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Abstract: Error estimates of pointwise approximation, that are not possible by polynomials,
are obtained by simple rational operators based on exponential-type meshes, improving previous
results. Rational curves deduced from such operators are analyzed by Discrete Fourier Transform
and a CAGD modeling technique for Shepard-type curves by truncated DFT and the PIA algorithm
is developed.
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1. Introduction

In [1], simple rational operators rn and qn were constructed, reaching the following pointwise
approximation error estimates ∀x ∈ [0, 1] and ∀ f ∈ C([0, 1])

| f (x)− rn(x)| ≤ Cω

(
f ;

φ(x)
n

)
, φ(x) = (x(1− x))α , 0 < α < 1, (1)

and

| f (x)− qn(x)| ≤ Cω

(
f ;

ψ(x)
n

)
, ψ(x) = |2x− 1|β, 0 < β < 1. (2)

Here, C denotes a positive constant independent of n and ω( f ) is the usual modulus of continuity
of f .

We remark that if 1
2 < α < 1 in (1) or 0 < β < 1 in (2), such error estimates are not achievable by

polynomials, as proved by Gopengauz (see [1,2]).
Moreover, in [1] the authors proved that the exponents α and β in (1) and (2), respectively,

cannot be equal to 1 (see remark to Corollary 2.5 proposed by Totik [1]). A crucial key for such
estimates is the careful choice of node meshes of algebraic-type.

Zeros of orthogonal polynomials as nodes for rational approximation were examined in [3],
but corresponding results are weaker than (1) and (2).

It was an open problem to construct simple rational operators, reaching pointwise approximation
error estimates in terms of functions vanishing at any fixed point in [0, 1] faster than in (1) and (2), like

χ(x) = x(1− x) (1− log x(1− x))λ , 0 < λ, (3)

or
χ(x) = |2x− 1| (1− log |2x− 1|)µ , 0 < µ. (4)

On the other hand, it was an unsolved question to get results of convergence and pointwise
estimates of the approximation error by the above rational operators, based on exponential-type
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meshes. In such cases, the main difficulty is to balance the rational nature of above operators with the
exponential mesh behavior.

The present paper aims at giving a first successful answer to the above problems, considering
easy rational operators based on exponential-type meshes.

In Section 2, convergence statements and pointwise approximation error estimates, involving
functions of type (3) or (4), are given in Theorems 1–4.

Then, in Section 3, we use above operators to construct rational curves by Discrete Fourier
Transform (DFT) and design a truncated progressive iterative approximation technique, useful in
CAGD modeling.

Recently, parametric Shepard-type curves were studied and properties and algorithms, interesting
in CAGD and image processing, were deduced in [4,5]. In Section 3, we study how to transform
Shepard-type curves into a different domain using Discrete Fourier Transform through the well-known
Fast Fourier Transform algorithm. Theorem 6 presents the inner structure of Shepard-type curves in
the form of other Shepard-type curves, known as base Shepard-type curves in the transform form.
These base Shepard-type curves have as control points twiddle factors of DFT; hence, the geometry
of these curves is determined by the geometry of the corresponding star polygons. The modeling
power of such basic Shepard-type curves overcomes the analogous Bézier and B-spline ones, as in
original Shepard-type curves case (cf. [4]). Then, in Section 3.1, by truncated DFT and the progressive
iterative approximation (PIA in short) algorithm introduced in [4], we deduce a method to construct
new Shepard-type curves having good shaping behavior. Indeed, the number of base Fourier functions
and the iteration level of PIA algorithm handle modeling the outline of Shepard-type curve, getting as
a limit case the Shepard-type interpolating curve.

The proofs of the above results are included in Section 4. They are based on smart choices of
nodes meshes, careful estimates for our operators and suitable matrix formulations of DFT and the
PIA algorithm. Finally, Section 5 shows numerical experiments, illustrating achieved results.

2. Rational Approximation on Exponential-Type Meshes

For n ∈ N, we introduce the nodes matrix X = (xn,k = xk, k = 0, . . . , n) ⊆ [a, b], a, b ∈ R. Then,
for any function f ∈ C([a, b]), we consider the Shepard operator Sn as

Sn
(
X; f ; x

)
= Sn( f ; x) =

n
∑

k=0

f (xk)

(x− xk)s

n
∑

k=0

1
(x− xk)s

, (5)

with x ∈ [a, b] and s > 2 even. From the definition, we can deduce that Sn is a positive, linear
operator, preserving constants; Sn( f ) is a rational function having degree (sn, sn), interpolating f
at xk, k = 0, . . . , n and is stable in Fejér sense, i.e., mina≤x≤b | f (x)| ≤ |Sn( f ; x)| ≤ maxa≤x≤b | f (x)|.
If the mesh is equispaced on [a, b], and we assume [a, b] = [0, 1] for example, then Sn is a symmetric
operator, i.e.,

n
∑

k=0

f (xk)

(x− xk)s

n
∑

k=0

1
(x− xk)s

=

n
∑

k=0

f (xn−k)

(1− x− xk)s

n
∑

k=0

1
(1− x− xk)s

. (6)

This operator is widely used in classical approximation theory and problems of scattered data
interpolation (see, e.g., [6–9]).

When the nodes’ mesh is equispaced, direct and converse results for the operator Sn exist
(e.g., [7,10]). For nodes mesh of algebraic type, pointwise estimates were obtained in [1].
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The case of nodes exponentially thicker near one fixed point was an open problem. Now we
prove that, by nodes exponentially dense, Sn operator achieves results of convergence and estimates of
pointwise approximation error, involving functions of type (3) and (4).

To this aim, we assume [a, b] = [0, 1] and denote by || f || the usual supremum norm on [0, 1] of
f ∈ C([0, 1]). Moreover, C denotes a positive constant that can assume different values, even when it
appears more times in the same formula. Then let

X =
(

xn,k = xk := exp
(
−
(n

k

)η
+ 1
)

, k = 1, . . . , n, x0 = 0, n ∈ N
)
⊆ [0, 1], η > 0, (7)

be the nodes’ matrix. This mesh is exponentially thick near 0. Then, we consider operator Sn(X)

defined by (5) based on the nodes matrix X in (7). We have

Theorem 1. Let f ∈ Lip1([0, 1]) and Sn(X) be the operator defined by (5)–(7). Then

lim
n
|| f − Sn(X, f )|| = 0. (8)

Moreover, ∀x ∈ [0, 1], x 6= xk, k = 0, . . . , n,

| f (x)− Sn(X; f ; x)| ≤ C

{
χ1(x)

n , x = C,
χ1(x)

n + χ1(x), x = o(1),
(9)

where χ1(x) = x(1− log x)1+1/η , χ1(x) = x(1− log x) and x = o(1) means x vanishing, as n→ ∞.

Remark 1. Equation (8) allows us to deduce the uniform convergence of Sn(X; f ) to f , as n → ∞, ∀ f ∈
Lip1([0, 1]). Moreover, estimate (9) gives an answer to the problems presented in Introduction. The thickness of
the exponential-type mesh near 0 affects estimate of the error (due to the presence of functions χ1 and χ1 at the
r.h.s. in (9)).

As remarked in [1], the left-end point 0 is not a special point and we can get analogous results for
the right-endpoint 1 case, both endpoints case and any interior point case. For example, let

yk = 1− xk, k = 0, . . . , n, (10)

with xk given in (7). Now consider the matrix Y = (yk, k = 0, . . . , n, n ∈ N). This mesh is exponentially
finer near 1. Moreover, for any f ∈ C([0, 1]), consider the operator Sn(Y) based on the matrix Y.
We can state

Theorem 2. Let f ∈ Lip1([0, 1]) and Sn(Y) be the operator defined by (5) and (10). Then

lim
n
|| f − Sn(Y; f )|| = 0. (11)

Furthermore, ∀x ∈ [0, 1], x 6= yk, k = 0, . . . , n,

| f (x)− Sn(Y; f ; x)| ≤ C

{
χ2(x)

n , 1− x = C,
χ2(x)

n + χ2(x), 1− x = o(1),
(12)

with χ2(x) = (1− x) (1− log(1− x))1+1/η and χ2(x) = (1− x)(1− log(1− x)).

Remark 2. Obviously, from (11) we deduce the uniform convergence of Sn(Y; f ) to f , as n → ∞, ∀ f ∈
Lip1([0, 1]). Moreover, error estimate is affected by the mesh thickness near 1, because of functions χ2(x) and
χ2 at the r.h.s. of (12).
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Combining the above results, we can consider the matrix Z = (zk, k = 0, . . . , n, n ∈ N) ,
with n even,

zk =

{
1
2 xn/2,k, k = 0, . . . , n

2 ,

1− zn−k, k = n
2 + 1, . . . , n,

(13)

xn/2,k as in (7). Then, denote by Sn(Z) the operator Sn based on the matrix Z. When n is odd, we can
replace Sn(Z) by Sn+1(Z). We have

Theorem 3. Let f ∈ Lip1([0, 1]) and Sn(Z) be the operator defined by (5) and (13). Then

lim
n
|| f − Sn(Z; f )|| = 0. (14)

In addition, ∀x ∈ [0, 1], x 6= zk, k = 0, . . . , n,

| f (x)− Sn(Z; f ; x)| ≤ C

{
χ3(x)

n , x(1− x) = C,
χ3(x)

n + χ3(x), x(1− x) = o(1),
(15)

with χ3(x) = x(1− x) (1− log(x(1− x)))1+1/η and χ3(x) = x(1− x)(1− log(x(1− x))).

Remark 3. From (14), we have the uniform convergence of Sn(Z; f ) to f , as n → ∞, ∀ f ∈ Lip1([0, 1]).
Moreover, the mesh thickness near 0 and 1 affects estimate of the error (due to functions χ3(x) and χ3 at the r.h.s.
of Equation (15)). Hence, Theorem 3 successfully answers the problems posed in the introduction. For example,
if x(1− x) ≤ exp(−n) and f ∈ Lip1([0, 1]), then by (15) | f (x)− Sn(Z; f ; x)| ≤ C exp(−n)n, which is
faster than O(

exp(−αn)
n ) coming from (1).

Additionally for n even, let

tk =

1/2
(

1− exp
(
−
( n

2k
)η

+ 1
))

, k = 0, . . . , n
2 ,

1− tn−k, k = n
2 + 1, . . . , n.

(16)

This mesh is thicker near the inner point 1/2. Denote by Sn(T) the operator Sn based on the
matrix T = (tk, k = 0, . . . , n, n ∈ N) ⊆ [0, 1]. If n is odd, we can replace Sn(T) by Sn+1(T).

We prove

Theorem 4. Let f ∈ Lip1([0, 1]) and Sn(T) be the operator defined by (5) and (16). Then

lim
n
|| f − Sn(T; f )|| = 0. (17)

Moreover, ∀x ∈ [0, 1], x 6= tk, k = 0, . . . , n,

| f (x)− Sn(T; f ; x)| ≤ C

{
χ4(x)

n , |2x− 1| = C,
χ4(x)

n + χ4(x), |2x− 1| = o(1),
(18)

with χ4(x) = |2x− 1| (1− log |2x− 1|)1+1/η and χ4(x) = |2x− 1| (1− log |2x− 1|) .

Remark 4. Equation (17) proves the uniform convergence of Sn(T; f ) to f , as n → ∞, ∀ f ∈ Lip1([0, 1]).
The error estimate is affected by the mesh thickness near 1/2, because of functions χ4(x) and χ4 at the r.h.s.
of (18). Theorem 4 answers to the problems posed in the introduction. For example if |2x − 1| ≤ exp(−n)
and f ∈ Lip1([0, 1]), then by (18) | f (x)− Sn(T; f ; x)| ≤ C exp(−n)n, which is better than O

(
exp(−βn)

n

)
descending from (2).
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3. Shepard-Type Curves and Discrete Fourier Transform

Let us first recall some properties of parametric curves of Shepard-type (see [4]). Let An(t) =
[An,0(t), An,1(t), . . . , An,n(t)], where

An,i(t) =
1

(t−ti)s+λ
n
∑

i=0

1
(t−ti)s+λ

, (19)

for 0 ≤ i ≤ n, n ∈ N, t ∈ [0, 1], ti =
i
n , i = 0, 1, . . . , n, 0 < nsλ ≤ C, where C is any fixed positive

constant, and s > 2 is even.
Let P = [P0, P1, . . . , Pn]T , Pi ∈ Rd, i = 0, 1, . . . , n, d ≥ 2, be the control vector. Then the parametric

curve of Shepard-type Sn[P, t] is defined as

Sn[P, t] =
n

∑
i=0

An,i(t)Pi = An(t) · P. (20)

In [4], some properties of such curves were studied, that are interesting in CAGD. In particular,
Sn[P] is a rational curve that reproduces points and lies within the convex hull of the control polygon
P. Such a curve satisfies the pseudo-local control property; that is, each function An,j(t), 0 ≤ j ≤ n,
reaches its maximum value close to 1 at t = tj; therefore the point Pj strongly affects the shape of
the curve close to t = tj. From (6), Shepard-type curves are symmetric, i.e., Sn[P, t] = Sn[P̃, 1− t],
with P̃ = [Pn, Pn−1, . . . , P0]

T . The choice 0 < nsλ ≤ C makes Sn[P] a near-interpolating curve of the
original control polygon. This fixes the flat spots artifact that affects the original Shepard operator
(cf. [4]).

In [4], we introduced and investigated a PIA technique for curves of Shepard-type. The PIA
process starts with an initial Shepard-type curve; then through iterations, it adjusts the control points at
each iteration, resulting in a sequence of fitting curves. The limiting of the curves at different iterations
is the Shepard-type curve interpolating the data. In details, given the control vector P and the basis
An,i(t), i = 0, . . . , n, defined by (19), the initial curve is generated as

γ0(t) =
n

∑
i=0

An,i(t)P0
i = Sn[P, t],

with P0
i = Pi, i = 0, . . . , n. Then the remaining curves of the sequence γk+1(t), for k ≥ 0,

are computed as

γk+1(t) =
n

∑
i=0

Pk+1
i An,i(t),

with
Pk+1

i = Pk
i + ∆k

i ,

and ∆k
i the adjusting vectors given by

∆k
i = Pi − γk(ti), i = 0, 1, . . . , n.

The iterative process can be also expressed in matrix form as[
∆k

0, ∆k
1, . . . , ∆k

n

]T
= (I − B)

[
∆k−1

0 , ∆k−1
1 , . . . , ∆k−1

n

]T

= (I − B)k
[
∆0

0, ∆0
1, . . . , ∆0

n

]T
,
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with B the collocation matrix of An(t) basis, i.e.,

B =


An,0(t0) An,1(t0) · · · An,n(t0)

An,0(t1) An,1(t1) · · · An,n(t1)
...

...
. . .

...
An,0(tn) An,1(tn) · · · An,n(tn)

 . (21)

We remark that B is a symmetric, stochastic, diagonally dominant matrix (see [4]).
We say that the γ0 curve satisfies the PIA property iff limk γk(ti) = Pi, i = 0, . . . , n. We can state

(cf. [4])

Theorem 5. Curve γ0 satisfies the PIA property.

Remark 5. The proof of Theorem 5 is based on the well-known result

M−1 = I + (I −M) + (I −M)2 + (I −M)3 + . . . , (22)

where M is any nonsingular n× n matrix such that ρ(I −M) < 1, with ρ(I −M) being the spectral radius
of I − M, I the identity matrix, (I − M)i the i-th power of matrix (I − M) and M−1 the inverse matrix,
i.e., M−1M = I.

Thanks to the PIA property, we can construct a sequence of control polygons that converge to the control
polygon generating a Shepard-type interpolating curve. In addition, we can use k as a shape parameter so to
model several outlines; the extreme cases are the curve of Shepard-type and the global interpolating curve of
Shepard-type. As remarked in [4], the rate of convergence of such a procedure is faster than the Bézier case.

Then we recall some preliminaries on Fourier analysis, namely the resulting Fourier Transform.
The Fourier Transform is the decomposition of a function into components at higher and higher
frequencies. Discrete Fourier Transform (DFT) is the discrete counterpart of the Fourier Transform,
yielding an estimate starting from a finite sample. DFT maps an ordered set of n + 1 complex number
to a different one. Let x(k) ≡ x0, x1, x2, . . . , xn be a series of n + 1 complex numbers. We assume a
periodicity condition that outside the range 0, n the series is extended n+ 1− periodic, i.e., xL = xL+n+1,
∀L. We denote DFT of this series x(L). The forward transform is defined as

x(L) =
1√

n + 1

n

∑
i=0

x(i)wLi, L = 0, 1, . . . , n,

with w = exp(−j 2π
n+1 ) known as twiddle factor and j the solution of j2 = −1 (complex unity).

In practical applications, DFT is computed by the well-known Fast Fourier Transform algorithm.
Now we are ready to analyze Shepard-type curves by DFT.

Theorem 6. Let Sn[P] be the Shepard-type curve defined in (20). We can write

Sn[P, t] =
n

∑
L=0

PL Ãn,L(t),

where

Ãn,L(t) =
1√

n + 1

n

∑
i=0

An,i(t)w−Li, L = 0, 1, . . . , n, (23)

is called the “base Shepard-type curve” and

PL =
1√

n + 1

n

∑
i=0

PiwLi.



Symmetry 2020, 12, 1999 7 of 15

In matrix notation, we can write

Sn[P, t] = Ã · P, Ã = AWH , P = WP, (24)

where Ã =
[
Ãn,0(t), Ãn,1(t), . . . , Ãn,n(t)

]
, P =

[
P0, P1, . . . , Pn

]T , A = An(t) and W is the Fourier matrix

WL,i =
1√

n + 1
wLi, i, L = 0, . . . , n,

with H denoting the Hermitian.

Remark 6. From Theorem 6, Sn[P, t] curve can be expressed as weighted average of base Shepard-type curves,
by DFT of the original control points.

It can be easily proved that Ã behaves as a basis for Shepard-type curve by polygon points in transformed
form. Thus, the original Shepard-type curves are generated by these base Shepard-type curves.

The control points that are obtained for them are w−L, w−2L, w−3L, . . . , w−(n+1)L, so the corresponding
polygon is a regular or star one. The relative base curves of Shepard-type lie in the convex-hull of these regular
polygons or star polygons, (cf. [11]).

Since w((n+1)−L)i = w−Li, obtained Shepard-type curves Ãn,L(t) and Ãn,n+1−L(t) are mirror images of
each other about x−axis.

Analogous Fourier analysis for Bézier, B-splines and rational B-splines curves was presented in [12,13],
but at lower modeling power than our curves (see Section 5).

3.1. Shepard-Type Curves via DFT and PIA

Consider the global interpolating Shepard-type curve (cf. [4])

Gn[P, t] =
n

∑
k=0

An,k(t)Qk, (25)

with Qk ∈ Rd, d ≥ 2, such that
Gn[P, ti] = Pi, i = 0, . . . , n,

i.e., by (21)
BQ = P, Q = [Q0, Q1, . . . , Qn]

T ,

or equivalently
Q = B−1P = VP, V = B−1. (26)

From (25), (24) in Theorem 6 and (26), we can write

Gn[P, t] = Ã ·Q = AWHWQ = AWHWVP.

Now let us consider only the first k, k ≤ n, Fourier basis functions in W, or in matrix notation
W(k) ∈ Rk×n+1, with index (k) denoting the truncation procedure. This choice is made in analogy with
truncation occurring in some statistical contexts involving FT. Then the truncated interpolating curve
of Shepard-type is introduced:

G(k)
n [P, t] = An(t)

(
W(k)

)H
W(k)VP. (27)

Obviously, if k = n,
(

W(n)
)H

W(n) = I and we get back (25). Hence, varying 0 ≤ k ≤ n in (27),
we get different curves approaching the interpolating Shepard-type curve.
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Representation (27) suggests to use the above PIA technique (see Theorem 5, (22) and consequent
remark) to construct a method giving a pencil of curves of Shepard-type, modeling the original
data points.

We sketch the procedure. In (27), we replace V by

Vr =
r

∑
k=0

(I − B)k, (28)

with r being the iteration level. From [4], limr Vr = V and convergence rate is fast, so a few iterations
are enough to go close to V.

Then playing on two shape parameters, the number k of basis Fourier functions in (27) and the
iteration level of the PIA algorithm—the index r in (28), the designer can get intermediate contours not
reachable by original PIA format (see Section 5).

4. Proofs

Proof of Theorem 1. Due to the interpolatory behavior of Sn at xk, k = 0, . . . , n, we can assume that
x 6= xk, k = 0, . . . , n. Let xj, 0 ≤ j ≤ n, be the closest knot to x, xj < x. The case when xj+1 is the closest
knot to x, x < xj+1, can be treated similarly. First, we prove that for 0 ≤ j ≤ n− 1

|x− xj| ≤ C
χ1(x)

n
, (29)

with χ1(x) = x(1− log x)1+1/η . Indeed, letting g(δ) = exp (−δ−η + 1), we put x = g(ϑ) and xj =

g
(

j
n

)
, with j

n < ϑ < j+1
n . Hence, by Lagrange’s theorem, for ξ ∈

(
j
n , ϑ
)

|x− xj| = |g(ϑ)− g
(

j
n

)
= |g′(ξ)|

(
ϑ− j

n

)
≤ C

n
exp

(
−ξ−η + 1

)
ξ−η−1 ≤ C

n
exp

(
−θ−η + 1

)
θ−η−1

≤ C
n

x(1− log x)1+1/η =
C
n

χ1(x),

that is (29).
Now,

| f (x)− Sn(X; f ; x)| ≤

n
∑

k=0

| f (x)− f (xk)|
(x−xk)s

n
∑

k=0

1
(x−xk)s

≤
| f (x)− f (xj)|

(x−xj)s

n
∑

k=0

1
(x−xk)s

+

| f (x)− f (xj+1)|
(x−xj+1)s

n
∑

k=0

1
(x−xk)s

+

∑
k 6=j,j+1

| f (x)− f (xk)|
(x−xk)s

n
∑

k=0

1
(x−xk)s

:= Σ1 + Σ2 + Σ3.

(30)

Since
1

n
∑

k=0

1
(x−xk)s

≤ (x− xj)
s,

it follows from (30)

Σ1 ≤ (x− xj)
s | f (x)− f (xj)|

(x− xj)s ≤ ω

(
f ;

χ1(x)
n

)
.
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By |x− xj+1| > |x− xj| and a well known property of modulus of continuity, from (30) and (29)

Σ2 ≤ (x− xj)
s | f (x)− f (xj+1)|

(x− xj+1)s ≤
(x− xj)

s

|x− xj+1|s−1

ω( f ; |x− xj+1)|
|x− xj+1|

≤ C
(x− xj)

s

|x− xj+1|s−1

ω( f ; |x− xj|)
|x− xj|

≤ C
(x− xj)

s

|x− xj|s−1

ω( f ; |x− xj|)
|x− xj|

≤ Cω( f ; |x− xj|) ≤ Cω

(
f ;

χ1(x)
n

)
.

Moreover, from (30) it follows

Σ3 ≤ (x− xj)
s

(
j−1

∑
k=0

+
n

∑
k=j+2

)
ω ( f ; |x− xk|)

(x− xk)s := Σ4 + Σ5. (31)

Now in Σ5

xk − x ≥ Cχ1(x)
k− j

n
.

Hence, by usual calculations (see e.g., [1])

Σ5 ≤ Cω

(
f ;

χ1(x)
n

)
χ1(x)s

ns

n

∑
k=j+2

(k− j)ns

(k− j)sχ1(x)s ≤ Cω

(
f ;

χ1(x)
n

)
.

Now we estimate Σ4. First let x = C. If xk = C, then

|x− xk| ≥ C
j− k

n
,

so

|x− xj|s
ω ( f ; |x− xk|)
|x− xk|s

≤ C
ns nω

(
f ;

1
n

)
ns−1

(j− k)s−1 ≤ C
ω
(

f ; 1
n

)
(j− k)s−1 .

If xk = o(1), then |x− xk| > C, consequently

|x− xj|s
ω ( f ; |x− xk|)
|x− xk|s

≤ C
ns ω

(
f ;

1
n

)
n.

Collecting the above estimations, from (31) we get

Σ4 ≤ Cω

(
f ;

1
n

)
≤ Cω

(
f ;

χ1(x)
n

)
.

Now we assume x = o(1), which implies j = o(n). Then by |x− xj| ≤ |x− xk|, k = 0, . . . , j− 1,
and f ∈ Lip1([0, 1]), it follows that

Σ4 ≤ |x− xj|s
j−1

∑
k=0

1
(x− xk)s−1 ≤ Cj|x− xj| ≤ C

χ1(x)
(1− log x)1/η

.

Collecting above estimations, the theorem is proved.

Proof of Theorem 2. Analogously to Theorem 1, we have

|x− yj| ≤ |x− yj+1| ≤ C
χ2(x)

n
,

with χ2(x) = (1− x)(1− log(1− x))1+1/η .
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Then, as in the proof of Theorem 1,

|x− yk| ≥ Cχ2(x)
(j− k)

n
, k = 0, . . . , j− 1.

Hence,

(x− yj)
s

j−1

∑
k=0

ω ( f ; |x− yk|)
(x− yk)s ≤ Cω

(
f ;

χ2(x)
n

)
.

Then we assume 1− x = o(1). By |x− yj| ≤ |x− yk|, k = j + 2, . . . , n and f ∈ Lip1([0, 1]),

(x− yj)
s

n

∑
k=j+2

ω ( f ; |x− yk|)
(x− yk)s ≤ C(n− j− 2)|x− yj| ≤ C

χ2(x)
(1− log(1− x))1/η

.

Other cases can be handled as in Theorem 1 and we deduce the statement.

Proof of Theorem 3. Proceeding as in Theorems 1 and 2, we obtain

|x− zj| ≤ C
χ3(x)

n
.

Working as before (cf. [1]), the assertion is proved.

Proof of Theorem 4. Working as in the proof of Theorems 1 and 2, we get

|x− tj| ≤ C
χ4(x)

n
.

Following the above demonstrations (cf. [1]), we derive the statement.

Proof of Theorem 6. Let Sn[P, t] be the Shepard-type curve defined by (20). The control points Pi,
i = 0, 1, . . . , n, can be considered as points on complex plane. Therefore, each Pi, i = 0, 1, . . . , n, can be
equivalently seen as the inverse transform of points Pi, with Pi being the Fourier Transform of points
Pi, i.e.,

Pi =
1√

n + 1

n

∑
L=0

PLw−Li,

with w = exp
(
−j 2π

n+1
)

the twiddle factor. Thus, equation (20) can be written as

Sn[P, t] =
1√

n + 1

n

∑
i=0

An,i(t)
n

∑
L=0

PLwLi.

As PL’s are independent of i, we get

Sn[P, t] =
1√

n + 1

n

∑
L=0

PL

n

∑
i=0

An,i(t)w−Li

and by (23) the assertion follows.

5. Numerical Experiments

In this section, we show some examples of Shepard-type curves in the transformed domain.

5.1. Example 1

Let n = 3. Then the control points of basic Shepard-type curves are 1, w1, w2
1, w3

1, with w1 =

exp(− 2π
4 ), or 1,−i, 1, i. In this case, Ãn,0(t) degenerates to the single point (1, 0) in the plane, while the
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basic curve Ãn,2(t) describes the line segment from (1, 0) to (−1, 0) and back (cf. [12] for the
corresponding degenerated Bézier case).

5.2. Example 2

Here, we present basic Shepard-type curves defined by (20) for s = 4 corresponding to cases

(a) n = 9, j = 7, λ = 10−5 (Figure 1);
(b) n = 11, j = 3, λ = 10−5 (Figure 2, left);
(c) n = 11, j = 10, λ = 10−5 (Figure 2, right);
(d) n = 13, j = 3, λ = 10−6 (Figure 3, left);
(e) n = 13, j = 5, λ = 10−6 (Figure 3, right).

From such figures, the modeling outperformance of basic Shepard-type curves with respect to
Bézier case is clear (cf. [12]).

Real part

Im
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a
ry

 p
a

rt

Figure 1. Basic Shepard curve for n = 9, λ = 10−5 and j = 7.
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Figure 2. Basic Shepard curve for n = 11, λ = 10−5 and j = 3 (left), j = 10 (right).
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Figure 3. Basic Shepard curve for n = 13, λ = 10−6 and j = 3 (left), j = 5 (right).

5.3. Example 3

Let n = 6, s = 4 and λ = 5 × 10−5. Figure 4 shows the corresponding basic Shepard-type
curves satisfying properties mentioned in Section 3. Comparing Figure 4 with Figure 1 in [13] for
the corresponding base B-spline curves, we can note that basic Shepard-type curves show superior
shaping capabilities.

Figure 4. Basic Shepard curves for n + 1 = 7, λ = 5× 10−5 and j = 1, . . . , 6.

5.4. Example 4

Consider Archimedes spiral given by

(x(t), y(t)) = (t cos 6πt, t sin 6πt), t ∈ [0, 1].

We extract from the spiral a sample of 11 (n = 10) control points as

(x(si), y(si)), si =
i
n

, i = 0, . . . , n.
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They form the control polygon in Figure 5.
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Figure 5. Archimedes spiral, n = 10, λ = 10−5, k = 9, 10, 11 and r = 1 (left), r = 2 (right).

We start from these control points and fit the spiral by a sequence of three curves that are defined
by the truncated iterative procedure introduced in Section 3.1 with k = 9, 10, 11, respectively, in (27),
r = 1, s = 4 and λ = 10−5 (see Figure 5, left). From Figure 5 (left), we can see the modeling behavior
of our procedure; indeed for k = 11 and r = 1, we find back the curve obtained by one iteration of the
PIA algorithm, while the choices k =9, 10 and r = 1 give intermediate curves approximating the given
data points. Analogous curves for the choice r = 2, s = 4 and λ = 10−5 are shown in Figure 5 (right).
In this way, the designer has different choices for outlines modeling the spiral.

5.5. Example 5

We sample the spiral of Example 4 with 19 (n = 18) control points, given by

(x(si), y(si)), si =
i
n

, i = 0, . . . , n.

Then we start from these control points and fit the spiral by a sequence of three curves defined by
our truncated iterative procedure with s = 4, λ = 3× 10−6, k = 17, 18, 19 in (27) and r = 1 (Figure 6,
left) and r = 3 (Figure 6, right), respectively. Comparison of Figure 6 (left) with Figure 6 (right) shows
the influence of shape parameters in slight changes of our curves, giving new contours fitting the spiral.
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Figure 6. Archimedes spiral, n = 18, λ = 3× 10−6, k =17, 18, 19 and r = 1 (left), r = 3 (right).
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5.6. Example 6

Consider the Golden spiral curve in a sequence of 15 (n = 14) points defined by

(x(ti), y(ti)) =
(

aϕ2τi/π cos τi, aϕ2τi/π sin τi

)
, ϕ =

1
2

, τi = −5 + 10
i
n

, i = 0, . . . , n,

forming the control polygon in Figure 7. Actually, since the curve lacks periodicity, we virtually extend
the control points at the right and/or left with mirror points. As is well known, the enlarged function is
now even, then the Fourier Transform reverts to the Cosine Fourier Transform [14], with the favorable
consequence that the coefficients and the inverse transform keep real. From the computational point
of view this is obtained by simply computing the Discrete Cosine Fourier Transform of the original
15 points.

We fit these points by 6 sequences of curves defined by the above procedure with s = 4, λ = 10−5,
k = 10, 11, . . . , 15 and r = 1 (see Figure 7), from which one can see several contours approximating
Golden Spiral.
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Figure 7. Golden spiral n = 14, λ = 10−5, r = 1 and k = 10, 11, . . . , 15.

Author Contributions: Conceptualization, B.D.V.; methodology, U.A. and B.D.V.; software, U.A.; validation, U.A.;
investigation, U.A. and B.D.V. ; writing—original draft preparation, B.D.V.; writing—review and editing, U.A.
and B.D.V.; visualization, U.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the anonymous reviewers for their interesting comments that
improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2020, 12, 1999 15 of 15

Abbreviations

The following abbreviations are used in this manuscript:

DFT Discrete Fourier Transform
CAGD Computer Aided Geometric Design
FT Fourier Transform
PIA Progressive Iterative Approximation
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