We study the phase diagram and critical behavior of a two-dimensional lattice SO(Nc) gauge theory (Nc≥3) with two scalar flavors, obtained by partially gauging a maximally O(2Nc) symmetric scalar model. The model is invariant under local SO(Nc) and global O(2) transformations. We show that, for any Nc≥3, it undergoes finite-temperature Berezinskii-Kosterlitz-Thouless (BKT) transitions, associated with the global Abelian O(2) symmetry. The transition separates a high-temperature disordered phase from a low-temperature spin-wave phase where correlations decay algebraically (quasi-long range order). The critical properties at the finite-temperature BKT transition and in the low-temperature spin-wave phase are determined by means of a finite-size scaling analysis of Monte Carlo data.
Berezinskii-Kosterlitz-Thouless transitions in two-dimensional lattice SO (Nc) gauge theories with two scalar flavors / Bonati, C.; Franchi, A.; Pelissetto, A.; Vicari, E.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 103:1(2021). [10.1103/PhysRevD.103.014510]
Berezinskii-Kosterlitz-Thouless transitions in two-dimensional lattice SO (Nc) gauge theories with two scalar flavors
Pelissetto A.;
2021
Abstract
We study the phase diagram and critical behavior of a two-dimensional lattice SO(Nc) gauge theory (Nc≥3) with two scalar flavors, obtained by partially gauging a maximally O(2Nc) symmetric scalar model. The model is invariant under local SO(Nc) and global O(2) transformations. We show that, for any Nc≥3, it undergoes finite-temperature Berezinskii-Kosterlitz-Thouless (BKT) transitions, associated with the global Abelian O(2) symmetry. The transition separates a high-temperature disordered phase from a low-temperature spin-wave phase where correlations decay algebraically (quasi-long range order). The critical properties at the finite-temperature BKT transition and in the low-temperature spin-wave phase are determined by means of a finite-size scaling analysis of Monte Carlo data.File | Dimensione | Formato | |
---|---|---|---|
Bonati_Berezinskii-Kosterlitz-Thouless_2021.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
407.6 kB
Formato
Adobe PDF
|
407.6 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.