver-
D gence properties, enhanced speed performances, robust-
ness and low sensitivity to (measurement) noise is a chal-
lenging task. Intrinsic limitations to accomplishing this task
have been pointed out for linear systems in [23]. From the
past years we have a vast literature on observer design for
nonlinear systems (we will not reference this here) focusing
on single such performances, almost exclusively convergence
domain or speed performances. In many of these contributions,
robustness to model uncertainties and sensitivity to noise
are not considered at all or considered only a posteriori,
evaluating the possible effects on the error performances.
An important conclusion of these works is that for high-
gain observers (HGO) it is not possible to achieve large
convergence domains (i.e. initial state conditions for which
estimation error convergence is guaranteed) without increasing
the sensitivity to measurement noise. LMI techniques have
been used in [25], [27] and [26] specifically for LPV system.
For feedback linearizable systems, large convergence domains
and model uncertainties are taken into account in [12], while
also additive measurement noise is considered in [19]. In
the last contribution, the observer gain switches among two
values, one for large state magnitudes (semiglobal observer)
and the other for small values (local observer). Also recently
in [24] sensitivity of a nonlinear observer versus measurement
disturbances has been characterized with the notion of quasi-
Disturbance-to-Error Stability (qDES). However, the issue of
noise sensitivity reduction is not addressed in the above works.
For the same class of nonlinear systems considered in [12] and
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[19], very recently [8] and [9] consider a trade-off between
convergence speed and the bound on the estimation error,
using a bank of HGO observers. For semiglobal observers the
effect of measurement disturbances on the ultimate error bound
strongly depends on how large the convergence domain is, in
other words the observers are designed using the knowledge
of the invariant compact set containg the system’s trajectories.
A consequence is that noise sensitivity can be reduced only at
the price of a significant reduction of the convergence domain.
Moreover, the observer design depends on the a priori given
convergence domain: changes in convergence domain require
re-designing the observer parameters. In [21] and in [4] the
issue of how reducing the sensitivity of a class of observers
with global convergence properties to additive measurement
noise is discussed for some classes of nonlinear systems with
bounded solutions (with unknown bound). However, the error
bounds depend on the state magnitude so that for large state
initial conditions the state estimate has large excursions and
significant deviations from the actual value of the state. More
recently, the work [3] unites local observers, which have good
error performances versus measurement noise like extended
Kalman filters (EKF’s) for instance, with semiglobal HGO’s,
which have bad error performances. Systems with bounded
solutions are considered and the resulting observer has a
switching structure which guarantees the compromise between
bad (semiglobal) and good (local) error performances but its
correct functioning depends on some local and semiglobal
norm estimators together with the exact knowledge of the
domains of attraction of the local and semiglobal observers.
Moreover, as noticed by the authors, the results may require
small disturbances.

In this paper we consider a quite general class of nonlinear
systems with model uncertainties (or state noise) and mea-
surement noise and design state observers with the primary
objective to optimize the error performances in terms of
robustness and noise sensitivity. Important contributions of our
work over the existing literature are: 1) global convergence
domains (in contrast with a priori given and bounded domains
as in [19], [8] and [3]), 2) no specific system’s structure (in
contrast with feedback linearizable systems as in [19], [8]
and [9]) taking into account state and measurement noise at
the same time and 3) new results on global observers in the
absence of noise (in contrast with more restrictive conditions
as in [17] and [1]). We do not require boundedness of system’s
solutions: this has the beneficial effect of obtaining asymptotic
error bounds and conditions for improving noise sensitivity
not dependent on the convergence domain so that we may
improve noise sensitivity without shrinking the estimation
error convergence domain. Since good error performances are,



as well known, locally achieved for nonlinear systems by
EKF’s, we design our observers with a structure the closest
as possible to an EKF. In doing this, we follow previous
works on Kalman-type filters as for instance [5], [6], [7],
[10] and [20], in which globally Lipschitz or linear up to
output injection systems (with inputs and no disturbances) are
mainly considered. In all these works, the observer gain matrix
is updated by the on-line solution of a (differential) Riccati
equation. For achieving good results also for systems which
are not globally Lipschitz or linear up to output injection the
design of the (differential) Riccati equation takes into account
also the magnitude of the state through a state norm estimator.
The observer we propose in this paper consists of the following
parts: I) a state norm estimator (which we call .4 -filter) and
1) a chain of filters (which we refer to as % -filters) driven by
the .4 -filter. Each ¢ -filter updates its gain matrix using the
output of the .4 -filter and the solution of a Riccati inequality,
similarly to what happens in a steady state Kalman filter.
The chain of these filters implements de facto a sequential
optimization process of the error performances in terms of
noise and model uncertainties sensitivity.

II. NOTATION

(D(vector spaces). R™ (resp. R™*®) is the set of n-dimensional
real column vectors (resp. n x s matrices). R> (resp. R.)
denotes the set of non-negative real numbers (resp. positive
real numbers). For any vector v € R™ we denote by v; the -
th element of v. Moreover, col(vy,...,v,) is the vector with
entries vy, ..., v, and diag(vy,...,v,) is the diagonal matrix
with diagonal entries vq,...,v,. C is the set of complex
numbers and o(S) < C denotes the spectrum of S € R™**™,
with A5, = minye,(s) R(A) and A3, = max e, (s) R(N),
where R(\) stands for the real part of A € C. PZ (resp.
PL) is the set of symmetric positive definite (resp. semi-
definite) matrices .S € R™*"™. Given two symmetric matrices
A, B e R™"™ we mean by B < A that A — B e PL.
(I)(weighted and induced norms). |v| denotes the absolute
value of v € R, |v| := vwvTv denotes the euclidean
norm of v € R™ and the induced norm of S € R™*"
is |S] = supegnm oy(|Sz[/|z]). For each F' € PI' and
G € P2, the F-weighted norm of v € R™ is |[v|r := VT Fv
and the induced (F,G)-weighted norm of S € R™*"™ is
1Sl(rey = supgerm o} (|Szl|r/|2[c). With some abuse
of notation, for F' € PZ', G € PZ and v > 0 we write
ISl (7,c) <~ by meaning that |Sz|r < v[z|c for all z € R™
or, equivalently, STFS < v%G.

(II)(monotone functions). Let Ky (resp. ) be the set of
continuous non-decreasing (resp. strictly increasing) functions
f:Rs — Ry (resp. such that f(0) = 0 and lim,_, ;o f(s) =
+0o0). Let KL be the set of functions f € Ky continuously

)
differentiable on R~ and such that 0 < inf,g 9 (s) (for
f(s)ds

instance K, algebraic functions are all in 1)) Let £, be the
set of continuous strictly decreasing functions f : R. — R
such that lims_, o, f(s) = 0. Let L1, be the set of functions
f € Lo continuously differentiable on R. and such that

SUP4~( fzg)jl‘i(s) < 0 (for instance L, algebraic functions
are all in £1).

(IV)(saturation functions). A saturation function sat. : R —
R™ with saturation level ¢ > 0 is a function sat.(x) :=
(sate(x1),...,sate(x,))", € R™, such that for each i =
1,...,n and z; € R:

N Z; T; € [_Cv C]>
Satc(xl) - { Sign(gji)c otherwise.

(D

Although this function is not continuously differentiable at
all points, it is possible to smooth it out. In this paper we
will consider at least once continuously differentiable such
saturation functions with no further comment.

ITII. CLASS OF SYSTEMS
Consider a nonlinear system of the general form
f(z,d) = Az + F (z,d),
h(z,d) := Cz + 7 (x,d) (2)

r =
Y =

with state z € R™, output y € RP, .% and J# continuously
differentiable functions with %2 (0,0) = 0 and %% (0,0) = 0,
and disturbances (or exogenous inputs) d € D, the space of
(piecewise) continuous bounded functions d : Ry, — D < R?®
with sup norm ||d||ox := sup,g_ [d(t)| uniformly bounded
by a known dy, > 0. We will denote z(t),y(t) and d(t) by
X:,y, and, respectively, d;, with initial state z(0) = zo at
t = 0. More precisely, x;(z, s;d) (resp. y,(x, s;d)) will denote
the value at time ¢ of the unique solution (resp. output) of
system (2) with input d and initialized at x at time s, i.e.
Xs(z, s;d) = x. Our problem is to design state estimators
for (2) with good performances in terms of noise sensitivity.
Throughout the paper, we assume forward completeness of
2).

(FWC). (Forward completeness) The solutions x; of (2) are
defined for all (xg,d,t) e R" x D x Rs.

Completeness is a severe restriction. However, as well-
known, a necessary condition for the existence of an observer
for (2) is the forward unboundedness observability property
(FUOQO). Any system (2) satisfying the (FUO) property also
satisfies (FWC) after a suitable change of the time scale.

IV. AN OVERVIEW OF THE ESTIMATION FRAMEWORK

In this introductory section we describe the estimation
framework and how it works, leaving the technicalities to
be discussed in the next sections. The first element in our
framework is a state norm estimator (which, in what follows,
we refer to as .4 -filter), in the sense that its output is some
variable V; from which an upper bound of the state norm ||x;|
is determined as follows: for some 3 € Kl and 4 > 1 we
have

Ixe]| < B~ (Ve +7) 3)

for all (zg,d,t) € R™ x D X [tg, +90) (to depending on the
initial state xg). The .4 -filter has the following parametric
structure:

A~

Vi = =XV +a(lyl) +0(dw), Vo >0, 4)



with A € (0,1). The functions §, € Ky and A € (0,1) are
obtained from a differential inequality of the form

0(xe, 1) < —Av(xe,t) + allly, ) +o(lde])) ()

which must hold along the solutions of (2) for some contin-
uously differentiable function v : R™ x Ry — R and for all
(zo,d, t) € R™ x D x Rx. On the other hand, the function
B € KL, which is instrumental in (3) to determine an upper
bound for the state norm |x;||, is related to v(z,t) as follows:
there exists a time ¢ > 0 for which v(x,t) > 8(||z]) for all
(z,t) € R™ x [t,+00). In section V we will discuss existence
conditions (Proposition 5.1) and constructive methodologies
(Propositions 5.2 and 5.3) for the functions v, 8, § and a with
the above mentioned properties.

The second element in our framework is a set of filters
(which, in what follows, we refer to as J# -filters) adaptively
tuned by the .4 -filter and sequentially connected to each other
so that to form a dynamical chain. Each ¢ (*)filter, k > 1,
of the chain is specifically designed for estimating the state of

~(F—1 ~(0
(2) as follows. The variable XE (we are setting Xi ) :=0)

keeps track of the state estimate of (2) up to the .# (*~1)-
—1 A (k=1)
filter. The .# (*~1_filter feeds forward X( ) and X,

to the .# (®)-filter (the next filter in the dynamlcal chain),

a(k—
which estimates the error egk) =x; — X
the equations:

Y described by

S(k—1)

eik) = Ae (k)+\fl(k) F (e, (k) +X; ,dy),
k—
wh — ce® 4 re® £ XY 4y, ©)
~ ~(k— s (k=1)
with \I/Ek) = AXE v X, and output error wgk) =
A (k— ~
- CXE 1). Consistently with the fact that XEO) =0, the

t
first filter of the chain, i.e. the .# ()

-filter, is designed on (2)
(1
and computes a first estimate Xi )

of Xt.

The .7 (®)-filter estimates eik) with the variable EE’“) and
NG N o(k—1
updates the state estimate of (2) as XE ) = egk) +X§ ). For

the .# (*)filter we propose the following parametric structure:
VAW 19 4 7 AU“)(A(’C) Y A E, +9)
+«%/ @ +3)(w" = W),

— e + ™ @ A(k Y AP 7), )

with v, the output of the A/-filter, ¥ > 1 and
(k) _ R
A H)(2) = W(Q)i(z)%k) "OCTREP + X)), @)
(v (2))?

PHE) (2) = AT ()P A(2),

ﬁ@(a)?,/\);:y(/\—lsate(k)(Aa)+A satA(m(AX) )
doo

AW @, X, )= (A‘lsate(k> (M) + A \sat o (AX), o) :
dop dop

where the admissible choices for the design parameters

eg;),Xlgg > 0 (depending only on dg), ok e PL and

functions R : R. — P2, A® . R — R () e k)

and fy( ) e Ko are discussed in section VI-B relying on a
certain number of assumptions on A, C, % and 7. Estimation

error convergence is discussed in Theorem 6.1 (for a .7 (F)-
filter designed on (6) with k& > 2) and, respectively, in
Theorem 6.2 (for the .# (V-filter, which is designed on (2)).
A first result ((58), Theorem 6.1) states that, under the given
assumptions on A, C, F and ¢, the norm of the estimation
(k1) . _ e

error €; =x; — X
form:

satisfies an asymptotic bound of the

AE) (5, + A)ektD
i sup JA B+ el V)

= €))
R )

where cg:rl) > 0 (depending only on dy) and ,Y((ik') € Ll are

are directly obtained from the given assumptions. From (9) it
also follows that
Jei" |

(k+1)

limsup ——=——== < ¢,

e T (10)

where w®) € K is defined as

A(R)
S +7 /\/Amzn

The bound (10) provides a rough measure of how poor the
~ (k
asymptotic performances of the state estimate X, ~ are in terms

of noise sensitivity and sensitivity to initial state conditions.
A second important result ((59), Theorem 6.1) states that if,
in addition,

w(k)( ) (k)

F)A®) (s+7)
— b )

supw® (s) := %(,]f) < 40 (11)
s=1
then
hmsup He(kH)H <7 ® (kH) (12)
+

The bound (12) corresponds to a more desirable situation in
terms of noise sensitivity, indeed the bound on the estimation
error norm is not sensitive to initial state conditions and
depends only on do,. Also, this bound may be optimized by
properly tuning the filter’s design parameters. However, in
contrast with our assumptions on A, C, .% and #, condition
(11) is somewhat restrictive: it holds, for instance, when .
and .77 are globally Lipschitz but also in many other cases
(example 6.1). We observed that there are specific structures of
Z and 2 in which (11) may fail (see a detailed discussion in
remark 6.9 with slight modifications of example 6.1). In view
of this, the main purpose of the chain of K-filters is to improve
sequentially the error performances of the K(D-filter when
(11) fails for k¥ = 1. By improving the error performances
we mean guaranteeing tighter asymptotic bounds (10) on the
estimation error norm. For sequentially optimizing the error
performances of the C(1)-filter we proceed as follows: first,
for each K(*)-filter we design A(®) so as to slow down the
growth rate of w®) and tend (as the number k of K-filters
increases) to the “limit” condition (11). At the same time, for
guaranteeing an actual improvement of the asymptotic bound
(10) (as k increases), we compare the error performances of

ok . ok—1)

X, ~ and, respectively, X, as follows:
w® (v c(k+1)
lim sup 7( ) dor A r(®) (13)
t—+00 w(k 1)( )C((j )



i.e. by comparing the corresponding asymptotic error bounds
(10). As a consequence of (13), the state estimation error

o (k
bound of X,E ) is asymptotically reduced by a factor r(*) if
~(k—1 ~(k
compared with that of Xi ) and if r(*) < 1 we say that X,E )

~ (k-1
outperforms XE ) by (1 —r*)) x 100(%) (section VII-A,
definition 7.1). In this sense we mean that the noise sensitivity

of )A(E ) is improving by (1—r*))x100(%) in comparison with
)A(ftkil). In our framework, the condition 7(*) < 1 is achieved
by properly designing egzj, )A(U(li) and TI(®) in (8).

In section VII-C, under the same assumptions on (2) as of
Theorem 6.2 and recalled at the beginning of section VII-B for
sake of clarity, we give the details of a recursive algorithm for
designing the chain of JZ -filters in such a way that each 7 -
filter outperforms its predecessor in the chain. The algorithm
starts at step I with the design of the N -filter and the 7 (1)-

filter on the system (2) (according to Theorem 6.2) with the

~(1
initial state estimate Xi ); in the following recursive steps II-11I
a .2 (F)_filter (k = 2) is designed on the system (6) (according

o (k—1
to Theorem 6.1) using XE ) and updating the state estimate

as )Aiik). Assumptions of Theorem 6.1 on (6) are guaranteed by
design of the previous .# (*~1)filter in the chain and the initial
assumptions on (2). Finally, at step IV structural conditions on
the design parameters of the .7 (*)-filter are given for 7(¥) < 1.
The algorithm is iterated for the next . (*+1)_filter by jumping
back to step II.

V. DESIGN OF STATE NORM ESTIMATORS

The first issue we discuss in detail is the design of a state
norm estimator (i.e. a .4 -filter) for (2). To this aim, we
formulate the following assumption:

(SNE). (State norm estimators) There exist a continuously
differentiable functionv : R™ x Ry — R, A > 0 and §, a € Ky
such that

ov ov
(PDD) : o (x,0)f (v, d)) + o (x.1)

< —do(z,t) + af|[h(z, di)]) + 6(di ),

(14)

forall (z,d,t) € R" x D x R. In addition, there exist 3 € K1,
andt > 0 such that for all (z,t) € R" x [t, +00)

(ULB) : v(z,t) > B(|z]). (15)

We also say that the tuple (v, )\, «,d,03,t) satisfies a
(SNE) condition and we use separate terminologies as well:
(v, A\, v, 8) satisfies a (PDI) condition or (v, /3,t) satisfies a
(ULB) condition. Moreover, we directly assume A € (0,1]
(otherwise, we consider min{\, 1} in place of A in (PDI)).

The function v(zx,t) satisfying (SNE) is reminiscent of
exponential IOSS-Lyapunov function previously introduced in
[147]: in contrast, our function v(z, t) is time-varying and lower
bounded by a Kl -class function of |z|| after some finite time
t. As in [14], the interest in (14), (15) is motivated by the
following result.

Proposition 5.1: Assume (v, A\, a, §, 3,1) satisfies a (SNE)
condition. For each (xo,d) € R™ x D and 7 > 0 there exists
to = t such that fort > ty:

% (20, 0; d) | < B (Ve(D0, 05 ) +7), (16)
where v, (g, 0; y) is the output of the filter
Vi(00,0:%) = —AWi(%0,0:¥) + o]y, (w0, 0; d)])
+ 0(d), Do > 0. (17)

Proof. On account of (14) for all (zg,d,t) € R™ x D x R

o0, 0500, 1) < —No(xu(0,0:). 1)
sl (0,0:),4)1) + 5(14,]).

By subtracting (17) from the latter and using Gronwall’s
inequality, we get for all (zg,d,t) € R™ x D x R

v(x¢(20,0;d), ) < Vi (B0, 0;y) + e |v(o, 0) — Tol. (18)

Inequality (16) follows directly from (15). <

Proposition 5.1 proves that a (SNE) condition guarantees the
existence of a .4 -filter, defined in (17), and precisely states
in which sense, specified by (16), a state norm estimate has
to be meant. In this sense we say that a tuple (v, \, o, 6, 3, %)
satisfies a (SNE) condition with associated N -filter (17) and
state norm estimate (16).

We list below some useful properties:

Property (P1). Let (v, A, o, 8, 3, ) satisfies a (SNE) condition.
Any tuple (v + b, A\, 0, + Ab, 3, 1), with b > 0, still satisfies a
(SNE) condition (this trivially follows from the definition).
Property (P2). Let (v, A, o, §) satisfies a (PDI) condition and
v(z,t) = B(|z|) — b for some b,t > 0, 3 € K., and for all
(z,t) € R™ x [t,+0). The tuple (v + b, \,a,8 + b, 3,1)
satisfies a (SNE) condition (this follows from Property (P1)).
Property (P3). Given pu,v > 0, it is possible to re-design
a tuple (v,/\,g,é, Q,Q satisfying a (SNE) condition into a
new tuple (U, \, @, 0, 3,t), with B(s) := vs", still satisfying
a (SNE) condition (the proof is found in section A of the
appendix).

Remark 5.1: The presence of ¢ > 0 in a tuple
(v, A\, o, 8, B, 1) satisfying a (SNE) condition is a consequence
of the fact that v(x,t) is time-varying. As it will be shown in
section V-B (see assumption (BWR)), ¢ may be very small but
nonzero and it can be interpreted as a time lapse needed for
reconstructing the initial state condition x from (backward)
output trajectories. For having ¢ = 0 we have to look for
stationary (i.e. time-invariant) solutions v(z) of the (PDI)
condition (under more restrictive conditions). <

Example 5.1: (Linear systems). Consider a linear system

f(z,d) := Az + Bd, y = h(z,d) := Cx + Pd
with detectable (C, A). Let L € R™*? be such that o(A —
LC) < C~ and Q,II € P2 be such that II(A — LC) + (A —
LC)'I = —Q. If v(z) := x "Iz we have for any ag, dy € R~
and for all (z,d,t) e R" x D x Ry

Tz =

ov Q
5, @ f(,di) < *iﬁ“" v(z) + a(|h(z,dy)]) + 6(|de])

max

+a:TH(iLLT + X B-oLP)(B- LP)T>Hx (19)
(o)) do



with a(s) := ags? and §(s) := dos?. If, in addition, ag, dy > 0

A9, g
are chosen so that Ao := ™ — Ay, > 0 where
1 1
S = 1V/? (—LLT + (B~ LP)(B - LP)T)HW, (20)
ag 0

then (v, Ao, @, 8, 3,0) satisfy a (SNE) condition with 3(s) :=
)\f,[linsg. <

Example 5.2: Consider the (Van Der Pol) system

(-1 (4 D) () (2o

y=h(z,d) ==z, + do. 21)
Let Q,II € P2 be such that

.
0 1 0 1
H(_l _1>+(_1 _1> I=-Q (22

)\Slin S
Py A

max
mazx

1 /1 -1\, 1/00
2L L 1/2
S:=T (a1<_1 1)+a2<0 1))1‘[ :

Define v(z) := 2" (z)Ilz(z), where 2(x) := (z1, 79 — 221 +
(1/3)x$)T. There exist b, By > 0 such that v(x) = Bo|z[?> —
b for all x € R2 It follows from Property (P2) that (v +
b, Ao, v, 0 + b)g, 8, 0) satisfy a (SNE) condition with 8(s) :=
Bos?/? and 6-th degree polynomials a, § € Ky (we leave the
computations to the reader). <

> (0 where

and a1, as > 0 be such that \g :=

A. Closed-form solutions of (PDI)

For obtaining closed-form solutions of (PDI), we discard
finite exit times from R™ for the backward solutions of (2).
(BWC). (Backward completeness) The solutions X;(z, t; d) of
(2) are defined for all (z,d,t,s) € R™ x D x Rs x [0,1].

In what follows we will use the notation

Yi(z,t;d) := h(xs(z, t;d),ds) — R(0,ds). (23)

Proposition 5.2: Under assumption (BWC) and for any
given A > 0 and a € Ky, (v, A\, @, 9) satisfies a (PDI) condition
with

¢
v(w,t) 1= f e Mo Yy (x, t; d)|)ds 24)
0
and
a(s) := a(2s), 4(s) := H(s7l1”1p a(2|h(0,d)]). (25)
<s
Proof. Notice that for any At € R
Xs(Xerae(z, t;d), t + At;d) = x5(x,t;d)  (26)
We have
(X, t;d), t+ At) —v(z,t) e A1
At - ( At )U(‘T’t)
e AAL

+

t+At
- J e N9 o (1Y (z, t; d) | )ds.

Letting At tend to 0 we get

Z—Z(w,t)f(m,dt) + a—v(:mt)
= —\v(z,t) + a(|h(zx,d;) — h(0,d;)])
)

< —Mo(z,t) + a(|h(z,dy)]) + 6(|d ), 27)

where we used a(s +7) < «a(2s) + a(2r) for all s,r > 0. <

B. Sufficient conditions for (ULB)

In order to have the function v(x, t) in (24) uniformly lower
bounded as specified in the (ULB) condition, we invoke a kind
of uniform (backward) state reconstructibility property from
the outputs.

(BWR). (Uniform backward reconstructibility). There exist
t,b>0,a € Kgand 8 € KL, such that for all (x,d) € R™ x D

L (| Ya(o,E d)|)ds = B(lz]) — b. 28)

A similar reconstructibility property was used in [22] in a
noise-free context for state-dependent solutions of differential
Riccati equations. For linear systems (2): © = Ax + Zd,
y = Cx + Jd, assumption (BWR) is strictly related to
observability under unknown inputs d ([16]).

Proposition 5.3: Under assumptions (BWC) and (BWR) and
for any given A > 0 there exist ,b > 0 and B € KL, such
that (v + b, \,@, 0 + Ab, B, 1) satisfies a (SNE) condition with
v :R"™ x R defined in (24) and @, § € K defined in (25).

Proof. Let ,b > 0, a € Ko and 3 € K1, be as in assumption
(BWR) and v : R”™ x R as in (24). For all ¢ > t we have

¢
v(z,t) = ‘[ e_’\(t_s)a(HYs(x,t;d)H)ds
t—t

_rt _
> e*”J a(|[Yy(x, t;d)])dy (29)
0
and dy := dy,,_;. But d € D and on account of assumption
(BWR)

v(z,t) =

e M (B(lx]) = b) :=B(le)) =5 GB0)

for all (z,t) € R™ x [£, +o0), which proves that (v + b, 3,f)
satisfy a (ULB) condition. On the other hand, (v +b, A\, @, § +
Ab) satisfies a (PDI) condition by proposition 5.2 and Property
(P2). <

From (BWR) we see that £ may be very small but nonzero.
More conditions for (BWR) based on Lie derivatives will be
given in other related papers.

C. A stronger (SNE) condition

We have seen how the (SNE) condition has a key role
in the design of a N -filter. However, when the N -filter is
coupled with another filter (like an observer) it is better to
have a(|h(z,d)|) not increasing faster than v(x,t). For this
reason, we introduce a slightly stronger (SNE) condition:
(SSNE). There exists a tuple (v, \, a, 6, 3, t) satisfying a (SNE)
condition and, in addition, there exist ( > 0 and £ € Ky such
that for all (z,d) € R™ x D andt >t

(UUB) : of|h(z, d)|) < Cu(z,t) + £([d]).  GBD



Using a similar terminology to the previous sections, we say
that a tuple (v, \, o, 4, 3,¢,&,t) satisfies a (SSNE) condition
(with associated A -filter (17)) or, referring only to (31),
that (v, a, ¢, &, ) satisfies a (UUB) condition. Notice that, on
account of the (ULB) condition, there always exist ¢ € K and
& € Ko such that for all (z,d) e R" x D and ¢t >¢

a([h(z, d)]) < ((v(z, 1) + £([4])- (32)
The (UUB) condition requires a linear' ¢ € K.

Example 5.1 (cont’ed). The tuple (v, a,d,p,¢,&,0),
where (v, A, «,d,3,0) is the tuple which satisfy a (SNE)
condition in example 5.1, satisfy a (SSNE) condition with
¢ := anﬁq‘ﬂ and £(s) = 2a0|Q|?s?, with ag > 0 given
in (20). " <

Example 5.2 (cont’ed). The tuple (v, a,9,p5,¢,&,0),
where (v, A\, «,0,(,0) is the tuple which satisfy a (SNE)
condition in example 5.2, cannot satisfy a (SSNE) condition
for any ¢ > 0. We modify v(z) in example 5.2 as follows:

N

(z) :=v(z) + % (0 1 <;) z] (33)

with z(z) := (21,22 —2x1)" and IT given in (22). We obtain a
tuple (v, A, @, 0, 3,(, &, 0) satisfying a (SSNE) condition, with
4-th degree polynomials &, 6, & € K. <
The  following  property holds for a  tuple
(v, N\, ,8,8,(,&,t) satisfying a (SSNE) condition and
it is analogous to Property (P3) for a tuple (v, )\, «, 4, 3,%)
satisfying a (SNE) condition.
Property (SP3). Given u,v > 0, it is possible to re-design a
tuple (v, \,a, 8, 3,¢, &, ) satisfying a (SSNE) condition into
a new tuple (5,X,&,g,ﬁ, E,E,f), with 5(5) = vsk, still
satisfying a (SSNE) condition (the proof is found in section
B of the appendix).

VI. DESIGN OF ¥ -FILTERS

In view of the introductory explanation of section IV, our
second task is to identify, under general assumptions on A, C,
JF and H, a canonical class of filters (which, in what follows,
we refer to as £ -filters) for systems of the form (6) which
throughout this section we address as:

ét = Aet + \/I\/t + y(et + f(t,dt)

Ce, + (e, + Xy, dy), (34)

Wi

where \flt and )A(t are exogenous known inputs. These
J -filters are adaptively tuned by a 4 -filter, which will
be assumed at hand together with its associated tuple
(v, \, 8, 8, C, &, ) satisfying a (SSNE) condition. An elegant
mathematical tool for designing the tuning action of a .4 -filter
on a JZ -filter is the notion of family of dilations.

'We introduce this extra condition for reducing the design complexity and
we reassure the reader that considering a linear ¢ € /C is not a technical issue
(this will be addressed in a forthcoming paper).

A. Family of dilations

Let A be a family of solutions of the following matrix
differential equation

dA (s) = WA(s)

ds 5

where W € R™*™ is any symmetric’> matrix with all eigenval-
ues in C~. As well-known, A(s) := emEOWN for s > 0 and
A > 0, is such parametrized family of solutions. Notice also
that, given § € K1, and i > 0, it is always possible to rescale
A as

. 5>0, 35)

A[S, 1] (s) := A(0(s))p, 8 >0, (36)
which is a parametrized family of solutions of
dA[6, u] 1 dd
T (s) = @g(s)WA[& ul(s), s>0.  (37)

We call A=1[6, ;1] (the inverse of A[6, ;1]) a family of dilations
if A[d, u] is a parametrized family of (37) and we denote by
& the set of families of dilations (in more general frame-
works families of dilations are introduced in [18] and [13]).
We can define an equivalence relation in ¢ as follows: for
A7[61, 1], A" 02, 2] € 4 we say that A=Yy, 1] ~
A71[82, 2] if there exist 4 > 0 and 6 € KL such that
A[b2, p2](s) = pAld1, 11](0(s)). In this case we say that
A6z, 2] € ¥ rescales A=1[61,p11] € ¥ by (u,6) €
R. x KL . In what follows we omit, whenever no ambuiguity
shows up, the term between square brackets in A[d, u] (resp.
Ao, )

Remark 6.1: Family of dilations A~! € & of the form
A(s) = e W)\ with o > 0, are all equivalent.
Therefore, we can rescale a family of dilations simply by
rescaling the eigenvalues of W by a > 0. ]

B. Discussion of the main assumptions on A, C, F and H

The notion of family of dilations is naturally associated with
the notion of (generalized) homogeneity, which we assume
here on the vector field f(e) := Ae and the map h(e) := Ce.
(HL) (Generalized homogeneous linearization). There exist
A e¥, v e Koy, vo € Ky such that for all s > 0

-1 -1
A(s)AA"1(s) _ A CA~1(s) _c
va(s) Yo(s)

Remark 6.2: While 7o € Ky is a reasonable assumption
(on account of the second condition in (38) and the fact that
A~! contains increasing modes: see example 6.1), a more
natural condition for 4 would be® 4 € Koy U Lo, (according
to how the decreasing modes of A interact, through A, with the
increasing modes of A~! in the first condition in (38)). Under
this regard, we will say only that the case y4 € L, requires
a more sophisticated design technique for the N -filter based

(38)

2This assumption is made only for simplifying our analisys and can be
directly omitted.

3With A — (0 1

o o) €= (1
Koos 7o (s) = s € Koo with A(s) := diag{s™!,s72} but ya(s) = s~ €
Lo, vo(s) = 82 € Koo with A(s) := diag{s~2,s~'}. On the other hand,
va(s) = 1€ Ko, vc(s) = s € Koo with A(s) := diag{s~!,s71}.

0), it is easy to see that y4(s) = s €



on a suitable time rescaling, which goes beyond the scope of
this paper.

Assumption (HL) can be relaxed by requiring homogeneity
only in the co-limit as follows:

-1
(HL,) : lim M
soFo ya(s)

for some Ag € R™ "™ and Cy € RP*", at the price of a
sufficiently large choice of 4 > 0 in the state norm estimate
(3). However, with (HL,,) we can capture many pairs (C, A)
which are left out by* (HL). [l
Next, we introduce similar (generalized) homogeneity assump-
tions for dominating the nonlinearities of (34) via the homo-
geneous linearization. The idea of homogeneously dominating
the nonlinearities using the linearization comes from previous
works as for example, to cite a few, [17] and, more recently,
[1]. Here, we introduce conditions not dependent on specific
system’s structures and less restrictive, also taking into account
the presence of noise. Recall from the notation section that
for given F' € P, G € PL and S € R™*" we write
ISy < ~ by meaning that ||[Sw|r < ~v|w|g for all
w € R™ or equivalently STFS < 72G.

(HD,) (Generalized homogeneous domination at o). For all
(z,d,s) e R™ x D x [1,+w0)

07 (w, 0)

= AO, lim

AT, ‘w=A*1<s>acN1 ’ H(FA(z),EA(x))g 7als) G9)

w&zﬁ(mkl(S)H(ch),ac(x))g Yo(s)  (40)
7

A sy A @D

w‘“’=1\71(5)x (Ha(od) Zalad) ve(shyals) — (42)

with v4 € L1, and continuous functions Fa : R™ — P?, ¥4 :
R" — PL, Fy : R" xD — PL,Yg: R" x D — Pg,
He :R" - PLEc : R" — P2, Hy : R" x D — PL and
Eq:R" x D — PS with¥4(0) = 0and Z¢(0) = 0.

By setting

v(s) := {va(s),vc(s),7a(s)},
V(z):={Fa(z),Xa(x),2c(z), Ho(x)},
Z(,d) := {Fy(w,d), Sa(x,d), Ha(x, d), Za(x, d)},

we also say that (A=1,~,V, Z) satisty a (HL)+(HD,) condi-
tion. The matrices F'a, Fy, Ho, Hy, ¥ 4,%4, Z¢c and =4 are
weight matrices which can be properly selected (see example
6.1 below).

Remark 6.3: (Globally Lipschitz F and 5¢). If . and 3¢
are globally Lipschitz, (HL), (HLy) , (HDy,) are all satisfied
with the simple choice

A(s) = (1/s)I, 7(s) = {1,5,1/s}

and any choice of the weigths consistent with (39)-(42). If
ag@(f’o) = 0 (resp. % = () we can take X 4 = 0 (resp.

. 0 1 0 1 .
4For instance, C = Cp = (1 0) A = (2 1), Ag = (O 1) with

A = (%) ) = el = s

Z¢ = 0) with arbitrary F4 (resp. H¢) and if % =0
(resp. w = () we can take >3 = 0 (resp. =4 = 0) with
arbitrary Fy (resp. Hy). ]

Remark 6.4: (Invariance of (HL)+(HD,) condition under
rescaling of A=1). An important property of the (HL)+(HD.,)
condition, extensively used in designing the chain of K-
filters, is that this condition is invariant under rescaling (or re-
parametrization) of A~1. In other words, by re-parametrizing
A~las A=1od, § € KL, condition (HL)+(HD,, remains valid
by re-parametrizing also 7y as yod. To be more precise, let £ be
the set of tuples (A1, ~,V, Z) satistying a (HL)+(HD,) con-
dition. The equivalence relation A=1[61, 1] ~ A~Y[da, po]
in G induces, via (HL) and (HD,), an equivalence relation
(A_l, v, V, Z)[él, ,ul] ~ (A_l, v, V, Z)[52, ‘ug] in £ as fol-
lows: there exist § € K}, and y > 0 such that

V[b2, p2](s) = {%4[517/11](5(8))7%70[51#1](5(8))7

praldn, 11(6() },

xT

V[dlvﬂl](;)v

Z[&Ml](%ad)-

V[da, po](x) =

Z[62, p2)(w,d) = (43)
Therefore, (HL)+(HD,) are invariant under rescalings in G in
the following sense: if A=1[d1, 1] ~ A71[d2, 2] in G then
(A_la’%‘/?Z)[élle] ~ (A_17’77‘/7Z>[627,U/2] in &. i

Remark 6.5: After a normalization of (v,V,Z) we can
assume

va(s) =1, Vs = 1, (44)

and for some 740 < 0
va(s) = s7aol s> 1 (45)
(the proof is found in section C of the appendix). (|

Example 6.1: Consider
0 1
A= (0 0), c=(1 0),

F(x,d) = (0, —x22? + 21d) ", H(x,d) = 0. (46)

It is easy to see that (A~1,~,V,Z) satisfy a (HL)+(HDy)
condition, with A=1(s) := e~ "W T .= diag{—t, —3t}
and v(s) = {ya(s),7c(s),7a(s)} = {s**,s",s7°} for any
t > 0. The weights (V, Z) are chosen as follows:

Fa(z) = (1 + pa(x))'diagfe, 1},
Ya(@) = pa(@)(1+ pa(x) ', 47)
Fa(x) = (1 + |=1]) " diag{e, 1}, Sa(z) = |z1](1 + |21]) ",

with any € > 0 and 4 (z) := 5(z?23 + z}). The remaining
weights Heo, Hy,Z¢ and =, are completely arbitrary since
€ = 0 (remark 6.3): for instance, Ho = Hy := p > 0 with
any 4 >0, ZE¢c =0 and =5 = 0. <

We follow up with some assumptions on e; and the exoge-
nous input X;. Let V; be the output of the .4 -filter associated
with the tuple (v, A, a, 8, 3, ¢, £, t) satisfying a (SSNE) condi-
tion.



(By) (Asymptotic bounds). There exist edw,)z'doo > 0 (de-
pending only on dy,) such that

limsup [|[A(V; +7)e]| < eq,,, (43)
t—+m0
limsup |A(V; + 9)Xe| < Xa, . (49)
t—+400

We also say that (eq, , Xq,, A"
on (34).

Remark 6.6: The asymptotic bounds (48) and (49) are in
general guaranteed, when designing the chain of K-filters (see
recursive algorithm in section VII-C), by the choice of the
parameters of the previous KC-filters in the chain. We state
(48) and (49) as an assumption so that to relate directly the
numbers eq, , X4, with the design parameters of the K-filter
(see the filter equations (54), (55) below). Moreover, when
(34) coincides with (2) (i.e. ¥; = 0 and X; = 0), which
corresponds to the situation in which we are designing the
first C-filter in the chain, (By) is not assumed a priori but
guaranteed by design of the A -filter (see Theorem 6.2 below).
O
Finally, we introduce a stability margin condition for guaran-
teeing estimation error convergence.

(SM) (Stability margin). There exist

) satisfy a (Bo,) condition

andII € P2 such that:
Lyap(IT, W) := ITW + WII < 0, (51)
Ric(IT, Ar, ¢) := TI(A + A1) + (A + A\ D) 1T
+TB(c)I -~ CTR™ Y (e)C < —M(c) (52)
withc :=eq, + )A(doo and
M(s) 1= sup|z, |<2ns(Xa(21) + Ec(21))
B(s) := sup leyl<2ns (Fy'(z1) + Fy ' (22,d))
|zo]<n
ldl <deo
R(s) := sup leyl<zns (Hp' (z1) + Hy Y (w2,d)).  (53)
I <o
We also say that the tuple (edw,fdm,/\’l, v, V,Z) sat-
isfy a (SM) condition with some (II,A;). In (53) as

SUP(y,a)es 1 (¥,d) we mean and use any matrix 7" such that
T(x,d) <T for all (z,d) e S.

Remark 6.7: (Design of IT). Notice that since o(W) < C™,
there always exists IT € P2 for which Lyap(II, W) < 0. We
require in assumption (SM) that IT € PZ at the same time
satisfies Ric(II, Ar, ¢) < —M(c). The matrix M (c) represents
a guaranteed margin for the Riccati equation (52) and depends
on the weigths ¥ 4 and =¢.

Few more comments on the solution of the Lyapunov-
Riccati inequalities (51) and (52). For each A\ > 0 and ¢ > 0
for which (C, A+ A\.I) is detectable and (A + A1, Bo(c)) is
controllable with By(c)Bg (¢) = B(c), it is well-known that
Ric(II, Az, ¢) < 0 has always a solution II € PZ. Moreover,
f (C,A) is in observability canonical form, (A, By(c)) in
controllability canonical form and W is diagonal, we can
prove the existence of II € PZ satisfying at the same time
Lyap(II, W) < 0 and Ric(Il, \;,¢) < 0. In addition, the

margin M (c) is even 0 when % = 0 and w =0
(i.e. multiplicative noise).

In more canonical EKF-based approaches as in [7] a
differential state-dependent Riccati equation is assumed, by
requiring uniform lower and upper bounds for its time-varying
solution. This is too demanding in a nonlinear context. In
our framework, homogeneity domination assumptions (HD,)
with asymptotic bounds (B,,) allow us to ask only for the
common solution II € P" of a pair of algebraic Lyapunov-
Riccati inequalities. |
Example 6.1 (cont’ed). With the choice of the weights (V, Z),
parametrized by e, > 0, in example 6.1, for any given
€d, X4, > 0, we can always find €,y > 0 for which
(ed, Xa,,A"1,7,V,Z) satisfy a (SM) condition for some
(IT, Az). In practice, in this example we can guarantee any
margin M and handle arbitrary asymptotic values eq_ , X4, >
0 in (By). <

C. Canonical ¢ -filters and main results

A  ilter for (34) has the following parametric form:
ét = Aé\t +@t+§(@t, Xh A(?t‘f’f)\’)) +%(§’\t +a) (Wt — ﬁ’t),

Wi = C8, + 2 (&, Xs, AV + 7)), (54)
N7 G PR %4,)CT

%(Z) = (fyc(z))2 :@ (Z)R (edw + Xdoo)C ’

P(z) == AT (2)IA(2), (55)

Z@,X,A) =

ﬁ(Aflsatedoo (Ae) + Aflsatk\d (AX), 0),

@, X,A) = %”(A’lsatedw (A2) + A 'satg, (AX), o).

All the parameters of (54)-(55) are directly obtained from the
given assumptions (HL), (HDy,) , (By,) and (SM).

Remark 6.8: The reason for which a KC-filter has a Kalman-
type feature lies in the definition of its gain rnatrix H in (55)
For linear systems (34), 5F =0, % =0and & ST 7 and ¢ P - are
constant. Moreover, as mentloned in remark 6.3, we can take

A(s) = (1/9)I, v(s) = {1,s, 1/3} and, assuming invertible
el T

B = % (%) and Ri= Z(%) . the weigths (V, 2)

can be selected so as ¥4 + E¢ = 0, F;' + F;' = B and

Hgl + Hal = R. From definition (55) we have

H =1"'R1CT (56)

where, from (52), IT € PZ is a solution of the Riccati equation
A+ D)+ (A+ X\ I)'I+TBO—-CT"R™'C =0. (57)

Notice that since A(s) = (1/s)] then W = —I and (51)
trivially holds with the same II € PZ solution of (57).
The matrices B and R are representative of the state and,
respectively, measurement noise covariances in a stochastic
setting and the Riccati equation (57) (neglecting the term
M-I which guarantees a certain non-zero margin) is the one
associated to a steady state Kalman filter with steady state
error covariance I1-! and Kalman gain (56). It is interesting
from (52) and (53) to see how the nonlinearities enter the
picture through the weigths F;l and H, ! by affecting the
margin M. ]



We are ready to state the first result of this section (the
proof has been postponed to the appendix), which points out
conditions for the estimation error convergence of a . -filter
(54)-(55) for (34).

Theorem 6.1: Assume (SSNE), (HL), (HDy), (By) and
(SM). Along the solutions of (34), (54), (17) we have

[A(V: +7) (e, — &)

| . 2pe0 (€d., +)2doo»doo)
——— <cg. =
Ya(Ve +7)

RN/ WY SR

(58)

lim sup
t—+00

where pq (1, $) 1= sup laise, |52, (2,d) +Za (2,a)- I in addition

a0l = A minl; (59)
then
limsup ||e; — € < YooCa,, (60)
t—+am
where vy, 1= \/Sup821 Y2(s)s? Ainl.,

Remark 6.9: Theorem 6.1 presents two asymptotic bounds
for the estimation error. The tighter one is presented in (60)
under the additional condition (59), i.e. the decreasing rate of
a4 is at least [\, |. As it results from (58), the K-filter (54)
asymptotically steers the (weighted) estimation error norm
IAG )60l jpgide the interval [0, cq,. |- However, we can-

Ya(Ve+7) o
not say the same for the estimation error norm ||e; —€; | unless
(59) holds true. Without this condition, at least one eigenvalue
of the matrix W + |ya0// is negative and let denote by X its
minimum eigenvalue: A := min;{\; € o(W + |ya0|I)} < 0.
On account of (45) it follows from (58) that

(61)

le: — el < (Ve + 7)' |Cdoo

for ¢t > to (depending on the initial error). The bound (61) on
|e: —€;| becomes large with 9‘{\‘ and can be directly compared
with the tighter bound (60). The smaller the size of || (or,
which is the same, the excess A := [\, |—|v4.0|), the smaller
the bound on |e; —€;| in (61). Notice also that, in our context,
v; grows unbounded in time if x; does (since V; is a state norm
estimate) and the error e; —€; will grow unbounded according
to (61). On the other hand, if x; is bounded in time, v; as well
as e; — €; will be bounded in time according to (61), which
can be recast in the form (60) with a v, depending on the
upper bound of ¥;. For these reasons, the upper bound (60),
which depends only on dy, is much more satisfactory than
the upper bound (61), which depends on d., but also on the
large variations of Vy.

The rate condition (59) guarantees the tighter asymptotic
bound (60) on the estimation error norm. In example 6.1,
since A = 0 and the rate condition (59) is met, the es-
timation error norm satisfies an asymptotic bound (60) and
the KC-filter (54) has good error performances. However, an
extra additive measurement disturbance in example 6.1 (i.e.
H(x,d) = d # 0) has a deteriorating effect on the error
performances: indeed, with J#(x,d) = d and A,C,.Z as in
example 6.1, (HL)+(HD,,) is satisfied with the same A~!,
~v4(s) and yo(s) but v4(s) = sF (i.e. slower decrease rate).
Since now A = 2t > 0 we can only obtain a weaker

asymptotic bound (61) and worse error performances. A
simple explanation of this performance deterioration lies in the
high-gain feature of the K-filter (54) in example 6.1: indeed,
in this case #(z) = diag(z%,24)[171(1,0)" (definition
(55)) and an extra additive measurement disturbance has the
effect of deteriorating the error performances of the high-gain
K-filter (54) (compare with semiglobal high-gain observers
for feedback linearizable systems: [12], [2], [19], [11], [8]).
The asymptotic bound (58) corresponds in our framework to
deteriorated error performances and the excess A can be taken
as a quantitative margin for error performances evaluation.
This motivates in the next section the design of chains of K-
filters in which the excess A is progressively reduced and the
error perfomances of the /C-filters tend to an ideal situation
characterized by the tighter asymptotic bound (60) (in which
the excess is 0).

The asymptotic bound (60) corresponds to good error per-
formances. If in addition .% (0,d) = 0 and 7 (0,d) = 0 (mul-
tiplicative state and measurement disturbances) the noise sen-
sitivity can be reduced to the same extent as ¢ := eq,, + Xg,:
indeed, if .#(0,d) = 0 and J#(0,d) = 0 then ¥4(0,d) =0
and Z4(0,d) = 0 and p (0, s) = 0 for all s > 0 so that ¢y in
(60) can be made small if eq, , X4, are small. Notice how the
asymptotic bound (60) depends only on d, (since eq, + Xg_,
and, therefore, ¢4, does by assumption (B)): in general,
estimation error bounds depend explicitly on the initial state
in global frameworks ([4], [21]) or implicitly through the
invariant compact set containing the state trajectories in semi-
global frameworks ([12], [19], [11]). Therefore, the error
performances (in term of robustness and noise sensitivity) of
the 7 -filter (54) in case of excess A = 0 are good even for,
and actually independent of large state initial conditions. [
A parallel result to Theorem 6.1 is relative to the system (34)
when it coincides with (2) (i.e. \I/t = 0 and Xt = 0). As
mentioned in the introductory section IV, this corresponds to
the case in which we design the first [C-filter of the chain. The
canonical form of the K-filter is simpler in this case:

X, = AR, + 7 (R, AV + 7)) + A (T +A) (v, — 90),

y, = CXy + 7 (X, A(Ve + 7)), (62)
va(z) _

H(z) = m@ 2R (e)CT, P(2) := AT (2)IA(z),

F(3,A) = ﬁ(A’lsatC(Aﬁ),O),

H(7,A) = %(A’lsatc(Af), o) (63)

for ¢ > 0. As we will see, the asymptotic bounds (By,) are
not a priori assumed here (but guaranteed by the design of
the N-filter) and only an arbitrarily small margin M must be
guaranteed in (SM). The proof of the next result has been
moved to section D of the appendix.

Theorem 6.2: Assume (SSNE), (HL), (HD.) and the
existence of ¢ > 0 such that (c,0,A=',~,V,Z) satisfy
a (SM) condition with some (I, \;). There exists a tuple
(v, Xa,6,5,CE, t), satystying a (SSNE) condition with as-
soc1atedN filter

Vo = W+ ally]) + () (64)



such that along the solutions of (2), (62) and (64) we have

AV, +7 —-X 2 dy
lim sup H (Vt + j) (Xt/\ Xt) H < Cdy = Poo (C7 \0) , (65)
t—+00 Ya(Ve +7) i VAN nin

with py, as in Theorem 6. 1. If, in addition, (59) holds true then

limsup ||x; — X¢|| < YooCa, (66)
—+00
with v, as in Theorem 6.1.

Remark 6.10: (Design of the N -filter). From the proof of
Theorem 6.2 (in section E of the appendix) it turns out that, for
any given Ag € (0,1), the tuple (v, A, @, 6, 3, (, &, 1) satisfying
a (SSNE) condition can be always transformed into a new tuple

~

(1’7’ X? av 5757 ga ’57 i)’ with
Bls) = (5)EonWo]
B(s): (C) ,

still satisfying a (SSNE) condition with associated N -filter
(64) such that for all ¥ > 1 and A € (Ag, 1]

(67)

lim sup |A((V; + ’AY)A)XtH <c.
t—+00

(68)

In other words, the N -filter (64) is designed in such a way to
dominate x; under the action of A.

Remark 6.11: (Design of the parameter c). In practice,
the parameter ¢ > 0 such that (c¢,0,A~!,~,V, Z) satisfy a
(SM) condition with some (II, A;) can be obtained in two
steps as follows. First, determine (II, \,) (if any) such that
Ric(II, W, A, 0) < 0 and TIW +WTI < 0. The first inequality
can be solved under simple detectability and controllability
conditions on A, C, and B(0) (see for instance remark 6.7).
Secondly, using the fact that M (0) = 0 (since F4(0) = 0
and X (0) = 0 by assumption (HDy,)) and by continuity, it
is easy to find ¢ > 0 such that (¢,0,A™1,v,V, Z) satisfy a
(SM) condition with (I, \;) = (II, ;). Notice how (SM) is
satisfied with an arbitrarily small margin M (c), corresponding
to arbitrarily small values of ¢ > 0.

It is worth noticing that the above design procedure for
finding (I, \;) and ¢ such that (¢,0,A™1,~,V,Z) satisfy
a (SM) condition cannot be used to find (I, \;) such that
(ed,» Xa,,A"1,7,V,Z) satisfying a (SM) condition (as in
theorem 6.1): indeed, in the first case c is obtained a posteriori
from II using continuity (and can be chosen arbitrarily small)
while in the second case II is computed a posteriori from
¢:= eq,, + Xq, which is not arbitrarily small. However, the
magnitude of ¢ := eq,, + Xq,, can be kept small by increasing
4 or choosing smaller eq_ , X4, > 0 (see remarks after (72)).
O

VII. CHAINS OF J# -FILTERS FOR SEQUENTIAL ERROR
PERFORMANCE OPTIMIZATION

The aim of the next sections is to show that by sequentially
reducing the excess A for each K-filter, we obtain tighter
bounds (58) while tending to the ideal situation which corre-
sponds to the tightest bound (60). The reduction of the excess
A can be obtained by rescaling the family of dilations A~!
and, on the other hand, the rescaling of A~! corresponds to
rescale the eigenvalues of W in such a way to reduce their
reciprocal distance: as a matter of fact, the ideal situation is

the one for which the eigenvalues of W are all equal, a typical
situation when .% and ¢ are globally Lipschitz (see remark
6.3). Before dipping into the details of sequential processing,
we introduce a comparison criterion for error performances
evaluation.

A. A comparison criterion for state estimates
The next definition gives a simple criterion to compare two
different estimates f(ik), k=12, of x;.
Definition 7.1: Let v; be the output of a N -filter, with XEU

x, X,
1,2, for some w'*) € Ky and ¢*) € K.
w@)(;,t)c(?)(dw)
W (7)e (dop )
<)
outperforms X, " by (1 — ) (x100) %.
(1)

~(2 (1
In other words, X; ~ has better error performances than X,
if it corresponds to a tighter (in percentage) asymptotic bound

o2
and XE ) estimates of x; such that limsup,_, | .,
M (dy), k =

(2
If limsup,_, | o, = r < 1, we say that X,E )

~ (2
on the estimation error norm. Obviously, the fact that Xi )
~(1
outperforms XE ) by (1 —r) (x100) % does not guarantee
~(2
that the ratio between the actual values of |x; — Xi )H and

o) .

|x: — X, | be (even asympotically) less than r. In our frame-

work the comparison is made on some conservative asymptotic
e . o

bounds on |x; — X, '|| and, respectively, |x; — X, '|, but by

reducing progressively the ratio between these conservative

bounds it is likely that also the ratio bewteen the actual values

) sy . .

of |x; — X; | and |x; — X, *| will ultimately decrease. The

comparison criterion will be used to compare the estimates

associated to two consecutive K-filters in the chain.

B. Motivations and outline of sequential processing

For explaining what we mean by sequential processing and
how it is implemented in practice, we assume to have at hand
a N -filter together with a K-filter for (2). For this reason, we
assume:

(A1) a tuple (v, \, ,0,(,(, &, t) satistfying a (SSNE) condi-
tion,

(A2) a tuple (A=1,~,V, Z) satisfying a (HL)+(HD,,) condi-
tion,

(A3) the existence of ¢ > 0 such that (¢,0, A=, ~,V, Z) satisfy
a (SM) condition with some (II, \).

As it follows from (SP3), the tuple (v, \, @, 4, 3,¢, &, t) and
the associated A -filter can be re-designed so that (68) holds
for any given Ay € (0, =] and for all ¥ > 1 and A €

A
(Ag, 1]. On the other hanld,mulﬁ(lier the given assumptions (A2)-
(A3), the K-filter is designed as pointed out in Theorem 6.2,
with X; being the estimate of x; and e; := x; — X; being the
corresponding estimation error.

Assume the excess A := [\, | —|v40| > 0 (otherwise, as
explained in remark 6.9, the error performances of the [C-filter
can be considered satisfactory). From Theorem 6.2 we get the
asymptotic bound (65) on e;:

AV +7 2
o AT el 2p(end)

~—= dop Y
totoo  Yd(Ve +7) m

(69)



On account of (69) with (45), it follows that 3

limsup [A(Ve + 7)e:| < eq, = ca (70)

t—+00

o0

wher3K71 is the rescaling of A1 by (1,8) with 3(s) := s
and A € [‘/\V% ‘,1). As observed in remark 6.1 this corre-

min

sponds, equivalently, to rescale the eigenvalues of W by A,
ie. A(s) = W)X where W := AW. With (70) at hand
and using Theorem 6.1, the idea is to design a second K-filter,
sequentially connected to the first [C-filter, for estimating the
error e, described by the equations:

Aet + \IJt + y(et + it,dt),
C’et + Jf(et + §t,dt),

e =

W, (71)
with w; 1=y, — OX;, U, := AX; — X;. For applying Theorem
6.1 to (71), which has the general form (34), we need to
prove that all the assumptions of Theorem 6.1 are met. First
of all, by assumption (A2) and invariance of (HL)+(HD)
under rescalings of A~! (remark 6.3), (A ,7,V, Z) satisfy a
(HL)+(HD,) condition with 7(s) := ((s)).

Since A(s) = A(s?) and X; = x; — €, from (68) and (70)

limsup |[A(V; + )| < Xa, := ¢+ eq,.

t—+00

(72)

With (70) and (72) at hand, it follows straightforwardly that
(ed,, de,A_l) satisfy a (Bo,) condition on (71).

Finally, we need to prove that (eq,,, )A(doo , A .7, V, Z) sat-
isfy a (SM) condition with some (IT, \;). In a first scenario, no
matter the values of e, deoc are, (eq,, ,de,A ,W,V,Z)
indeed satisfy a (SM) condition (this is the case, for instance,
of example 6.1, in which any guaranteed margin M is achiev-
able). In a second scenario, (edw,Xdﬂ,A l,y,V Z) cannot
satisfy a (SM) for any (IT, \;). In this case, we may resort to
the following heuristics. Since also (c, O,Kflﬁ, V, Z) satisfy
a (SM) condition with (II, A\z), we can try smaller values
of eq, < cq, and X4, < ¢+ cq, as close as possible
to 0 and, respectively, ¢ so that (edw,Xd%,A ,7, V,Z)
satisfy a (SM) condition with some (II, \,;) close to (I, \).
The possibility that these smaller values of eq, < cq, and
X4, < c+cq, still satisfy a (By) condition is accounted
for by the fact that in practice the estimation error norm is
asymptotically smaller than the state or its estimate norm and
since liminf;_, o V¢ >> 1. Moreover, we can also reduce
the magnitude of eq, + Xdoc by increasing 4 and, therefore,
decreasing the magnitude of A(V; + J)e; and A(V; + 7)X; in
(70) and, respectively, (72).

With the second KC-filter designed on (71) according to
Theorem 6.1 and with the estimate €; of e; at hand, we obtain

SWe notice that since VW is symmetric there exists orthornormal T' such
that W = TTWpT with Wp = diag{\; € ¢(W),i = 1,...,n}. Using
standard propertles of matrix exponentials and | T'|| = HTT | = 1 and recalling
that A = AW, | — |va,0l, since A € [Ne- T 1) and by (45), for all z > 1
and e € R™ we get |A(2)e| <

PSP

SR A)e] < 14

L I E-DW = braolD | A()e] <

. By virtue of this, from (69) we get (70).

from Theorem 6.1 the following asymptotic bound on the error
€; := e; — €;, analogue to the bound (69) on e;:

A ‘ Xa, . d
lim sup H (Vt + ’y)etH cdoo = P (edoo + dooy OO) . (73)
t—+00 ’Yd(vt +7) I\, AL

It is important to stress the fact that ¢4, depends only on dy
(and this will remain so in all subsequent iterations), since eq,,
and Xdoo depend by construction only on dq.

ENEY)
The current state estimate X, = :=

~(2 1
second /C-filter as Xi - X( ) + €;. By comparison of the

asymptotic bounds on e; = x; — X,

X; is updated by the

in (69) and, respectively,

_ o

€ = Xy — Xt
o2 o1 . o

percentage X, = outperforms X, = (according to the criterion

7.1). The other K-filters in the chain are likewise designed.

in (73) we establish by which amount in

C. A recursive algorithm for designing the chain of K-filters

Along the general lines highlighted in the previous section,
we give here the details of a recursive algorithm for the design
of a chain of K-filters. As mentioned at the beginning of
section VII-B, we assume (Al)-(A3) with excess A > 0.

() (Initialization: Design of the N -filter and the first K-filter
in the chain). Let A € (0, (IAV% |)N], where N € N is an
estimate of the maximum number of iterations to be performed
by the algorithm. Let v; be the output of a N -filter, designed

so that (68) holds for all A € (A, 1] and 4 > 1. Let

(ADT SO y) 70y .=
(2) QpOO(C doo)

d:f \% A Aglln

Moreover, v4(s) = s~ 1740l and y4(s) = 1 for all s > 1, for
some 4,0 < 0 (remark 6.5). Set %(1,13 = ya,0 and A 1= A,

Let X; be the ouput of the K-filter designed as pointed out
in theorem 6.2 and e; := x; — X; be the corresponding state

(A71777.V;Z)7
W =11, w =W,

o1 ~ .
estimation error. Set e( ) .= =e; and X, ~ := X, the initial state
estimate of x;. From Theorem 6.2 we have

IADE, +7)el?)|
( )(

lim sup
t——+0o0

cdw. (74)
Vi +7)

Set k = 2.

(II) (Design of the k-th KC-filter in the chain). Consider the
rescaled family of dilations

AB T (g) 1= AE=DTH () (5)) (75)
where
=) (k) Ak—1)
§0(s) = 5 A® ¢ [IAW"“ 7 1). (76)
Also, let e, ) (k) > ( be such that
lim sup HA(k)(Vt +7)e; (k) | < €q., ), (77
t—+00
limsup |A®) (¥, + 'y) H < X ). (78)

t—+00



Define the new tuple
(v(k),V(k),Z(k)) = (,Y(k—l)((;(k)) Yy k=) (k= 1)) (79)
(k) v (k) Z(k)y

and TI®) € P2 be such that (6<(1 ,X(k) , ,
satisfy a (SM) condition with (IT*), \). From Theorem 6.1
we get the K(¥)-filter and the asymptotic bound

IA® 7, +F)e V|

lim sup ® < () (80)
t—=+o0 (Ve +79)
where egkﬂ) = egk) —Q,E ) and e( ) is the output of the C(*)-
filter. o
(III) (State estimate update). Set v(k) : vc(llfo_l)A( ), W) =
WEDAW A® = pW| |y B) = AG-DE® g
(k) (k)
2 +X,7.d
S (dy) = po(Ca 2 (81)
>\ )\E;'l);'z
~(k— ~ ~(k—
Update the estimate X,E Y of x; as: X( ) = XE Y + egk).

(IV) (Error performances evaluation). If
el

)
AT E) =r® <1 (82)

(liminfy_, 1o V¢ + 7

then )A(i ) outperforms )A(,E .
(V) k — k + 1 and goto (ID).

Remark 7.1: Some explanatory remarks are in order for
the design parameters (e&k),X{gi)) in (77), (78) and for the
outperformance condition (82). To clear up any confusion, we
stress the fact that the existence of (eg;), )A(g;)) satisfying (77),
(78) is always guaranteed by the (k — 1)-th iteration. First of
all, since from the (k — 1)-th iteration we have

by (1 — ") x 100%.

A D@+ e

lim sup (83)
st op ’Yék 1) (V + "}/) doo

by definition of AR
iteration that

in (75) it is guaranteed at the k-th

< (84)

lim sup [A®) (3, + ’y)

t—+00

(in the same way we concluded (70) from (69) in
section VII-B). If, for any given values of eg;) and

)A(C(li), (efll;),f(éi)m(k),V(k),Z(k)) satisfy a (SM) condi-
tion (as in example 6.1), in view of (84) we pick

any e(ik) > cg;) in (77). If not, we should no-
tice from the (k — 1)-th iteration and the definition of
A® and 4® that (e, XY A8 v Z(R)) sa
isfy a (SM) condition with ( (k 1 >\ x). In order to have
(e 51 ),X(k)) as close as possible to (eg; D,)?éifl)) so that
(eq. (k) X(k) (&) v #) | 7)) is likely to satisfy a (SM) con-
drtron for some I1(%) close to TI*~1), we rather pick values
of e&k? << c((j ). As already accounted for in section VII-B,
this heuristic approach, although not a priori guaranteeing
the validity of (77) with eg;) << cg;), anyway has reason-
able chances of success in view of the fact that in practice

cfik) >> 1 and limsup,_, ., |[A® (¥, + ’y)etk)H << 1.

Moreover, as already noticed, increasing 4 may be benificial
in decreasing the magnitude of eg) by the corresponding
decrease in magnitude of A% (¥, + 7) in (77).

(k)

Once (77) is satisfied with a suitable choice of €,

. o(k—1)
directly from X, =

> 0,

(k) + x; and (68) we get

limsup |[A®) (3, + 'A}/))A(i - H <e((1];) +c. (85)

t—+00

If, for any given values of egz and )A(C(II;),
(e((i’;),)/(\'((ii),'y(k), V) Z(*)) satisfy a (SM) condition (as in

( ) +cin
(78). If not, in order to have e d, T X, x () as close as possrble
to el + XI so that (e(k) X(O% MORUONADIEN
likely to satlsfy a (SM) condition for some II1(*) close to
H(kfl), we rather pick values of )A(lgk) < e&k) + ¢ as close
as possible to ¢ but still with no a priori guarantee on the
validity of (78). Moreover, as already noticed, 1ncreasrng ~

may be benificial in decreasing the magnitude of X, x ) by the
o(k—1)

example 6.1), in view of (85) we pick any )A(L(ii)
(k)

corresponding decrease in magnitude of A(k)(vt + V)X
in (78).
Finally, few comments on (82). This condition is the result

o (k
of applying the comparison criterion 7.1 to the estimates X,E )
o (k—1
and, respectively, X( ) with
74 Fe+A)es

= (¥e+7)2 e

w®(¥,):= de

\//\A(,’“)T(Vtﬂ)/\(’“’(vw%)
main

and using limsup,_, , ,(1/v;) < 1/(liminf, 5 V;). From
the (k — 1)-th iteration and the choice of (egzg,f( é’:c)) and
%) we have no a priori guarantee that #(*) < 1. However,
since in practice liminf; ,, ., V; >> 1 it is reasonable to
expect r®) < 1 for at least a number of iterations after
which either cglﬂ)/cgz >> 1 or Ak=D(1 — Z(k)) << 1.
This is even more evident in unstable systems (2) for which
liminf, o || = +00 and, consistently with the properties
of the state norm estimator, liminf;_, ., V; = -+00 so that
we always have r(*) = 0. On the other hand, if %
and % are uniformly bounded (for instance, when the
disturbances are additive) then py(s1,7) = poo(s2,r) for all
$1,82,7 = 0 and the numerator term in (82) is equal to

(k—1) ~
Y (5 4 B o =D | Rl

NG If, in addition, e,

min

_ /\n(‘k—l)
~ II* -1 and min &~ 1t
An(h)

then TI(F) in this case

condition (82) is satisfied with r¥) << 1 since in practice

liminftﬁJrOO i’\t >> 1. O

D. Simulations

Consider the noisy Duffing oscillator

. . 3
X1,t = X4, Xop = X1t — Xy 4 + dis, y; =x1¢ +da;  (86)

with initial state xo = (5, —8) T, da; a sinusoidal disturbance
with frequency 20 and amplitude 2 while d; ; a sinusoidal
disturbance with frequency 1 and amplitude 1.
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(a) Sequential estimates for x1 versus time
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Figure 1. State x; (black line), first estimate Xt (hght green line), second

<3

sequential estimate X,E (light blue line), third sequential estimate X,

(magenta line).

Assumption (A1) is satisfied for (86) and a .4 -filter has
been designed according to the lines of section VII-C: v; =
—V¢ + 8[5 + y2 + 16(y? + 4)(y} + 16)]. Assumptions (A2)
and (A3) have been satisfied with W = diag{—0.4,—-0.8}
and v4(s) = 894, yc(s) = s, 74(s) = 5794, Notice that
the excess A = |A\W. | — |y40] = 0.4 > 0 (mainly, for

the presence of the additive measurement disturbance ds).
Moreover,

(25 -1 (2)
H_<—1 0.5>,)\ =0.1,¢=0.07, 000 = 15,¢, = = 44.

The state x; and the estimate f(il) := X;, computed by the
first % -filter designed as in step (I) of the algorithm VII-C,
are shown versus time in Figs. 1a) and 1b) (black and light
green lines).

A second J# -filter has been designed as in step (II) of the
algorithm VII-C for estimating e( ) = Xt — ﬁil). We used
A@) = 0.5 (therefore, the excess is reduced by a factor 0.5),
e =004 e (0,¢)] = (0,44] and X = 0.7 > ) +
¢ = 0.11. Moreover, since e( ) + X(2)

0.15 ~ c we used
o® ~ 0M = II so that cgo) A c((i) Using step (IV) of

~(2 o(1
the algorithm VII-C, we figure out that Xi : outperforms X,E )

y ~ 75% (since Hminf_, o0 V¢ > 103). With 61> being the
estimate of e, (2) , the state x; and its second sequential estimate

(2 o' A(z . .
X, =X, +e"’ (updated as in step (III) of the algorithm

VII- C) are shown versus time in Figs. 1a) and 1b) (black and
blue lines).
A third # -filter has been designed as in step (II) of the

~(2 i
algorithm VII-C e(3) = Xy — X( ) We used A"

= 0.5
(once again the excess is reduced by a factor 0.5), e, ) =
0.4 € (0,c))) = (0,44) and X =23 > ¢l) + ¢~ 0.47.

Moreover, since e( )+X(3) 2. 7 > e( ) thz) we used some
e > 1@ in (SM) Also in this case, usmg step (IV) of the
2

~(3
algorithm VII-C, we figure out that X, = outperforms X by

~ 75%. With eg ) being the estimate of eﬁ‘” the state x; and

2
its third sequential estimate XE - X( ) + e§3) (updated as

in step (III) of the algorithm VII- C) are shown versus time in
Figs. 1a) and 1b) (black and magenta lines).

VIII. CONCLUSIONS

We have proposed a framework for designing chains of
KC-filters with global convergence properties, robustness and
performing noise sensitivity, adaptively driven by a .4 -filter.
The state estimate of each K-filter is sequentially processed by
the next /C-filter in the chain optimizing the noise sensitivity
by reducing the asymptotic estimation error bound. A recursive
algorithm has been given for designing the chain of filters and
future work will be devoted to improving few critical issues
discussed in section 7.1.

APPENDIX
A. Proof of (P3)

Let (v, A, o, 0, B, 1) satisfy a (SNE) condition. Given p,v >
0, we will show how to find from (v,)\,a,é,ﬁ,f) a new
tuple (U, )\, &,0,0,t), with (s) = vs* for all s > 0, still
satlsfymgv a (SNE) condition. It is sufficient to ﬁnd a tuple
(¥, X, 4,6, 5, t) with B( ) = st for all s > 0 and satisfying
a (SNE) condition: the new tuple (v, \,v&, vd,v(,t) will
satisfy our claim. Since 3 € K1, there exist 3y > 0 for which
Bo < ﬁ% for all s > 0: this implies bys < B(s) for all
s = 1 and for some by > 0. For this reason and since by (P1)
we can always augment v(x, t) by a constant, we can assume
B(s) = B(s) := bysPo for some B € (0, i) and for all s > 0.
Indeed, for all (z,t) € R™ x [t, +0)

vz, t) = B(|a]) = bolz|? — by = bola|Po — 2bg

for any 3, € (0, min{u, Bo}). This implies that (v, \, o, 3, 3, )
satisfy a (SNE) condition with ¥(z, t) := v(x, t)+2bg, B(s) :=
bos’0, where B, € (0,u), and &(s) := &(s) + 2A\bg, which
proves the claim.

Let h, ag > 0 be such that —2

< (aos)h%l forall Vs > 0,

B(sk) _
for instance ag := b, ("t and = f& . By considering
the modified function °
~ -1,
O(xz,t) = (B (0(,1)))"



and on account of the (PDI) condition on (v, A, «, ), for all

(z,d,t) e R™ x D x R5 we have

o v 1 dB
ﬁfm(%t)f(ﬂ?’dt) o — (@) <pvw (x,t)w o)

x (= AB@F (@) + allh(e,d0)]) + 3(|a.)))
_ s % “ir S v(x,t) y
N M(B(s) ds s:aﬁ(m)) [ A1) + B Eﬁ(x,t))
< (alln(e.d) ) + (1) | < —(A"fww,t)

0

11(2a0) % bl o

+w0i~( (Ih(z,d,)]) +3 ~<dt>)
= =X, t) + ([, de) ) + 5(1de) (87)

where we used Young inequality and the inequality |z + y|? <
2P=1||z|P + |y|P| for all z,y € R and p > 1. Moreover, on ac-
count of the (ULB) condition on (7, 3, %), we obtain ¥(z,t) =
B @) > (3 1< Bllah))y = e = B(e]) for
all (z,t) € R™ x [t,+c0). Therefore, (V,),&,0,0,t), with
B(s) = s*, satisfy a (SNE) condition which proves the claim.
<1

B. Proof of (SP3)

By (P3) and given p, v > 0, from any tuple (v, \, o, 8, 3, 1)
satlsfylng a_(SNE) condition we can find a new tuple
(v, \, v, vé, V3, T), with B(s) = s* for all s > 0, satisfying
a (SNE) condition. As it results from the proof of (P3), with

h'_u VR :“(2a° , Bo € (0,1) and for some by > 0
we have

5z, t) == (%)7( (,) + 2bo) o ,

a(s) == was (s), 3(s) := ¢35 (s)

Upon the (UUB) condition on (v, o, (, &, t), it follows for all
t=>t

1.
— (a([[h(z,d)]))
y )
< Cola, t) + (1) < Chod ™ (z,1) + £(|d])

from which we obtain the new tuple (17, X vad, 1/6 vB,(, €, t)

=3

= a(|[h(z, d))

satisfying a (SSNE) condition with C >0 and § € Ko defined 7/

Sa =130 )EA, Ed = 74 (1)v3(1)Xq and Sy = Y3(1)Zq.
The tuple (A~1,5,V, Z) satisfy a (HL)+(HD.,) condition with
Y4 and 74 as desired. -

D. Proof of Theorem 6.1

We divide the proof in two steps. First, design a Lyapunov
function for the estimation error system, finally we carry out
the asymptotic convergence analysis.

1) A Lyapunov function for the error system: Let Ae :=
e — € be the estimation error and define a candidate Lyapunov
function for the estimation error system as follows

ZL(Ae,z) = Ae” P(2)A (88)

where Z(z) = AT(2)[TA(z). In what follows, for simplicity,
we write z; instead of V; + 7, A; instead of A(V; +4) and
set o(€, X, A) := sat,, (Ae)+ satg, (AX). The estimation
error system can be recast as

Ao = Ade+ €M + 62 45O
— H(2)(Che, + 6D + 6P + 6P) (89)
with
‘Kt(l) = F (A o(Aey +€t,§t7At)aO)
— F(A; 0@, X1, A),0)
‘4(2) = F(Aey + € + )A(t,dt)
— F(A; Yo (Aey + 6, Xy, Ay), dy)
oY = # (A o(Aey + €, X, Ay),0)
- %(A;lo(ét,§t7At),0)7
O = (D, + & + X, dy)
— (Ao (Aey + 8, Xy, Ay), dy)
and
@ = Z(AT'o(Ne; + 8, Xy, Ay),dy)
— F(A'o(Ae; + 6, Xy, Ay),0)
@(3) = H(Ao(Aey +/ét,5\(t,At)adt)

- %(Azlg(Aet +/e\t7§t7At)7O)-

Defining the homotopy Hom(¥, p1,p2) := 9p1 + (1 — 9)p2,
J e [O 1] and p;,ps € R™, and
(Atﬁt)a

=sate,, (Ai(Ae; +€))+sat ¢

s &= 200 pCRBg and &(s) = 250w (s) = A = sate,, (M@) +satg, (AX), A= 1 = #P
1 2 ~ 1 2
C. Proof of (44) 7= Ay (De, + @), 4P = M&, A = 1D — 9,
We prove the claim by transforming the tuple (A_l, ~v,V,Z) the functions %t(l), ﬁt(l), %}3) and ﬁt(g) are easily decomposed

into a new tuple (A~1,5,V,Z) satisfying a (HL)+(HD,)
condition with 54 and 7, satisfying (44) and (45), i.e
Fa(s) = 1 and F4(s) = s~ 1ol for all s > 1. Clearly,
ya(s) = va(1) for all s > 1 and since 4 € Ll there
exists vq,0 < 0 such that y4(s) < fyd(l)s_"“vo‘ for all s > 1.
Upon the form of the (HD,,) condition, we can increase 4
and assume 4(s) ENFyd(l)s*"“vO‘ for all s > 1. Normalize

o L o horma
(v,V,Z) as (¥,V,Z) where ¥4 := T?l) Ny = 'Yd(dl)’

as follows, according to the mean value theorem,

1 —1
1 af(At z,0)
G = (Jo ox

1 A —1
(1 (/%(At x,O)
o' = <L oz

dsat.(w)

1
A%:(L 2w

w:Hom(ﬁ,”fﬂt(l),”fﬂt@))dﬁ) A%

x=Hom(19,“///t(1) ,“/ﬂt(z) ) dﬁ) avi

‘w:Hom(ﬁ’y/t(l)’,Vt(z))d’&) A"f/f, (90)



1 —1 (1)
, OF (A, d)
%(3) = (J;) tad ‘ ‘d:Hom(&dmO)dﬁ)dt
1 —1 (1)
[ oA (A D, d)
o® _ J t 7t dav)d
t ( 0 od ‘d:Hom(ﬁ,dmO) ) '

and by virtue of (By,) for some ¢ > tg
D) =0, 6P@t)=0,Vt =1

(for simplicity set ¢ =
inequalities in (HD,),

tp). On account of the first two

1
28] 26" (1) < a(e0) | {INADel )+
0

2
+|AiAey HzA(x) }z=Hom(19,'%(1)77Vf(2))d19

where we used sup,, |22k (w)| < 1. Analogously,

1
2] 2()67(0) < 1) | {INABe s,
0 d ’

ALl A

Similarly, on account of the last two inequalities in (HD,),

(z,d)=(#,"") ,Hom(9,d;,0))

1
oNe] P(2,) 4 (2,)0" < va(z:) f {||AtAet||—C(T)

HETQOAA b @

and
1
28] (1) )0 < a(a0) | (@I,
0

+HR_ ( )CAtAet H

(z d>}( ) =7 Hom(d,d;,0))

By using (44), (SM) and the inequalities | % I)H HV/(Q | <
nleq, +Xaq,), [Hom(®, #01, #2)| < 2n(eq, + X4, ) and

[Hom(¥,d, 0)| < do for all t > 0 and 9 € [0, 1], we obtain
for t > tp and with ¢ := eq,, + X4,

’ . ‘ 2 2
Z(Berz) < yam){~Ae L (D) + p (e, do )i (@) .

oD

2) Error convergence analysis: We will now prove the
asymptotic bounds (58) and (60). First, since v4 € Ky we
havelim;_, | o SS va(zs)ds = 400, ie. ¥(t) := Sé va(zs)ds is
a time scale. In what follows we use the overbars to denote any
variable in the new time scale. Let .Zy denote £ (Aey,Zy).
From (91) we get in the time scale ¢

42
FERA

for ¥ = J¢ := Y(to). Moreover,

d ~ 1 ~ — -5

—Vyg=——— —A h(xy,d d(d 93

5% = gy (N0 + allha, )] +0(de) ) 03
and, on account of (31) and since v(xs,t) < V; +7 = z; for
t = to by (18),

a(|h(Xs,dg))]

AL+ p2(c,dw)V2(Zy) 92)

< (Zy + &(dy) (94)

for ¥ = ¥y. From (45) and (92) we get for ¥ > 9q
d— Ly 202 (¢, dy)
%02/ —qaU 9, U = 22(29) W

where gq 1= Ar — 4|7a,0/(C + &(d) + 8(d)) > 0 by (50). It
follows from the definition of . that for ¥ = ¥

[A(Zy)Aey|? 2p§0(c doo) 52/790 +1
By applying limsupy_,, . to both members of the above
inequality and going back to the original time scale, we get
the asymptotic bound (58).

Let’s prove the asymptotic bound (60) under the additional
condition (59). From (50) and (92) we get for ¥ > g

e~91(9=00) (95)

202 (¢, do )74 (29)

d__
7yﬂ< N, s

7)\77?19, ?19 = yﬂ -

so that for ¥ =
2
o0

14 (Ca dOO),Y(% (iﬂ)
A

s

_ 9 _
Py < + (L, + 1)eA0=0),

A(Zo) T A(Zs) >

But, by the definition of .# and ¢ since A"
w
‘_‘Z,ﬂi?)\’”i"‘

zZ 2|)‘"“"| for ¥ > ¥o, it follows that [Aey|* < =i
f0r ¥ = 99. Moreover, on account of (44), (93) and (947f)m

7y < e(<+§(doo)+5(doo))(19*190)i190 (96)

for ¥ = 9. Since vy := \/sup5>1 73(3)52\/\%,1\ < 40 by
(45) and (59), we finally get for ¥ > ¥q

_2|A
202 (cdp)’ T (Zg, + 1)
AL A

min min

where 74 1= A — 2|A%. (¢ + €(dw) + 8(d)) > 0 by (50).
By applying limsupy_,, . to both members of the above
inequality and going back to the original time scale, we get
the asymptotic bound (60). <

I3e? < o000

E. Proof of Theorem 6.2
We claim that it is possible to transform the given tuple
(v, A\, ,0,8,(,§ ,j) satisfying a (SSNE) condition into a new
tuple (U, \,@&,0,03,¢, &, ¢) stll satisfying (SSNE) and (68),

which in particular implies
limsup [|[A(V: + 7)x¢] < c.

t—+00

o7

On account of this, with the other assumptions of Theorem
6.2 and the N -filter and state norm estimate associated to the
tuple (0, \,&,4,8,(,&,t), the proof of Theorem 6.2 can be
continued from this point exactly as the proof of Theorem
6.1.

We prove our claim. Let Ay € (0,1). By (SP3) we
can transforrr~1 the tuple (v,\ a,9,53,(,&,1) into a new
(v, X &, 0,08, ¢, 5 t) where B is given in (67). This implies

Since W = TTWpT with Wp = diag{\; € o(W),i = 1,...,n}

and for some orthonormal 7" and using standard properties of matrlx
AT (S)A(s) e2In(s)Wp

exponentials, for all s > 1 it follows X = A =

min
diag{sQ”\i i=1,...,n} 2|2
A ’ ’ ’ > S

. min!.
min



for each (z9,d) € R™ x D the existence of ¢y > ¢ such that
BLE +7) = B (u(xe, 1)) > |x| for all t > to. On the
other hand, since’ |A(s)| < s~Pwmael for all s > 1, it follows
[A((Ve+7)2)x¢| < cforall t > tg and A € (Ag, 1]. Applying
the limsup to both parts of the last inequality, we get the claim.
<
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