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Abstract. Extending work of Meinhardt and Partsch, we prove that two
varieties are isomorphic away from a subset of a given dimension if and only
if certain quotients of their categories of coherent sheaves are equivalent. This
result interpolates between Gabriel’s reconstruction theorem and the fact that
two varieties are birational if and only if they have the same function field.
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It is a well-known fact that two varieties (i.e., irreducible and reduced schemes
of finite-type over a field k) X and Y are birational if and only if their function
fields are isomorphic. At the same time, a theorem of Gabriel says that X and Y
are isomorphic if and only if their categories of coherent sheaves are equivalent (as
k-linear categories). In this article we show that these results are actually related:
they are the two extreme cases of our main theorem.

Before giving a precise statement, we introduce some notation. For an inte-
ger k, we write Coh≤k(X) ⊂ Coh(X) for the subcategory of sheaves supported
in dimension at most k. There is a robust theory of quotients of abelian cate-
gories, and we define Ck(X) ∶= Coh(X)/Coh≤k−1(X). It is often convenient to
re-index these categories by codimension, defining Cc(X) ∶= CdimX−c(X). We have
CdimX(X) = Coh(X), and one shows that C0(X) is equivalent to finite-dimensional
vector spaces over the function field of X. Finally, recall that two schemes X and
Y of finite-type over a field are isomorphic in codimension c (resp., outside of di-
mension k − 1) if there exist open subsets U ⊂X, V ⊂ Y such that U is isomorphic
to V , and the codimensions of X ∖U and Y ∖V are at least c+ 1 (resp., dimension
at most k − 1). In particular, two varieties X and Y are birational if and only if
they are isomorphic in codimension zero.

Received by the editors February 4, 2019, and, in revised form, October 2, 2019, and December
9, 2019.

2010 Mathematics Subject Classification. Primary 14E05, 14F05.
Key words and phrases. Reconstruction theorem, birational morphism.

©2020 American Mathematical Society

907

Licensed to Mathematisches Forschungsinstitut. Prepared on Tue Jun 22 11:28:13 EDT 2021 for download from IP 188.1.238.118.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/proc/
https://www.ams.org/proc/
https://doi.org/10.1090/proc/14990


908 JOHN CALABRESE AND ROBERTO PIRISI

Theorem. Two schemes of finite-type over a field X,Y are isomorphic in codi-
mension c if and only if the categories Cc(X), Cc(Y ) are equivalent.

This is proven in Theorem 3.7. Note that we do not need to assume our schemes
to be reduced or irreducible.

As in Gabriel’s theorem for Coh(X), we can also characterize the group of au-
toequivalences. Let Aut≤c(X) (resp., Aut≥k(X)) denote the group of birational
self-maps which are defined away from a closed subset of codimension at least c
(resp., dimension at most k − 1).

Let Pic≤c(X) (resp., Pic≥k(X)) denote the group (under tensor products) of
sheaves which are invertible away from a closed subset of codimension at least
c + 1 (resp., dimension at most k − 1). The group Aut≤c(X) acts on Pic≤c(X) by
(f,L) ↦ (f−1)∗L. We may thus form the semi-direct product Aut≤c(X)⋉Pic≤c(X).

Theorem. Let X be a scheme of finite-type over a field. There is an isomorphism
between Aut(Cc(X)), the group of autoequivalences, and Aut≤c(X) ⋉Pic≤c(X).

This is proven in Theorem 4.1.

Dimension vs. codimension. Although the theorems here are stated in terms
of the codimension c = dim(X) − k, which the authors consider more elegant and
intuitive, the rest of the paper is written in terms of the dimension k. The latter
is much better behaved for our purposes, especially in the context of disconnected
or reducible spaces. For example, if a scheme X is reducible it can have an open
subset U of positive codimension r, which means that the restriction of an element
F ∈ Cc(X) would be in Cc−r(U).

Previous work. Gabriel originally proved his reconstruction theorem in [8]. This
was later generalized considerably by various people [3, 4, 12]. In [10], Meinhardt
and Partsch were interested in constructing stability conditions on the (derived
categories of the) quotient categories Cc(X). Along the way they showed the c = 0
and c = 1 cases of our main result, when X,Y are smooth and projective over an
algebraically closed field.

Future work. It is of course tempting to speculate about possible future direc-
tions. While we do not expect our work to immediately be useful in constructing
more stability conditions on the derived category of the quotients D(Cc(X)), we can
certainly see our main theorem being used to reduce the problem to simpler cases.
Indeed, if X and Y are isomorphic in codimension c, then constructing stability
conditions on D(Cc(X)) is just as hard as constructing them on D(Cc(Y )).

Diverging a little from [10], finding the precise relationship between the derived
category D(X) and the birational geometry of X has been an active area of research
for quite some time (see [5] for an excellent overview). We wonder if the study of
the derived category of the quotients D(Cc(X)), or some intermediate version of
them, might help make some progress in the matter.

Going in a different direction, we will point out later in the paper that the
construction of the quotients Ck(X) is completely intrinsic to the abelian cate-
gory Coh(X). We wonder if this observation could be useful in the study of non-
commutative birational geometry. See Section 2.5 for more details.
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GABRIEL’S THEOREM AND BIRATIONAL GEOMETRY 909

Conventions. For the entirety of this paper we fix a base (commutative) noether-
ian ring k. All algebras, schemes, categories, morphisms, and functors are implicitly
assumed to be over k. Starting from Section 3, all schemes will be assumed to be
of finite-type over k. If X is a scheme, U ⊂ X is open, and F is a sheaf on X, we
will write FU for the restriction (i.e., pullback) of F to U . If R is a ring, we will
write mod(R) for the category of finitely generated R-modules.

1. Quotient categories

We begin by briefly reviewing some standard notions and later introduce some
notation. We refer to [7, 8] for a thorough treatment of quotients of abelian cate-
gories. Let A be an abelian category. A subcategory S ⊂ A is Serre if, given an
exact sequence A → B → C, then B ∈ S if and only if A,C ∈ S. Given a Serre
subcategory S ⊂ A, we may form the quotient Φ∶ A → A/S, and the projection Φ
is exact. This category is initial among all abelian categories B equipped with an
exact functor Ψ∶ A → B such that Ψ(S) = 0 for all S ∈ S. Recall that the kernel
of a functor Φ is the full subcategory whose objects satisfy Φ(M) = 0. The Serre
subcategory S is precisely the kernel of A → A/S.

Lemma 1.1. Let A/S be a quotient category.

● P ≡ 0 if and only if P ∈ S.
● If 0 ⇀ A ⇀ B ⇀ C ⇀ 0 is short exact in A/S, then there exist objects
A′,B′, C ′ and isomorphisms (in A/S) A ⇀ A′, B ⇀ B′, C ⇀ C ′, and a
short exact sequence 0→ A′ → B′ → C ′ → 0 in A, such that the diagram

0 A′ B′ C ′ 0

0 A B C 0

commutes in A/S.

Proof. The first claim follows from [9, Prop 7.1.20 (ii)], the second is [7, Cor 15.8].
�

Lemma 1.2. Let S1 ⊂ S2 ⊂ A be two Serre subcategories of the abelian category
A. Then S2/S1 is a Serre subcategory of A/S1 and the quotient A/S2 is naturally
equivalent to the iterated quotient (A/S1) / (S2/S1).

Proof. The first assertion follows from the definitions, while the second is a conse-
quence of the universal property. �

Let A/S be a quotient category. Let P,Q ∈ A. To distinguish arrows in A from
arrows in A/S, we will write P → Q for an arrow in A and P ⇀ Q for its image
in A/S. If two objects P,Q ∈ A become isomorphic in A/S, we will write P ≡ Q.
Finally, a morphism f ∶P → Q such that kerf, cokerf ∈ S will be called a weak
equivalence.
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910 JOHN CALABRESE AND ROBERTO PIRISI

The quotient category A/S may be concretely built as follows [9, Exercise 8.12].
The objects of A/S are the same as the objects of A. A morphism P ⇀ Q is an
equivalence class1 of “roofs”, i.e., diagrams

U

P Q

with U → P a weak equivalence.

1.1. Dimension. LetA be an abelian category. We say an object P isminimal if it
has no non-trivial sub-objects.2 Note that for us the zero object is also minimal (this
is slightly non-standard). We let S0 be the smallest Serre subcategory containing
all minimal objects of A. Let A1 = A/S0. Since A1 is also an abelian category,
we may repeat the process. Let S ′1 be the smallest Serre subcategory containing
all minimal objects of A1 and let A2 = A1/S ′1. We define S1 to be the kernel of
A → A1 → A2. By iterating we obtain a sequence of quotients

A = A0 ↠A1 ↠A2 ↠A3 ↠⋯↠ {0}(1.1)

and, by taking kernels, we find a nested family of Serre subcategories

{0} ⊂ S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ ⋯ ⊂ A.(1.2)

Of course, it need not be the case that there is a k such that Ak = {0} or that
Sk = A.

Definition 1.3. The Krull dimension of A is

dimA ∶= inf{k ∣ Ak+1 = 0} = inf{k ∣ Sk = A}.

We also define

dimM ∶= inf{k ∣M = 0 in Ak+1} = inf{k ∣M ∈ Sk}

for any object M ∈ A.

These definitions are of course justified by the algebro-geometric context.

1.2. The geometric case. In this subsection, X denotes an arbitrary noetherian
scheme. Let C = Coh(X) be its category of coherent sheaves. As before, we write
Sk = Sk(X) for the sequence of kernels as in (1.2) (here C has taken the role of A).
Denote by Coh≤k(X) the category of sheaves supported in dimension at most k.

Proposition 1.4. We have Sk(X) = Coh≤k(X).

Before we prove this result, we need an alternative way to compute morphisms
in our quotients. We define C0 = C and Ck = C/Sk−1 for all other k.

Let Σ be a family of supports, i.e., a collection of closed subsets of X such that

● ∅ ∈ Σ,
● if Z ∈ Σ, V ⊂ Z is closed, then V ∈ Σ,
● if Z1, Z2 ∈ Σ, then Z1 ∪Z2 ∈ Σ.

1An equivalence of roofs is a commutative diagram as in Lemma 1.5.
2What we call minimal objects are often called simple objects. However, by a simple sheaf

one typically means one that has only scalar endomorphisms.
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GABRIEL’S THEOREM AND BIRATIONAL GEOMETRY 911

For example, Σ might be the collection of all closed subsets of X of dimension at
most k. Write CohΣ(X) ⊂ Coh(X) for the subcategory of sheaves F such that
suppF ∈ Σ. Because of our assumptions, CohΣ(X) is a Serre subcategory. We
write Q = Coh(X)/CohΣ(X) for the quotient.

Lemma 1.5. Let F,G ∈ Coh(X). Then

HomQ(F,G) = lim�→
∅⊂U⊂X
X∖U∈Σ

HomU(FU ,GU),

where FU ,GU denote the restrictions to U .

Proof. We will define mutually inverse maps, following [10, Lemma 3.6]. We start
by constructing a map from right to left. Any element of the right hand side may be
represented as a pair (U, f), where X ∖U ∈ Σ and f ∶FU → GU . Write Γf ⊂ FU ⊕GU

for the graph of f . Let E ⊂ F ⊕G be any coherent sheaf such that EU = Γf . Then

E
pr1��→ F is a weak equivalence in Q, so the roof F

pr1←�� E
pr2��→ G represents an

element f ∈ HomQ(F,G).
Suppose now f ′∶FU ′ → GU ′ represents the same element as (U, f). As above,

we construct a roof F
pr′1←�� E′

pr′2��→ G. Since (U, f) and (U ′, f ′) must eventually
agree, there exists an open subset U ′′ with fU ′′ = f ′U ′′ and such that E′′ = E ∩E′ is
equivalent to both E and E′ through the inclusion map. The commutative diagram

E′′
i

����
��
� j

���
��

��

E
pr1

����
��
�

pr2 �����
����

����
����

�� E′

pr′1������
����

����
���� pr′2

���
��

��

F G

shows that the two roofs are equivalent precisely as in [10, Lemma 3.6].

Consider now a morphism f ∈ HomQ(F,G), represented by the roof F
s
←� E

t
�→

G. Since s is a weak equivalence (by definition of roof), we have supp(ker(s)) ∪
supp(coker(s)) ∈ Σ. Let U be its complement. Once we restrict to U , s becomes
an isomorphism, hence the map t ○ s−1∶FU → GU makes sense. To make sure the
function f ↦ t ○ s−1 is well defined, we use that two different roofs representing
the same morphism must be equivalent. Indeed, up to restricting to a smaller
subset, we will obtain the same map. Finally, since we are allowed to choose ad hoc
representatives, one checks the two maps just defined compose to the respective
identities. �

Lemma 1.6. An object P ∈ Coh(X)/Coh≤k−1(X) is minimal if and only if either
P ≡ 0 or P ≡ OZ for Z ↪X an integral closed subscheme of dimension k.

Proof. Let us write Q = Coh(X)/Coh≤k−1(X). We begin by showing that OZ is
minimal for Z ↪ X an integral closed subscheme. Suppose OZ sits in the middle
of a short exact sequence in Q. By Lemma 1.1, this means that, up to passing to
an equivalent object B ≡ OZ , there is a short exact sequence in Coh(X)

0→ A→ B → C → 0.

The goal is to show that either C ≡ 0 or that B → C is a weak equivalence.
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912 JOHN CALABRESE AND ROBERTO PIRISI

Let η be the generic point of Z and let R = OX,η be the corresponding local ring
with maximal ideal m. By taking germs, we get a short exact sequence

0→ Aη → Bη → Cη → 0

of R-modules. Since B and OZ are isomorphic up to Coh≤k−1(X), we have Bη ≃
OZ,η = R/m. It follows that either Cη = 0 or Cη = Bη.

If Cη = 0, then dimsuppC < k, which implies C ≡ 0. If Cη = Bη, then
dimsuppA < k, which implies C ≡ B ≡ OZ .

To prove the other direction, let F ∈ Coh(X) represent a minimal element in Q.
Let Z be the scheme-theoretic support of F , i.e., Z = V (Ann(F )). If dimZ < k,
then F ≡ 0. If not, without loss of generality we may assume Z is irreducible,
reduced, and of dimension k. This previous claim follows by minimality: we always
have a surjection F ↠ F /IF for I the ideal sheaf of a closed subscheme of Z.

By the argument above, we already know OZ is minimal in Q. Our goal is to
construct a non-zero map OZ ⇀ F , proving OZ ≡ F .

Write i∶Z ↪ X for the inclusion. We know F = i∗F
′, where F ′ = i∗F ∈ Coh(Z).

Let U ⊂ Z be an affine open. We must have a non-torsion element a ∈ F ′U , otherwise
the whole F ′ would be torsion and dimZ < k. Now view a as a non-zero map
OU → F ′.

Let W = Z ∖U . Since Z is irreducible, we must have dimW < k. Let Ũ =X ∖W .
We have

HomŨ (OŨ , FŨ) = HomŨ (OŨ , iU∗ (F
′
U)) = HomU (OU , F

′
U) .

Since the map OU → F ′U is compatible with further restricting Ũ , by Lemma 1.5
we have cooked up a non-zero map OZ ⇀ F . The claim follows. �

Lemma 1.7. The subcategory Coh≤k(X) ⊂ Coh(X) is the smallest Serre subcat-
egory containing Coh≤k−1(X) and all the sheaves OZ , with Z ↪ X integral closed
subscheme and dimZ = k.

Proof. It is easier to work in the quotient Q = Coh(X)/Coh≤k−1(X). The claim
is equivalent to showing the following. Suppose S ⊂ Q is a Serre subcategory
containing all OZ , for Z ↪ X an integral closed subscheme with dimZ = k, and
suppose F ∈ Coh≤k(X). Then F ∈ S.

If F = OZ , with Z integral, then F ∈ S by assumption. If F = OY , with Y reduced
but possibly reducible, let Y1, . . . , Yr be its irreducible components, equipped with
the reduced scheme structure. The sheaves OYi

all belong to S by assumption.
There is a map OY → OY1

⊕⋯⊕OYr
. Since the intersection of all minimal primes

in a reduced ring is zero, this map is injective. As S is a Serre category, it follows
that OY ∈ S.

Suppose now F ∈ Coh≤k(X) satisfies the following: there exists a reduced Y ,
with ideal sheaf I, dimY ≤ k, and IF = 0. Let i∶Y ↪ X be the inclusion. By
assumption there is an F ′ ∈ Coh(Y ) such that i∗F

′ = F . Let now W ⊂ Y be a

closed subset, with dimW < k, and such that U = Y ∖W is affine. Let Ũ =X ∖W .
The restriction F ′U is globally generated, hence there is a surjective map O⊕rU ↠ F ′U .
By pushing forward, there is a surjection O⊕r

Ũ
↠ FŨ . Using Lemma 1.5, this induces

a surjection O⊕rY ↠ F in the category Q. Since OY ∈ S, we see that F ∈ S.
Suppose now F ∈ Coh≤k(X) is arbitrary. Let Y be its scheme-theoretic support.

Let I ⊂ OX be the ideal sheaf defining Yred. By noetherianity, there exists an m
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GABRIEL’S THEOREM AND BIRATIONAL GEOMETRY 913

such that Im+1F = 0. We have a string of short exact sequences

0→ IF → F → F /IF → 0

0→ I2F → IF → IF /I2F → 0

⋯

0→ ImF → Im−1F → Im−1F /ImF → 0.

Now, I(IaF /Ia+1F ) = 0 for any a, hence they belong to S. Using induction starting
from I(ImF ) = 0, and using as always that S is Serre, we see that F ∈ S. �

Proof of Proposition 1.4. We proceed by induction on k. By definition, S0 is the
smallest Serre subcategory containing all the minimal objects of Coh(X). By
Lemma 1.6, these are precisely the skyscraper sheaves. By Lemma 1.7, S0 =
Coh≤0(X).

Suppose the theorem is true for k − 1, let

Q = Coh(X)/Coh≤k−1(X) = Coh(X)/Sk−1.

Let S be the smallest Serre subcategory of Q, containing all minimal objects of Q.
By definition, Sk is the kernel of Coh(X) → Q → Q/S. By Lemma 1.6, the minimal
objects of Q are precisely the OZ with Z integral of dimension k. Combined with
Lemma 1.7, we see that S is the image of Coh≤k(X). Hence, Sk = Coh≤k(X). �

The following result follows from Lemma 1.5, and will be useful later.

Lemma 1.8. Let P be a non-zero minimal object in Ck, corresponding to a (non-
necessarily closed) point x ∈ X. We have HomCk(P,P ) = κ(x), where κ(x) is the
residue field of the point x.

From now on we will write Ck = Ck(X) = Coh(X)/Coh≤k−1(X).

2. A locally ringed space

For this section, let X be a finite-dimensional noetherian scheme, which (as per
our blanket conventions) is, moreover, defined over our base ring k. Our present
goal is to define an auxiliary locally ringed space Θk = Θk(X,L), depending on X,
an integer k and a sheaf L. This space will control the isomorphism type of X up to
subsets of dimension k − 1. A posteriori it will be obvious that Θ does not depend
on the sheaf L. The reason we initially insist on the dependency on L will become
clear in the next section: an equivalence Ck(X) ≃ Ck(Y ) need not send OX to OY .

We say a point x ∈ X has dimension k if dim {x} = k. Put differently, x is the
generic point of a subvariety of dimension k, which when X is equidimensional and
catenary is in turn equivalent to dimOX,x = dimX − k. We write X≥k ⊂ X for
the subset of points of dimension at least k. In particular, X≥k always contains
the generic points of the irreducible components of dimension at least k of X. We
endow X≥k with the subspace topology. If i∶X≥k → X denotes the inclusion, we
may view the former as a locally ringed space with structure sheaf i−1OX . This
space will turn out to be isomorphic to the space Θk we are about to define. Using
this, we will show that an isomorphism Ck(X) ≃ Ck(Y ) induces an isomorphism
X≥k ≃X≥k, a fundamental step in proving our theorem.
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914 JOHN CALABRESE AND ROBERTO PIRISI

Before we proceed, recall that i−1OX is (by definition) obtained by sheafifying
the presheaf i+OX , given by

V ↦ lim�→
U⊃V

OX(U),

where the limit ranges over all U ⊆X open and containing V ⊆X≥k.

Lemma 2.1. The presheaf i+OX is already a sheaf, hence

i−1OX(V ) = lim�→
U⊃V

OX(U).

Proof. The locality of i+OX is a simple consequence of OX being a sheaf and is left
to the reader. It remains to prove that i+OX satisfies the gluing condition.

Let V ⊆ X≥k be open. A section [α] in i+OX(V ) can be represented by an
α ∈ OX(U), for U ⊆ X open and V ⊂ U . Let {Vi}i∈I be an open cover of V . We
may assume the set I to be finite.

Let [αi] ∈ i+OX(Vi) be a collection of sections such that [αi]∣Vi∩Vj = [αj]∣Vi∩Vj .
For each i, suppose αi ∈ OX(Ui) for Vi ⊂ Ui ⊂ X. Up to removing a closed subset,
we can assume that Ui ∩X≥k = Vi. Now, for each pair ij, we may choose an open
subset Vi∩Vj ⊂ Uij ⊂ Ui∩Uj , such that αi∣Uij = αj ∣Uij . Note that Wij = Ui∩Uj∖Uij

has dimension at most k−1 as the k-dimensional points of Ui∩Uj belong to Vi∩Vj .

Consider the open subset Ũ = ⋃iUi∖⋃i,j Wij , which is open and contains X≥k, and

replace the open subsets Ui with U ′i = Ui ∩ Ũ .
Since OŨ is a sheaf, and U ′i ∩ U ′j ⊂ Uij , there exists α ∈ U restricting to αi on

U ′i , which gives the desired section as the complement of Ũ in X has dimension at
most k − 1. �
2.1. The topological space Θk. We now come to the definition of Θk. Let k ≥ 0
be an integer. As a set, Θk consists of isomorphism classes of (non-zero) minimal
objects of Cd(X), where d ranges between k and dim(X):

Θk ∶= ⋃
d≥k

{0 ≠ P ∈ Cd(X) ∣ P minimal}/iso

We define a topology on Θk, by declaring what the closure of a point ought to be.
Let P ∈ Coh(X) represent a non-zero minimal object in Cd(X), with d ≥ k.

Intuitively, if P ∈ Cd(X) represents the structure sheaf of an integral closed
irreducible subscheme Z of X, we want its closure in Θk to contain all the structure
sheaves of closed subschemes Q ⊂ Z of dimension k or higher. These structure
sheaves will live in the (larger) categories Cj , where j ranges between k and d. A
necessary and sufficient condition for the support of such a Q to belong to Z is that
all possible inverse images P ′ of P in Cj surject to it.3

Concisely, we can define

ZP ∶= ⋃
d≥j≥k

⋂
P ′∈Cj(X)

P is the image of P ′

{0≠Q ∈ Cj(X) ∣ Q is minimal, Q is a quotient of P ′}/iso

We endow Θ with the coarsest topology containing the sets Θ ∖ ZP for all P ∈
Coh(X).

3Note that we have to necessarily take all possible inverse images of P ′: for example a point
P ∈ C2(A

3) representing the structure sheaf of a plane H in A
3 will have among its inverse images

in C1(A
3) the structure sheaf of H ∪ l, where l is any line, and of H ∪ p, where p is a point, and

we have no a priori way to tell them apart.
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GABRIEL’S THEOREM AND BIRATIONAL GEOMETRY 915

Lemma 2.2. Consider the map of topological spaces X≥k → Θk given by

x↦ O
{x}

,

where {x} is equipped with the reduced scheme structure. This map is a homeomor-
phism.

Proof. Since X is noetherian, the subsets X ∖{x}, as x varies in X, form a basis of
the Zariski topology, and consequently of the induced topology on X≥k. Proposition
1.4 and Lemma 1.6 allow us to conclude. �

2.2. A Picard group. We introduce now the analogue of Pic(X) for the category
Ck(X). We define Pic≥k(X) to be the group (under tensor product) of isomorphism
classes of objects L1 ∈ Ck(X) for which there exists a representative L ∈ Coh(X)
satisfying the following property: there exists an open subset U ⊂ X, such that
X≥k ⊂ U , and the restriction LU is an invertible sheaf. Put concisely: Pic≥k(X)
consists of (the Ck(X)-isomorphism classes of) those L which are line bundles away
from a closed subset of dimension at most k−1. We will see in Proposition 2.7 that
this definition is intrinsic to the category Ck(X).

2.3. The locally ringed space Θk. Fix now L ∈ Pic≥k(X). We will now define a
sheaf of rings OΘk

on Θk, depending on L. For V ⊂ Θk an arbitrary open subset,
we define

OΘ(V ) ∶= lim�→
U⊃V

HomU(LU , LU),

where U ⊃ V runs over all open subsets of X containing V .

Proposition 2.3. The assignment V ↦ OΘk
(V ) defines a sheaf of rings on Θk,

making (Θk,OΘk
) into a locally ringed space. Moreover, the homeomorphismX≥k →

Θk from Lemma 2.2 induces an isomorphism of sheaves between OΘk
and i∗OX ,

making it an isomorphism of locally ringed spaces over Speck.

Proof. Suppose first L = OX . Then Lemmas 2.2 and 2.1 imply the claim. Let L be
general. There exists then an open subset U , with X≥k ⊂ U , such that L becomes
invertible once restricted to U . But then the natural map OX → HomX(L,L) also
becomes an isomorphism once restricted to U . The claim then follows from the
case where L = OX . �

2.4. Intermezzo. To proceed with the final proof of this section, we have to intro-
duce one last category. Suppose 0 ≠ P ∈ Ck(X) is minimal, and denote by x ∈ X≥k
the corresponding point. In particular, if Z = {x}, the sheaf OZ represents P . The
goal is to define a category CP , recovering the local ring OX,x at x.

For F ∈ Coh(X), we define its topological k-support to be suppk F ∶=X≥k∩suppF .
Using the homeomorphism of Lemma 2.2, we may view suppk F as a closed subset

of Θ. Similarly, if G ∈ Cd(X) with d ≤ k, we define suppk G = suppk G̃, where

G̃ ∈ Coh(X) is any representative of G.

Lemma 2.4. Given an element F ∈ Coh(X), the subset suppk(F ) ⊂ X≥k only
depends on the class of F in Ck.

Proof. Let P be a minimal object in Ck. Then by Lemma 1.5 the corresponding
point P ∈X≥k belongs to suppk(F ) if and only if HomCk(F,P ) ≠ 0. �
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916 JOHN CALABRESE AND ROBERTO PIRISI

Consider the collection of E ∈ Θk such that P ∉ suppk E, and let SP ⊂ Ck(X) be
the smallest Serre subcategory containing them. We define CP to be the quotient
Ck(X)/SP . Furthermore, write EP for the class of E in CP .

Lemma 2.5. Let L ∈ Pic≥k(X). We may identify the ring EndCP (L) with the local
ring OX,x. Moreover, the functor CP → mod(OX,x) sending E to HomCP (L,E) is
an equivalence.

In particular we may identify the stalk Ex ∈mod(OX,x) with the object EP ∈ CP .

Proof. Let Σx be the collection of closed subsets of X not containing x. From the
definition of SP , we see that Coh(X)/SΣx

= CP . Using Lemma 1.5, we see

HomCP (E,F ) = lim�→
x∈U⊂X

HomU(EU , FU) = HomOX,x
(Ex, Fx).

Since Lx = OX,x, we have

OX,x = EndOX,x
(OX,x) = EndCP (L), HomCP (L,E) = HomOX,x

(OX,x,Ex) = Ex.

Hence the functor is fully faithful. To prove it is essentially surjective, it suffices
to observe that, given a finitely generated OX,x-module M , there exists a coherent
sheaf E ∈ Coh(X) such that Ex =M . �

Remark 2.6. When X in the above lemma is integral, and x is its generic point,
then OX,x =K(X) is its function field. It then follows that CdimX(X) = COX

, and
the functor COX

→ mod(K(X)) is an equivalence. Hence CdimX(X) captures the
birational type of X.

2.5. A non-commutative remark. Following up Remark 2.6, we briefly discuss
a non-commutative avenue. One perspective on non-commutative geometry is that
a non-commutative space should be given by an abelian category A, satisfying
some niceness properties. Much work has been devoted to this point of view; see
for example [1, 2, 13, 16]. A basic question is then whether there exists a non-
commutative analogue of birational geometry. For example in [14] one finds a
candidate for a function field of a general A, and in [11] there are interesting
examples of birational non-commutative surfaces.

However, a complete and satisfactory theory of non-commutative birational ge-
ometry does not seem to exist presently. For instance, to capture higher dimensional
phenomena (such as flops and flips), one needs to know not just when two spaces
are merely birational, but also when they are isomorphic in a certain codimension.

On the other hand, as we discussed in the previous section, the categories
Coh≤k(X) are intrinsic to the category Coh(X). Indeed, given an abelian cat-
egory A, we may form our sequence of quotients Ak as in (1.1). In light of Remark
2.6, if there exists an n such that An ≠ 0 but An+1 = 0, we would view An as the
non-commutative function field of A. It would be interesting to see the relation
between this and Smith’s function field [14].

In general, given the main theorem of this paper, the quotient categories Ak (for
k ≥ n) could be seen as capturing the non-commutative space A, up to a certain
codimension.

2.6. Equivalences. We conclude this section by showing that equivalences of the
quotient categories induce an isomorphism of the locally ringed spaces.
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Proposition 2.7. Let X, Y be schemes of finite-type over k. A k-linear equivalence
Φ∶ Ck(X) → Ck(Y ) induces an isomorphism of locally ringed spaces φ∶X≥k → Y≥k.

Proof. Let L ∈ Coh(Y ) be a representative for Φ(OX). We claim that L is a line
bundle away from a small enough closed subset. It follows from the claim that
the equivalence Φ induces an isomorphism of locally ringed spaces Θk(X,OX) ≃
Θk(Y,Φ(OX)). The proposition then follows: the former is isomorphic to X≥k, and
the latter to Y≥k, as locally ringed spaces.

Notice first that OX satisfies the following property: if P is any non-zero minimal
object of Ck(X), then HomCk(X)(OX , P ) is a one-dimensional EndCk(X)(P ) vector
space. Moreover, OX is locally maximal with respect to this property: given F such
that HomCk(X)(F,P ) is one-dimensional, any surjection F → OX in CP must be
an isomorphism. Since these two properties are categorical (i.e., intrinsic to Ck(X)
and the minimal object P ) they will be satisfied by L as well.

We claim that, for any sheaf L satisfying the two properties above, there exists
an open subset U ⊂ Y , with Y≥k ⊂ U , such that the restriction LU is a line bundle.
Indeed, consider the function β∶Y → N, taking y ∈ Y to the rank of the fiber
β(y) = dimκ(y)L⊗κ(y). This function is upper semicontinuous. The locus {β = 0}
is therefore open. Let Z be the union of the irreducible components of dimension
strictly less than k. We see that {β = 0} ∩ (Y ∖ Z) is empty. Therefore, the locus
U = {β = 1}∩(Y ∖Z) is open, and (by assumption) contains all points of dimension
k. By Nakayama, the OY,y-module Ly has rank 1 at all points y in U . Using
Lemma 2.5, and the local maximality property of L, we deduce that Ly = OY,y at
all points of dimension k, as there is by definition a surjection OY,y → Ly, which
must be an isomorphism by maximality. Finally, the set of points y such that Ly

is free is open. Since it contains all points of dimension k it follows that Ly is free
of rank 1 at all points in a subset U ′ containing all points of dimension k. �

3. Gabriel’s theorem

As usual, let k be our base ring, and let X, Y be schemes over it. Recall that we
write Ck(X) for the quotient Coh(X)/Coh≤k−1(X), with analogous notation for Y .
To prove our main theorem we will deal with the two directions separately.

3.1. The “hard” direction. Suppose we have an equivalence of categories Ck(X)
≃ Ck(Y ), which by default is assumed linear over k. Proposition 2.7 implies there
is an isomorphism of locally ringed spaces X≥k ≃ Y≥k over Speck.

Proposition 3.1. Let φ∶X≥k → Y≥k be an isomorphism of locally ringed spaces over
Speck. There exist open subsets U ⊂ X,V ⊂ Y containing all points of dimension
≥ k, and an isomorphism f ∶U → V of k-schemes, which restricts to φ.

Let us start with a lemma.

Lemma 3.2. Let X,Y be schemes of finite-type over k. Assume there is an iso-
morphism of k-algebras between local rings OX,p ≃ OY,q where p ∈X, q ∈ Y are not
necessarily closed. Then there are open subschemes p ∈ U ⊂X, q ∈ V ⊂ Y such that
U ≃ V as k-schemes.

Proof. Fix open neighborhoods p ∈ Spec(A) ⊂ X, q ∈ Spec(B) ⊂ Y , and consider
the composition B → Bq → Ap. Given a finite set of generators y1, . . . , yn for B
as a k-algebra, their images will be in the form x1/s1, . . . , xn/sn where x1, . . . , xn
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918 JOHN CALABRESE AND ROBERTO PIRISI

belong to A and s1, . . . , sn belong to A ∖ I(p). Here I(p) ⊂ A denotes the prime
ideal corresponding to the point p ∈ SpecA.

The image of B is thus contained in S−1A where S is the multiplicative set
{si11 . . . sinn }. The inclusion Spec(S−1A) ⊂ Spec(A) is open and contains the point
p. Hence we just constructed a map W → Spec(B) where W is a neighborhood of p,
sending p to q. By restricting to open subsets p ∈ U ⊂ Spec(A) and q ∈ V ⊂ Spec(B),
we may further assume this map to be unramified, quasi-finite, and of degree one
at all points, i.e., an isomorphism. �

Lemma 3.3. Let U = Spec(A), V = Spec(B) be affine schemes of finite-type over
k, and let f, g∶U → V be two morphisms. Suppose further that there is a p ∈ U
such that f(p) = g(p) = q, and f∗∣OV,q

= g∗∣OV,q
. Then there is an open subscheme

p ∈ U ′ ⊂ U such that f and g are equal when restricted to U ′.

Proof. Let y1, . . . , yn be a set of generators for B as a k-algebra. We know f(yi) =
g(yi) in the localization AI(p) for all i. After inverting a finite number of ele-

ments in A ∖ I(p) we will have f(yi) = g(yi) in S−1A, for some finitely generated
multiplicative set S ⊂ (A∖I(p)). To conclude, set U ′ = Spec(S−1A) ⊂ Spec(A). �

Proof of Proposition 3.1. Let V ⊂ Y be an affine open subset. As Y is of finite-type
over k, the algebra OY (V ) is generated by a finite set y1, . . . , yn of generators. Con-
sider y1, . . . , yn as elements of OY≥k(V ∩ Y≥k). There exists an open subset U ⊂ X,
containing the inverse image of V ∩ Y≥k, such that the elements φ∗(y1), . . . , φ∗(yn)
are represented by elements in OX(U). This induces a morphism φU ∶U → V .

The morphism φU is an isomorphism at all the local rings of points p ∈ V ∩ Y≥k.
By Lemmas 3.2, and 3.3 given any point p ∈ U ∩Y≥k there is a neighborhood Up ⊂ U
such that (φU)∣Up

is an isomorphism. Up to restricting U and V to smaller open
subsets containing all points of X≥k ∩U and Y≥k ∩V , we may then assume that φU

is an isomorphism.
Note that, following the construction above, the morphism φU coincides with

the original φ on all local rings in U ∩X≥k. Explicitly, for each p ∈ X≥k we have
OX≥k,p = OX,p, and φU,p = φp.

Suppose now we apply the same construction to two different open subsets,
obtaining isomorphisms φUi

∶Ui → Vi, φUj
∶Uj → Vj . The two maps must agree on

local rings for all p ∈ Ui ∩ Uj ∩ Y≥k. Lemma 3.3 informs us that, up to removing a
closed subset of dimension at most k − 1 from Ui and Uj and their images, the two
maps must agree. Pick now a finite open affine cover U1, . . . , Un of X. We may
iterate the procedure above to all m-fold intersections, with m ≤ n, refining our
open cover and obtaining the claim. �

3.2. The “easy” direction. The converse direction, i.e., that a birational map
induces an equivalence of categories, is actually false in the generality we have
maintained so far.

Remark 3.4. Let X be the spectrum of a DVR R, with closed point x and open
point η. Let K = OX,η be the field of fractions of R. Let Y be SpecK, and
write y for the unique point of Y . Then X and Y are birational, in the sense that
OY,y ≃ OX,η, but X≥1 ≄ Y≥1. Indeed, the former consists of just η, while the latter
is empty. At the categorical level, C1(X) ≃ mod(K) while C1(Y ) = 0. The culprit
is the fact that the singleton {η} is open in X, but has smaller dimension than X.
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However, over a field everything works just fine.

Proposition 3.5. Suppose our base ring k is a finite type algebra over a field. Let
j∶U ↪ X be an open immersion. Suppose dimX ∖ U < k. Then j∗ induces an
equivalence Ck(X) ≃ Ck(U).

Proof. Note that every open subset of U whose complement has dimension lower
than k is also an open subset of X with the same property (this fails in the example
above for the empty set and k = 1). Then the statement is a consequence of
[15, Tag 01PI], which assures us that the pullback functor is essentially surjective,
and Lemma 1.5, which tells us that it is fully faithful. �
Remark 3.6. The hypotheses in the previous proposition can be weakened. The
statement holds true as long as we always have that U≥k = X≥k ∩ U , which by [6,
10.6.2] is implied by X being Jacobson, universally catenary and every irreducible
component of X being equicodimensional.

3.3. The main theorem. Assembling our previous results together, we arrive at
our main result. We say two schemes X,Y are isomorphic outside of dimension
k − 1 if there exist isomorphic open subsets U ⊂ X,V ⊂ Y , such that X≥k ⊂ U , and
Y≥k ⊂ V .

Theorem 3.7. Assume our base ring k is a finite type algebra over a field. Let
X,Y be schemes of finite-type over k. Then X and Y are isomorphic (over k)
outside of dimension k − 1 if and only if Ck(X) ≃ Ck(Y ).

Proof. By Proposition 2.7 the equivalence Ck(X) ≃ Ck(Y ) induces an isomorphism
X≥k ≃ Y≥k. Proposition 3.1 allows us to extend the isomorphism to an open subset,
completing the proof. �

4. The group of autoequivalences

Gabriel originally also characterized the autoequivalences of the category of co-
herent sheaves. Indeed, Aut(Coh(X)) = Aut(X) ⋉ Pic(X), where to form the
semi-direct product we use the standard (left) action of automorphisms on line
bundles: (f,L) ↦ f∗L = (f−1)∗L. We want to now describe what happens when
passing to the quotients.

For this section, assume k is a finite type algebra over a field. Let Aut≥k(X)
be the group of birational self-maps X ⇢ X which are defined on an open subset
containing X≥k, modulo the obvious equivalence relation: f ∼ g if the two are equal
on an open subset containing all points of dimension at least k. Recall the definition
of Pic≥k(X) from Lemma 2.2.

Theorem 4.1. There is an isomorphism of groups

Aut(Ck(X)) ≃ Aut≥k(X) ⋉Pic≥k(X).

The action in the semi-direct product is given by (f,L) ↦ (f−1)∗L.

Let G = Aut≥k(X) ⋉ Pic≥k(X). There is an obvious group homomorphism G →
Aut(Ck), sending the pair (f,L) to the auto-equivalence F ↦ (f−1)∗F ⊗L. On the
other hand, an auto-equivalence Φ induces an automorphism of the locally ringed
space X≥k, and hence a birational self-map f . This map is uniquely defined thanks
to Lemma 3.3, which assures us that two automorphisms which are the same on
all points of dimension k or greater have to be the same on a whole open subset
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whose complement has strictly lower dimension. Then we have a (set-theoretic,
a priori) retraction Φ ↦ (f,Φ(OX)), which shows that the map Aut(Ck(X)) ≃
Aut≥k(X) ⋉ Pic≥k(X) is injective. Thus proving the theorem amounts to proving
surjectivity.

To do this, we only need to show that an auto-equivalence τ such that the
induced map on X≥k is the identity and Φ(OX) = OX must be trivial, as then for
any Φ ∈ Aut(Ck(X)) there will always be a Φ′ coming from Aut≥k(X) ⋉ Pic≥k(X)
such that Φ′ ○Φ is the identity.

We do this by constructing a natural isomorphism τ ∶Φ→ IdCk(X).

Lemma 4.2. let M,M ′ be coherent sheaves on X and assume that M ⊗ OX,P =
MP = M ′

P for a point P ∈ X. Then there exists an open neighborhood U of P and
an isomorphism of coherent sheaves MU ≃M ′

U .

Proof. The same argument we used for Lemma 3.2 works here. �

Lemma 4.3. let M,M ′ be coherent sheaves on X and let f, g∶M → M ′ be two
morphisms. If the localizations fx, gx∶Mx → M ′

x are equal for all points x ∈ X≥k,
then there is an open subset X≥k ⊂ U such that the restrictions f ∣U , g∣U are equal.

Proof. The same argument as in Lemma 3.3 shows that given each such x there
is an open neighborhood containing x where the maps are equal. We can then
conclude by the fact that being 0 is an open property. �

Proof of Theorem 4.1. We wish to construct a natural isomorphism τ ∶Φ→ IdCk(X),
as explained earlier. To start, assume that X is affine. Let M be a coherent sheaf
on X. Then

HomCk(X)(OX ,M) = HomCk(X)(Φ(OX),Φ(M)) = HomCk(X)(OX ,Φ(M)).

Fix a representative M ′ ∈ Coh(X) of Φ(M), and let m′1, . . . ,m
′
r generators for

M ′. To each of these corresponds a map s′i∶ OX →M ′. Let s1, . . . , sr be the inverse
images of these maps in HomCk(X)(OX ,M). By Lemma 1.5 we can pick morphisms
S1, . . . , Sr ∈ HomU(OU ,MU) where U is an open subset of X whose complement
has dimension at most k − 1, which in turn give us global sections m1, . . . ,mr of
MU .

Note that the assignment m′i ↦ mi induces an isomorphism between the local
modules M ′

P and MP for all points P of dimension k. By Lemma 4.2, up to
restricting U by removing a subset of dimension at most k − 1, we can assume that
the sheaf of relations between m′1, . . . ,m

′
r is isomorphic to the sheaf of relations

between m1, . . . ,mr, and thus the assignment m′i ↦mi induces a morphism M ′
U →

MU (note that this works because every open subset is sent to itself by the induced
morphism on X≥k).

Now fix an affine covering U1, . . . , Us of U . The assignment m′1, . . . ,m
′
r ↦

m1, . . . ,mr induces a morphism M ′
Ui

→ MUi
. Thanks to Lemma 4.3, up to re-

stricting U further, we can assume that these maps glue to a morphism M ′
U →MU .

Note now that m1, . . . ,mr are generators of M on an appropriate open subset due
to the exact sequence

Or
X

⊕s′i��→M ′ → 0

being sent to

Or
X

⊕si��→M → 0
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by ψ−1. So applying the same process we can construct a map MV →M ′
V for some

open subset V of X whose complement has dimension at most k − 1. On U ∩ V
these two maps are inverse to each other, so we have constructed an isomorphism
τM ∶M ≃M ′ in Ck(X).

Note now that on local rings this isomorphism is uniquely determined by the
isomorphism HomCP (OX ,M) ≃ HomCP (OX ,M ′) for each minimal object P . Using
Lemmas 4.3, and 1.5 we conclude that the isomorphism τM is unique and functorial.
We have thus proven the claim for affine schemes. Now note that by taking an affine
covering Xi of a general scheme X of finite-type over k, the maps τM,i we construct
as above will glue (up to removing closed subsets of dimension at most k−1), giving
rise to the sought after natural isomorphism τ . �
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