We present a method for dimension reduction of multivariate longitudinal data, where new variables are assumed to follow a latent Markov model. New variables are obtained as linear combinations of the multivariate outcome as usual. Weights of each linear combination maximize a measure of separation of the latent intercepts, subject to orthogonality constraints. We evaluate our proposal in a simulation study and illustrate it using an EU-level data set on income and living conditions, where dimension reduction leads to an optimal scoring system for material deprivation. An R implementation of our approach can be downloaded from https://github.com/afarcome/LMdim.

Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models / Farcomeni, A.; Ranalli, M.; Viviani, S.. - In: TEST. - ISSN 1133-0686. - (2020). [10.1007/s11749-020-00727-x]

Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models

Farcomeni A.;Ranalli M.;Viviani S.
2020

Abstract

We present a method for dimension reduction of multivariate longitudinal data, where new variables are assumed to follow a latent Markov model. New variables are obtained as linear combinations of the multivariate outcome as usual. Weights of each linear combination maximize a measure of separation of the latent intercepts, subject to orthogonality constraints. We evaluate our proposal in a simulation study and illustrate it using an EU-level data set on income and living conditions, where dimension reduction leads to an optimal scoring system for material deprivation. An R implementation of our approach can be downloaded from https://github.com/afarcome/LMdim.
2020
Dimension reduction; EU-SILC; Material deprivation; Multivariate longitudinal data; Orthogonality
01 Pubblicazione su rivista::01a Articolo in rivista
Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models / Farcomeni, A.; Ranalli, M.; Viviani, S.. - In: TEST. - ISSN 1133-0686. - (2020). [10.1007/s11749-020-00727-x]
File allegati a questo prodotto
File Dimensione Formato  
Farcomeni_Dimension-reduction_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 336.09 kB
Formato Adobe PDF
336.09 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1514197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact