Error estimates of pointwise approximation, that are not possible by polynomials, are obtained by simple rational operators based on exponential-type meshes, improving previous results. Rational curves deduced from such operators are analyzed by Discrete Fourier Transform and a CAGD modeling technique for Shepard-type curves by truncated DFT and the PIA algorithm is developed.

Rational approximation on exponential meshes / Amato, U.; Della Vecchia, B.. - In: SYMMETRY. - ISSN 2073-8994. - 12:12(2020), pp. 1-15. [10.3390/sym12121999]

Rational approximation on exponential meshes

Della Vecchia B.
Methodology
2020

Abstract

Error estimates of pointwise approximation, that are not possible by polynomials, are obtained by simple rational operators based on exponential-type meshes, improving previous results. Rational curves deduced from such operators are analyzed by Discrete Fourier Transform and a CAGD modeling technique for Shepard-type curves by truncated DFT and the PIA algorithm is developed.
2020
Modeling; PIA technique; pointwise approximation error estimates; Shepard-type curves; Shepard-type operators; truncated DFT
01 Pubblicazione su rivista::01a Articolo in rivista
Rational approximation on exponential meshes / Amato, U.; Della Vecchia, B.. - In: SYMMETRY. - ISSN 2073-8994. - 12:12(2020), pp. 1-15. [10.3390/sym12121999]
File allegati a questo prodotto
File Dimensione Formato  
Amato_Rational-approximation_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 756.47 kB
Formato Adobe PDF
756.47 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1553607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact