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P.le A. Moro 2, 00185 Roma, Italy

(Communicated by Manuel del Pino)

Abstract. We prove gradient boundary blow up rates for ergodic functions
in bounded domains related to fully nonlinear degenerate/singular elliptic op-

erators. As a consequence, we deduce the uniqueness, up to constants, of the

ergodic functions. The results are obtained by means of a Liouville type clas-
sification theorem in half-spaces for infinite boundary value problems related

to fully nonlinear, uniformly elliptic operators.

1. Introduction. A classical result from harmonic function theory, see e.g. [1],
states that if v is a positive harmonic function in the upper half-space RN+ = {x =

(x′, xN ) ∈ RN : xN > 0}, vanishing on ∂RN+ , then, necessarily, v(x) = c xN for
some c > 0.

By performing the change of unknown

v(x) = e−u(x) ,

the same result may be read in terms of u as{
−∆u+ |∇u|2 = 0 in RN+

u = +∞ on ∂RN+
⇐⇒ u(x) = − log xN + c , c ∈ R .
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We are interested here in extending the above result to more general equations.
Namely, we focus on the second order, fully nonlinear infinite boundary value prob-
lem { −F (D2u) + |∇u|β = 0 in RN+

u(x′, 0) = +∞ on ∂RN+
(1)

where β > 1 and F : SN → R is a positively homogeneous uniformly elliptic opera-
tor, that is a continuous function defined on the space of N ×N -square symmetric
matrices SN , positively homogeneous of degree 1, and satisfying

a tr(P ) ≤ F (X + P )− F (X) ≤ A tr(P ) , (2)

for all X,P ∈ SN , with P ≥ O, for some positive constants A ≥ a > 0. In (1), D2u
stands for the hessian matrix of the unknown function u, and ∇u for its gradient.

We assume that u ∈ C(RN+ ) is a viscosity solution of (1), satisfying further

(H1) the boundary condition is uniformly satisfied, namely

∀M > 0 , ∃ εM > 0 such that u(x′, xN ) ≥M, ∀x′ ∈ RN−1 and xN ≤ εM ,

(H2) u is bounded for xN bounded away from zero and from infinity, that is

∀ δ ∈ (0, 1) , ∃Cδ > 0 such that |u(x′, xN )| ≤ Cδ, ∀x′ ∈ RN−1 and xN ∈
[
δ,

1

δ

]
Our first result is the following Liouville type classification theorem.

Theorem 1.1. Let 1 < β ≤ 2 and assume that F satisfies (2). If u ∈ C(RN+ ) is
a viscosity solution of (1) satisfying assumptions (H1) and (H2), then, for some
c ∈ R,

u(x′, xN ) ≡ u(xN ) =


1

2− β

(
F (eN ⊗ eN )

1
2−β

(β − 1)xN

) 2−β
β−1

+ c if β < 2 ,

−F (eN ⊗ eN ) log xN + c if β = 2 .

We observe that the logarithmic change of variable useful in the case of Laplace
operator cannot be used for a fully nonlinear operator F , even when β = 2, since the
new variable v will be merely a subsolution and not a solution of the homogeneous
equation. Theorem 1.1 will be instead established by showing first that any viscosity
solution u actually is a monotone decreasing function of the only variable xN , and
then integrating the resulting ODE. The one dimensional symmetry of u will be
obtained in turn by applying the well known so called sliding method, introduced
in [4]. Indeed, after showing that the comparison principle holds true for bounded
viscosity sub- and supersolutions in horizontal strips, any solution u will be proved
to satisfy the inequality

u ≤ ut , (3)

where ut(x) = u(x + tν) stands for the translated function with respect to any
direction ν = (ν′, νN ) with νN ≤ 0 and t > 0. We emphasize that the proof for
Theorem 1.1 is even more simple than the original proof given in [4], where inequality
(3) is first established for t large, and then for every t > 0 by a contradiction
argument. In our case, since the comparison principle for solutions in horizontal
strips holds true independently of the size of the solutions to be compared, inequality
(3) is established simultaneously for all t > 0.
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Theorem 1.1 belongs to the large family of symmetry results for solutions of
nonlinear elliptic equations. Besides [4], we just mention the works [12, 11, 10],
and we refer to the references therein, as recent symmetry results for solutions of
semilinear, quasilinear and fully nonlinear equations respectively. Moreover, we
refer to [3] for symmetry results in halfspaces for nonlocal operators. In all previous
results, the symmetry is obtained for entire solutions or solutions vanishing on the
boundary. Up to our knowledge, Theorem 1.1 is the first application of the sliding
method to infinite boundary value problems.

An interesting feature of the Liouville property for problem (1) relies in its con-
nection with the so called ergodic problem associated with fully nonlinear degen-
erate/singular operators. Let us recall that, given a C2 bounded domain Ω ⊂ RN

and a continuous function f ∈ C(Ω), an ergodic constant related to Ω and f is a
constant cΩ ∈ R such that there exist solutions u ∈ C(Ω) (called ergodic functions)
of the infinite boundary value problem{ −|∇u|αF (D2u) + |∇u|β = f + cΩ in Ω ,

u = +∞ on ∂Ω ,
(4)

where F is a positively homogeneous operator satisfying (2) as before, and the
exponents α and β satisfy respectively α > −1 and α+ 1 < β ≤ α+ 2.

Problem (4) has been originally studied in the semilinear case α = 0 and F (D2u)
= ∆u in [16], where the terminology “ergodic” has been introduced and its connec-
tion with a state constraint optimal stochastic control problem has been showed.
Further contributions have been given in [18], and in [17] for p-Laplace operator
as principal part. We refer also to [2] for analogous results related to nonlocal
operators.

In the fully nonlinear degenerate/singular setting, problem (4) has been recently
studied in [6, 7], where it has been proved in particular that if f is bounded and
Lipschitz continuous, then ergodic pairs (cΩ, u) do exist.

By keeping the same terminology for unbounded domains, Theorem 1.1 states
that the ergodic constant for Ω = RN+ and f ≡ 0 is c = 0, and the ergodic function
is unique and coincides with the one variable function u(xN ) given in the statement
of Theorem 1.1. Indeed, as proved in [5, 14], one has

−|∇u|αF (D2u) + |∇u|β = 0 ⇐⇒ −F (D2u) + |∇u|β−α = 0

Note that, in the present assumptions, one has 1 < β − α ≤ 2, and thus Theorem
1.1 applies.

For bounded domains Ω ⊂ RN , the uniqueness, up to additive constants, of
solution for problem (4) has been recently established in [8] in the case β < α+ 2.
As a general strategy, uniqueness of solution can be obtained as a consequence of
the strong maximum principle. For the singular/degenerate operators appearing in
(4), the strong maximum principle holds true in the region where the gradients of
solutions do not vanish, see [5]. Hence, uniqueness of solution is reduced to first
order lower bounds. These in turn can be obtained as a consequence of asymptotic
boundary expansions for the gradient of ergodic functions.

Let us recall that the analysis performed in [6] yields that the ergodic constant
cΩ is unique under the assumption that

F (∇d(x)⊗∇d(x)) is of class C2 for x in a neighborhood of ∂Ω. (5)
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Moreover, any ergodic function u is proved to satisfy, for any ε > 0,

C(x)− ε
d(x)χ

−Dε ≤ u(x) ≤ C(x) + ε

d(x)χ
+Dε if χ > 0 ,

| log d(x)| (C(x)− ε)−Dε ≤ u(x) ≤ | log d(x)| (C(x) + ε) +Dε if χ = 0 ,

(6)

where d(x) denotes the distance function from ∂Ω, χ = 2+α−β
β−1−α , Dε > 0 is a constant

depending on the data and on ε and C(x) is any C2(Ω) function satisfying, for x in
a neighborhood of ∂Ω,

C(x) = ((χ+ 1)F (∇d(x)⊗∇d(x)))
1

β−α−1 χ−1 if χ > 0,

C(x) = F (∇d(x)⊗∇d(x)) if χ = 0.
(7)

Estimates (6), which clearly imply the boundary asymptotic identities

lim
d(x)→0

u(x) d(x)χ

C(x)
= 1 if χ > 0,

lim
d(x)→0

u(x)

| log d(x)|C(x)
= 1 if χ = 0 ,

(8)

suggest the right scaling to be applied to the function u for an asymptotic boundary
analysis. In the case χ > 0, it is natural to consider, for fixed x0 ∈ ∂Ω and δ > 0,
the rescaled function

uδ(ζ) = δχu(x0 + δ ζ) ,

defined for ζ ∈ 1
δ (Ω− x0). By the first identity in (8), it immediately follows that

uδ(ζ)→ v(ζ) :=
C(x0)

(∇d(x0) · ζ)χ
as δ → 0

locally uniformly in the halfspace H = {ζ : ζ · ∇d(x0) > 0}. Moreover, the
regularity results and a priori estimates proved in [8] yield that the sequence {uδ}
is bounded in C1,γ

loc (H) for some γ > 0. This implies that, up to a subsequence,
∇uδ(ζ)→ ∇v(ζ) locally uniformly in H, and this amounts to the gradient boundary
asymptotics

lim
d(x)→0

d(x)χ+1∇u(x) · ∇d(x)

C(x)
= −χ . (9)

As a consequence, the uniqueness of the ergodic function is proved in the case χ > 0,
see Theorem 1.2 of [8].

In the case χ = 0, i.e. β = α + 2, an analogous argument leads to consider the
scaled-translated function

uδ(ζ) = u(x0 + δ ζ) + C(x0) log δ .

By estimates (6) and again by the results of [8], one has that the sequence {uδ} is
converging, up to a subsequence, in C1

loc(H). However, in the present case we cannot
immediately detect from (8) the limit function v. We need to use the equations
satisfied by uδ, in order to derive the equation satisfied by v and to apply Theorem
1.1. This yields the following result, which establishes the analogous of (9) in the
case χ = 0.

Theorem 1.2. Assume that F satisfies (2) and (5), let f ∈ C(Ω) be bounded and
let u ∈ C(Ω) be a solution of problem (4) with β = α+ 2. Then, one has

lim
d(x)→0

d(x)∇u(x) · ∇d(x)

C(x)
= −1 . (10)
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As a final remark, let us compare formulas (9) and (10): the inconsistency of the
limit values for χ = 0, due to the fact that ergodic functions for β < α+ 2 converge
to ergodic functions relative to β = α + 2 only locally in Ω, reflects once more the
gap between the cases β < α+ 2 and β = α+ 2.

The paper is organized as follows: in Section 2 we give the proofs of the compar-
ison principle in strips and of Theorem 1.1; in Section 3 we prove Theorem 1.2 and
deduce the uniqueness of the ergodic function in the case χ = 0, referring to [8] for
the proof.

2. Proof of Theorem 1.1. Theorem 1.1 will be obtained as an easy consequence
of the following comparison result in strips.

Proposition 1. Suppose that u and v are bounded and Lipschitz continuous func-
tions on the strip Σ = RN−1 × (b, c), satisfying in the viscosity sense

−F (D2u) + |∇u|β ≤ 0 ≤ −F (D2v) + |∇v|β in Σ .

Then
u(x) ≤ v(x) + sup

∂Σ
(u− v) , ∀x ∈ Σ .

Proof. Suppose by contradiction that

S := sup
Σ

(u− v) > sup
∂Σ

(u− v) ,

and let us set w(x) = v(x) + S. Then, one has u(x) ≤ w(x) for all x ∈ Σ and there
exists a sequence

{
xj =

(
x′j , (xN )j

)}
⊂ Σ such that (u−w)(xj)→ 0. Up to a (not

relabeled) subsequence, we have (xN )j → x̄N ∈ [b, c].
We define uj(x

′, xN ) = u(x′ + x′j , xN ) and wj(x
′, xN ) = w(x′ + x′j , xN ) . By

Ascoli-Arzelà Theorem, again up to a subsequence, uj and wj converge locally uni-
formly to some ū and w̄, which are sub and supersolution respectively. Furthermore,

ū(0, x̄N ) = lim
j→∞

u
(
x′j , (xN )j

)
= lim
j→∞

w
(
x′j , (xN )j

)
= w̄(0, x̄N ) .

Since ū ≤ w̄ in Σ, ū ≤ w̄ + sup∂Σ(u− v)− S < w̄ on ∂Σ and ū(0, x̄N ) = w̄(0, x̄N ),
we deduce that x̄N ∈ (b, c) and, by the strong comparison principle (see [13]), that
ū ≡ w̄ in Σ, which contradicts the fact that ū < w̄ on ∂Σ.

Proof of Theorem 1.1.
The conclusion will be obtained by showing that u is a monotone decreasing

function depending on the only variable xN .
Let us first observe that any solution u of the equation in (1) is locally C1,γ in

RN+ for some γ ∈ (0, 1) depending on N, a,A and β, see e.g. [8]. Moreover, as
proved e.g. in [9] and [6], u satisfies the local Lipschitz estimate

|Du(x)| ≤ C

x
1

β−1

N

, (11)

for a positive constant C depending only on N, a,A and β > 1.
Next, for a fixed unitary vector ν = (ν′, νN ) ∈ RN with νN < 0, and for t > 0,

let us consider the function

ut(x) := u(x+ t ν) ,

defined in RNt := {(x′, xN ) ∈ RN : xN > −t νN}. Clearly, ut is a solution of the
infinite boundary value problem (1) in RNt .

We claim that u ≤ ut in RNt .
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Indeed, by assumptions (H1) and (H2), we have that, uniformly with respect to
x′ ∈ RN−1,

u(x)− ut(x)→ −∞ as xN → −t νN .

Moreover, by estimate (11), we also have

u(x)− ut(x)→ 0 as xN → +∞ ,

uniformly with respect to x′ ∈ RN−1 as well. Therefore, for any ε > 0 there exists
δ = δε,t > 0 sufficiently small such that

u(x)− ut(x) ≤ ε for either xN ≥ −t νN +
1

δ
or xN ≤ −t νN + δ .

On the other hand, in the strip Σ = RN−1×
(
−t νN + δ,−t νN + 1

δ

)
, u and ut satisfy

the assumptions of Proposition 1, so that we obtain

u(x)− ut(x) ≤ ε ∀x ∈ RNt .

By letting ε→ 0, we deduce the claim.
It then follows that ∂u

∂ν ≥ 0 in RN+ for all vectors ν = (ν′, νN ) with νN < 0. In

particular ∂u
∂xN
≤ 0. Furthermore, by the continuity of Du, ∂u

∂ν ≥ 0 is true also for

vectors ν such that νN = 0. Hence, we obtain that ∂u
∂xi

= 0 for all i = 1, . . . , N − 1

Therefore, u(x) ≡ u(xN ) is a nonincreasing one variable function satisfying in the
viscosity sense {

F (u′′eN ⊗ eN ) = (−u′)β for xN > 0

u(0) = +∞

The uniform ellipticity condition (2) yields that operator F is negative when eval-
uated on negative matrices. Hence, it follows necessarily that u′′ ≥ 0, and, by
positive homogeneity, u is a solution of the ODE

u′′ =
(−u′)β

F (eN ⊗ eN )
.

Let us emphasize that, again by (2), one has F (eN ⊗ eN ) ≥ a > 0. A direct
integration of this equation and the imposition of the initial condition yield the
result. �

Remark 1. In the proof of Theorem 1.1 the uniform ellipticity assumption (2) is
essential, since it guarantees the validity of the strong maximum principle and it
allows the direct integration of the resulting ODE for one dimensional solutions. In
the case F (X) = a tr(X) is a linear operator, the conclusion could be obtained also
by performing the change of unknown v = e−u/a and by using harmonic functions
theory, see also Remark 3.2 in [8].

Let us also remark that many variants and extensions of the above results could
be obtained. As an example, locally Lipschitz zero order terms f(u) could be
included in the equations, both of absorbing or reaction type, as e.g. for the semi-
linear equations considered in [4]. In view of its application in Theorem 1.2, we
concentrated specifically on the homogeneous equation (1) since this is related to
the homogeneous equation for singular/degenerate operators.
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3. Proof of Theorem 1.2 and uniqueness of the ergodic functions. In this
section we consider the ergodic problems in bounded domains associated with de-
generate or singular fully nonlinear operators. Namely, we consider the infinite
boundary value problem (4) for a smooth bounded domain Ω ⊂ RN , and we refer
to a solution (cΩ, u) as an ergodic pair. As recalled in the introduction, by assuming
that f ∈ C(Ω) is bounded and Lipschitz continuous, F is positively homogeneous
and satisfies (2), α > −1 and α+ 1 < β ≤ α+ 2, it is proved in [6] the existence of
ergodic pairs (cΩ, u). Moreover, by further assuming the smoothness condition (5),
the ergodic constant cΩ is unique and any ergodic function u satisfies estimates (6),
see [6]. Furthermore, in the case β < α+ 2 any ergodic function is proved to satisfy
also (9) and, consequently, to be unique, see [7].

Here we are concerned with the analogous result for the case β = α+2, i.e. χ = 0.
Let us recall that the domain Ω is assumed to be of class C2, and d(x) denotes a
smooth function equaling the distance from the boundary in a neighborhood of ∂Ω.

Proof of Theorem 1.2.
We apply the scaling argument used in [15, 17] in the semilinear case.
Let us fix x0 ∈ ∂Ω and, for δ > 0, let us consider the rescaled function

uδ(ζ) = u(x0 + δ ζ) + C(x0) log δ ,

defined for ζ belonging to the translated and rescaled domain Oδ = Ω−x0

δ .
We observe that, as δ → 0, the domains Oδ approach the limiting halfspace

H := {ζ ∈ RN : ζ ·∇d(x0) > 0} and, by estimates (6) and the Lipschitz regularity
in Ω of C(x), the functions uδ are uniformly bounded for δ small and ζ in any
compact subset of H.

Moreover, a direct computation shows that the functions uδ are solutions of the
equation

−|∇uδ|αF (D2uδ) + |∇uδ|α+2 = δα+2 [f(x0 + δ ζ) + cΩ] in Oδ .

By Theorem 1.1 of [7], it follows that the sequence {uδ} is uniformly bounded in

C1,γ
loc (H), for some γ ∈ (0, 1) depending on the data. Hence, by a standard diagonal

procedure, there exists a v ∈ C1,γ
loc (H) satisfying in the viscosity sense

−|∇v|αF (D2v) + |∇v|α+2 = 0 in H ,

and such that
uδ(ζ)→ v(ζ) in C1

loc(H) as δ → 0.

By the results of [14], it follows that actually v is a viscosity solution (in the standard
sense) of

−F (D2v) + |∇v|2 = 0 in H .

Moreover, estimates (6) imply that v satisfies the inequalities

−Dε−(C(x0)−ε) log(∇d(x0)·ζ) ≤ v(ζ) ≤ (C(x0)+ε) log(∇d(x0)·ζ)+Dε ∀ ζ ∈ H .

It then follows that v is a solution of the infinite boundary value problem{
−F (D2v) + |∇v|2 = 0 in H

v = +∞ on ∂H

satisfying further assumptions (H1) and (H2). By Theorem 1.1, after a rotation,
we then deduce

v(ζ) = −F (∇d(x0)⊗∇d(x0)) log(∇d(x0) · ζ) + c = −C(x0) log(∇d(x0) · ζ) + c ,



3028 ISABEAU BIRINDELLI, FRANÇOISE DEMENGEL AND FABIANA LEONI

for some c ∈ R. Since uδ → v in C1
loc(H), we further obtain that, locally uniformly

in H, one has, as δ → 0,

∇uδ(ζ) = δ∇u(x0 + δ ζ)→ ∇v(ζ) = −C(x0)
∇d(x0)

∇d(x0) · ζ
.

This yields that

lim
δ→0

d(x0 + δ ζ)∇u(x0 + δ ζ) · ∇d(x0 + δ ζ)

C(x0 + δ ζ)
= −|∇d(x0)|2 = −1 ,

and since all convergences are uniform with respect to x0 ∈ ∂Ω, we finally obtain
the conclusion.

�
Theorem 1.2 implies, in particular, that ∇u 6= 0 in a neighborhood of ∂Ω, for any

ergodic function u. This in turn enables the use of the strong maximum principle
proved in [5], which yields the uniqueness of the ergodic function. Applying exactly
the same proof of Theorem 1.2 of [8], we deduce the following uniqueness result.

Theorem 3.1. Let Ω ⊂ RN be a bounded domain of class C2 and let F satisfy
(2) and (5). Assume further that α > −1, α + 1 < β ≤ α + 2 and that f ∈ C(Ω)
is bounded. Then, up to additive constants, problem (4) has at most one solution,
provided that, when α 6= 0, supΩ f < −cΩ and ∂Ω is connected.
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[15] T. Kilpeläinen, H. Shahgholian and X. Zhong, Growth estimates through scaling for quasi-
linear partial differential equation, Ann. Acad. Sci. Fenn. Math., 32 (2007), no. 2, 595–599.

[16] J.-M. Lasry and P.-L. Lions, Nonlinear Elliptic Equations with Singular Boundary Conditions

and Stochastic Control with state Constraints. I. The model problem, Math. Ann., 283 (1989),
583–630.

[17] T. Leonori and A. Porretta, Gradient bounds for elliptic problems singular at the boundary,
Arch. Ration. Mech. Anal., 202 (2011), 663–705.

[18] A. Porretta, The “ergodic limit” for a viscous Hamilton-Jacobi equation with Dirichlet con-

ditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 21 (2010), 59–78.

Received May 2020; revised October 2020.

E-mail address: isabeau@mat.uniroma1.it

E-mail address: francoise.demengel@u-cergy.fr

E-mail address: leoni@mat.uniroma1.it

http://www.ams.org/mathscinet-getitem?mr=MR2337497&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0990591&return=pdf
http://dx.doi.org/10.1007/BF01442856
http://dx.doi.org/10.1007/BF01442856
http://www.ams.org/mathscinet-getitem?mr=MR2847537&return=pdf
http://dx.doi.org/10.1007/s00205-011-0436-9
http://www.ams.org/mathscinet-getitem?mr=MR2608958&return=pdf
http://dx.doi.org/10.4171/RLM/561
http://dx.doi.org/10.4171/RLM/561
mailto:isabeau@mat.uniroma1.it
mailto:francoise.demengel@u-cergy.fr
mailto:leoni@mat.uniroma1.it

	1. Introduction
	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2 and uniqueness of the ergodic functions
	REFERENCES

