Extending work of Meinhardt and Partsch, we prove that two varieties are isomorphic away from a subset of a given dimension if and only if certain quotients of their categories of coherent sheaves are equivalent. This result interpolates between Gabriel's reconstruction theorem and the fact that two varieties are birational if and only if they have the same function field.
Gabriel's theorem and birational geometry / Calabrese, J.; Pirisi, R.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 149:3(2021), pp. 907-922. [10.1090/proc/14990]
Gabriel's theorem and birational geometry
Pirisi R.Co-primo
2021
Abstract
Extending work of Meinhardt and Partsch, we prove that two varieties are isomorphic away from a subset of a given dimension if and only if certain quotients of their categories of coherent sheaves are equivalent. This result interpolates between Gabriel's reconstruction theorem and the fact that two varieties are birational if and only if they have the same function field.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Calabrese_postprint_Gabriel's-theorem_2021.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
255.79 kB
Formato
Adobe PDF
|
255.79 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.