We prove gradient boundary blow up rates for ergodic functions in bounded domains related to fully nonlinear degenerate/singular elliptic operators. As a consequence, we deduce the uniqueness, up to constants, of the ergodic functions. The results are obtained by means of a Liouville type classification theorem in half-spaces for infinite boundary value problems related to fully nonlinear, uniformly elliptic operators.

Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a liouville type theorem / Birindelli, I.; Demengel, F.; Leoni, F.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 41:7(2021), pp. 3021-3029. [10.3934/dcds.2020395]

Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a liouville type theorem

Birindelli I.
;
Leoni F.
2021

Abstract

We prove gradient boundary blow up rates for ergodic functions in bounded domains related to fully nonlinear degenerate/singular elliptic operators. As a consequence, we deduce the uniqueness, up to constants, of the ergodic functions. The results are obtained by means of a Liouville type classification theorem in half-spaces for infinite boundary value problems related to fully nonlinear, uniformly elliptic operators.
2021
Degenerate elliptic operators; ergodic functions; fully nonlinear operators; liouville type theorems; singular elliptic operators
01 Pubblicazione su rivista::01a Articolo in rivista
Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a liouville type theorem / Birindelli, I.; Demengel, F.; Leoni, F.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 41:7(2021), pp. 3021-3029. [10.3934/dcds.2020395]
File allegati a questo prodotto
File Dimensione Formato  
Birindelli_Boundary-asymptotics_2021.pdf

accesso aperto

Note: https://www.aimsciences.org/article/doi/10.3934/dcds.2020395
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 315.39 kB
Formato Adobe PDF
315.39 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1540552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact