We use a sub-ignition scale laser, the 30 kJ Omega, and a novel shallow-cone target to study laser-plasma interactions at the ablation-plasma density scale-lengths and laser intensities anticipated for direct drive shock-ignition implosions at NIF-scale. Our results show that, under these conditions, the dominant instability is convective Stimulated Raman Scatter with experimental evidence of Two Plasmon Decay (TPD) only when the density scale-length is reduced. Particle-in-cell simulations indicate this is due to TPD being shifted to lower densities, removing the experimental back-scatter signature and reducing the hot-electron temperature. The experimental laser energy-coupling to hot-electrons was found to be 1 – 2.5%, with electron temperatures between 35 and 45 keV. Radiation-hydrodynamics simulations employing these hot-electron characteristics indicate that they should not pre-heat the fuel in MJ-scale shock ignition experiments.
Shock ignition laser-plasma interactions in ignition-scale plasmas / Scott, R. H. H.; Glize, K.; Antonelli, L.; Khan, M.; Theobald, W.; Wei, M.; Betti, R.; Stoeckl, C.; Seaton, A. G.; Arber, T. D.; Barlow, D.; Goffrey, T.; Bennett, K.; Garbett, W.; Atzeni, S.; Casner, A.; Batani, D.; Li, C.; Woolsey, N.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 127:(2021). [10.1103/PhysRevLett.127.065001]
Shock ignition laser-plasma interactions in ignition-scale plasmas
S. Atzeni;
2021
Abstract
We use a sub-ignition scale laser, the 30 kJ Omega, and a novel shallow-cone target to study laser-plasma interactions at the ablation-plasma density scale-lengths and laser intensities anticipated for direct drive shock-ignition implosions at NIF-scale. Our results show that, under these conditions, the dominant instability is convective Stimulated Raman Scatter with experimental evidence of Two Plasmon Decay (TPD) only when the density scale-length is reduced. Particle-in-cell simulations indicate this is due to TPD being shifted to lower densities, removing the experimental back-scatter signature and reducing the hot-electron temperature. The experimental laser energy-coupling to hot-electrons was found to be 1 – 2.5%, with electron temperatures between 35 and 45 keV. Radiation-hydrodynamics simulations employing these hot-electron characteristics indicate that they should not pre-heat the fuel in MJ-scale shock ignition experiments.File | Dimensione | Formato | |
---|---|---|---|
Scott_etal_2021-PRL-accepted-Omega_SI_conical_target_paper210621.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
7.65 MB
Formato
Adobe PDF
|
7.65 MB | Adobe PDF | Contatta l'autore |
Scott_shock_2021.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.