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Abstract

We present a method for dimension reduction of multivariate lon-
gitudinal data, where new variables are assumed to follow a latent
Markov model. New variables are obtained as linear combinations of
the multivariate outcome as usual. Weights of each linear combination
maximize a measure of separation of the latent intercepts, subject to
orthogonality constraints. We evaluate our proposal in a simulation
study; and illustrate it using an EU-level data set on income and liv-
ing conditions, where dimension reduction leads to an optimal scoring
system for material deprivation. An R implementation of our approach
can be downloaded from https://github.com/afarcome/LMdim.
Key words: Dimension reduction, EU-SILC, material deprivation,
multivariate longitudinal data, orthogonality.

1 Introduction

Latent Markov (LM) models (Bartolucci et al., 2013, 2014) permit parsimo-
nious and flexible modeling of univariate and multivariate longitudinal data.
A particularly attractive feature is that random effects are time-varying and
their discrete distribution, based on k support points, can usually approxi-
mate well almost any true underlying distribution of random effects. Local
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and global decoding allow to assign subjects, at each measurement occasion,
to their most likely hidden state (or sequence of hidden states). Consequently,
the latent classification can then be seen as a model-based time-varying clus-
tering (Bulla et al., 2012; Dias et al., 2015; Punzo and Maruotti, 2016) based
on k groups. A generalization to a different number of groups at each time
occasion has recently been proposed (Anderson et al., 2019a,b). A limitation
is that the association rule between the multivariate outcome and the latent
indicators is based on posterior probabilities, and therefore not available in
closed form. Assignment of a new measurement to a latent cluster is cum-
bersome, especially if the outcome configuration has not been observed in
the data. Furthermore, a score that increases (or decreases) with the likeli-
hood of belonging to a cluster of interest could be in general very useful to
practitioners.

A good example is given by our motivating application on assessment
of material deprivation, a direct measure of poverty (Sen, 1981), in Europe.
The official household-level questionnaire is based on nine binary items. Our
main issue is how to classify as poor/not poor a new family, based on its
nine-dimensional binary profile; and ranking families with respect to their
propensity to material deprivation. It is underlined in Atkinson (2003) and
Dotto et al. (2019) that a simple counting approach has an unsatisfactory
classification performance for this task. It also, clearly, lead to several ties
when using it to rank families. The simple counting approach is equivalent to
computing linear combinations with equal weight to each of the items. It has
been seen also more in general to have limitations from the quality of measure
point of view. See for instance Najera Catalan (2017), Cafiero et al. (2018)
and De Andrade and Tavares (2005) specifically for panel data. Counting in
fact implicitly assumes that all items have the same discrimination power (i.
e. they are equally related to the latent trait), unidimensionality (Linacre,
2009) and the specific objectivity or measurement invariance of the scale. On
the other hand, use of a map of each of the 29 = 512 possible configurations
to the k = 2 latent states (poor/not poor), as provided by a multidimensional
latent Markov model for instance, is cumbersome and makes it impossible to
rank families. A heuristic two-step strategy for dimension reduction was used
in Dotto et al. (2019) for panel data recorded in Greece, Italy, and U.K.. At
the first step, a basic latent Markov model with the nine-dimensional binary
outcome, no covariates, and k = 2 latent states, is estimated. At the second
step a score, corresponding to a weighted sum of the active indicators, is
targeted. To do so, weights are estimated by maximization of the Spearman
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correlation between the unidimensional score and posterior probabilities of
being materially deprivated in a given year. Albeit provingly better than
simple item counting, this heuristic method is clearly informal and not nec-
essarily optimal. It is also restricted to a one-dimensional projection.

Our main task in this work is that of building optimal scores (obtained
as weighted sums of a multivariate outcome, repeatedly observed over time)
able at discriminating among subjects belonging to classes of a discrete latent
trait (e.g., poor/non-poor; low/medium/high propensity to buy, etc.). Unidi-
mensional scores can be used for ranking, bidimensional scores for graphical
representations, and so on. We also report on how to choose the score
dimensionality, and to assess how well scores reproduce the variability in the
original data. Weights can be used to directly and simply compute a score
for a newly measured subject. We are especially interested in the case in
which no covariates are used and k = 2, since it is by far the most common
situation in which a score is desired: the use of k = 2 classes leads to binary
discrimination, and absence of covariates indicates that all relevant informa-
tion is used in the scoring system. All other cases might be of interest too
in applications, and are briefly discussed below. Weighted sums can also be
seen as lower dimensional projections of longitudinal measurements, which
relates our method to the more general literature on dimension reduction
for longitudinal data (e.g., Hall et al. (2006), Jiang and Wang (2010)); more
specifically in relation to latent Markov models. For instance, in Vogelsmeier
et al. (2019) a multivariate continuous outcome is assumed to follow a factor
model, with loadings that are state dependent and follow a latent Markov
model. The literature on dynamic dimensionality reduction methods is ac-
tually very rich, see for instance Jung et al. (2011), Xia et al. (2016) and
Song et al. (2017), Bai and Wang (2015), Maruotti et al. (2017), Ando and
Bai (2017), Chen et al. (2020).

Clearly, our method is also an extension of dimension reduction ap-
proaches for cross-sectional categorical data (e.g., Collins et al. (2002); de Leeuw
(2006); Lee et al. (2010); Landgraf and Lee (2015)), like logistic PCA and lo-
gistic SVD. See also Cagnone and Viroli (2012) and Yamamoto and Hayashi
(2015). Logistic PCA extends Pearson’s initial formulation of principal com-
ponent analysis by seeking a rank-r projection of the data which is as close to
the original data as possible, therefore being model-agnostic. Logistic SVD is
a similar approach based on exponential families, where the objective is ex-
pressed as a function of PC scores. Many methods mentioned above are also
restricted to either binary multivariate data or continuous multivariate data,

3



while our approach will be designed for any multivariate outcome, including
a mix of binary, categorical and continuous variables.

Our approach can be summarized as follows: we assume each weighted
sum of a multivariate outcome follows a latent Markov model, where weights
are orthonormal. We then optimize over the weight space to maximize a
measure of latent class separation, in the spirit of more classical methods for
dimension reduction. Our basic assumption is that latent scores are Gaussian
in general. This is straightforward when working with continuous multivari-
ate outcomes. We give a technical justification below for more general cases,
but note that this assumption is common in various fields. For instance, in
several psychometric applications multivariate binary data give rise to Gaus-
sian latent variables. It shall be noted that our model-based approach
provides a natural way of treating (informative or ignorable) missing values,
which can be dealt with as usually done with latent Markov models (Bar-
tolucci et al., 2013; Bartolucci and Farcomeni, 2015, 2019; Maruotti, 2015;
Marino and Alfó, 2015; Marino et al., 2018). See also Geraci and Farcomeni
(2018) for the dimension reduction context in general. A notable by-product
is that missing scores can be imputed by generating predictions.

The rest of the paper is as follows: in the next section we formalize and
justify our model for multivariate binary outcomes and time-fixed weights.
We then obtain optimal weights in Section 2.1, and discuss multidimensional
projections with orthogonal weights in Section 2.2. In Section 3 we pro-
vide some extensions: general outcomes, covariates, time-dependent weights.
Simulations are reported in Section 4, while in Section 5 we describe our
motivating application on poverty in Europe. Some concluding remarks are
given in Section 6.

The methodology proposed in this paper has been implemented in R func-
tions which can be downloaded from https://github.com/afarcome/LMdim.

2 Basic model for binary outcomes

Let Yit, t = 1, . . . , Ti, i = 1, . . . , n, denote an H-dimensional vector of binary
outcomes measured on the i-th subject at time t; with T = maxi Ti. Our
problem in this paper is how to define optimal one-dimensional summaries
Sit(w) =

∑H
h=1 Yithwh through weight vectors w; where for each w Sit(w)

follows a first-order latent Markov model (to be more formally specified be-
low). In what follows we will suppress dependence on w for ease of notation
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whenever possible. Our main idea is based on directly modeling Sit(w) and
selecting the optimal w as the one that best separates the latent groups.
Constraints are needed for identifiability and to avoid issues with unbound-
edness of the objective function; in this work we use the classical unit-norm
bound

∑H
j=1w

2
j = 1.

Let Uit denote an unobserved discrete random variable with support 1, . . . , k,
where k is known. We make the assumption that Sit(w) is conditionally
Gaussian, and follows a unidimensional latent Markov model, as follows:

Sit(w)|w,Uit = j ∼ N(ξj, σ
2), (1)

where ξj is a group-specific latent intercept, and σ2 is the variance. A jus-
tification of the Gaussian assumption is given at the beginning of Section 3.
Note that (1) is identified as long as we constrain ξj < ξj+1 for j = 1, . . . , k−1;
see also Bartolucci et al. (2013) for a more general discussion. The model is
completed by assumptions of local independence, that is, that conditionally
on Uit the outcome is independent of the past measures; and on the distribu-
tion of the latent variable Uit. Commonly a first-order homogeneous Markov
chain is specified, with Pr(Ui1 = c) = πc and Pr(Uit = d|Ui,t−1 = c) = πcd.
The transition probabilities are collected in a transition matrix Π.

More formally, we assume that the multivariate longitudinal outcome is
a deconvolution, with unknown weights, of a univariate score which in turn
follows a latent Markov model.

2.1 Optimal dimension reduction

Each set of weights w1, . . . , wH corresponds to a unidimensional projection
Sit(w) of the vector Yit, associated with parameters ξ(w), σ2(w), π(w), and
Π(w). In parallel with principal component analysis we define optimality for
a vector of weights as the maximization of a measure of (group) variability.
In our setting, there are different criteria that can be put forward to measure
group variability in latent Markov models. This clearly must involve the
latent intercepts ξ1(w), . . . , ξk(w).

Let ptj(w) = Pr(Uit = j), where p1j = πj(w) and ptj =
∑

h pt−1,h(w)πhj(w)
for t > 1, denote the prior probability that the i-th subject is in latent state
j at time t. Let also ξ̃t(w) =

∑
j ptjξj(w)/

∑
j ptj. At population level we

propose to measure latent group separation through the weighted deviance

D(w) =
∑
j

∑
t

ptj(w)(ξj(w)− ξ̃t(w))2. (2)
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In words, we define the (absolute) maximal separation as the situation in
which latent intercepts ξj(w) are maximally far apart and subjects are maxi-
mally spread over groups at each time point. The principle behind this idea is
similar to the assessment of dependence in latent Markov models proposed in
Farcomeni (2015). Deviance (2) is an absolute measure of group separation,
where intra-class variability is weighted by time-specific class proportions. Of
course there are several other objective functions that can be put forward. A
relative measure of separation is presented in Magidson (1981), while several
other can be found in Vermunt and Magidson (2016) and are implemented
in the software Latent GOLD. Another possibility would be to minimize a
measure of cluster overlap, e.g., the one proposed in Steinley and Henson
(2005). In this work we prefer using (2) since it is a direct and absolute
measure of separation, and it is directly connected with the ability of the
final score to separate the occasion-specific measurements into clusters that
are balanced (since more heterogeneous πt clearly decrease D(w) when the
ξ vector is held fixed) and distant (since when the entries of ξ are closer to
each other, D(w) decreases if πtj is held fixed). We mention here that modi-
fication of the objective function is straightforward, and simulations lead to
similar conclusions also if for instance the Magidson (1981) index is used.

One should in principle maximize D(w) in (2) with respect to w to obtain
the optimal set of weights by construction. In pratice, population parame-
ters corresponding to each set of weights are unknown, hence the consistent
surrogate objective function

D̂(w) =
∑
j

∑
t

p̂tj(w)(ξ̂j(w)− ξ̄t(w))2. (3)

must be used, where ξ̂j(w), σ̂2(w), π̂(w) and Π̂(w) denote the MLE associated
with weights w1, . . . , wH ; p̂1j = π̂j(w), p̂tj =

∑
h p̂t−1,h(w)π̂hj(w) for t > 1,

and ξ̄t(w) =
∑

j p̂tj ξ̂j(w)/
∑

j p̂tj. Optimization of (3) is not straightforward
since the MLE associated to model (1) must be obtained for each candidate
set of weights w.

We proceed using an iterative procedure, combining an inner and an outer
optimizer. The outer optimizer maximizes (3) using a numerical method
(like the Nelder-Mead procedure or a genetic algorithm (Scrucca, 2013)). In
order to proceed without constraints the objective function is optimized in

w̃ ∈ RH , with w = w̃/
√∑

j w̃
2
j . Numerical outer maximizers in general

proceed iteratively, computing the objective function at several points. For
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each, that is, conditionally on the current value for w, the inner optimizer
uses a classical EM-type algorithm for obtaining the MLE of a latent Markov
model with a continuous outcome (Bartolucci et al., 2013). The outcome in
the working latent Markov model is Sit(w), where w is the currently evaluated
vector of weights. A by-product of the optimization procedure is, clearly, the
MLE at the optimal projection and the optimal score Sit(ŵ).

2.2 Optimal multidimensional projections

Suppose now that multidimensional dimension reduction is desired. Call
w(z) the z-th vector of weights, with z = 1, 2, . . . , r, r ≤ H. Similarly, denote
Sit(w

(z)) =
∑H

j=1w
(z)
j Yitj.

In order to estimate w
(z)
j we optimize (3). When z > 1, this is done

subject to further constraints on the weights. In this work we pursue an
orthogonality constraint. Formally, in order to obtain ŵ(z), we optimize (3)
subject to

H∑
j=1

w
(z)
j w

(h)
j = 0 (4)

for all h < z, and additionally, as before, that
∑

j w
(z)
j w

(z)
j = 1.

The constrained optimization problem can be solved either simultane-
ously, that is, by maximizing

r∑
j=1

D̂(w(j)) (5)

subject to orthonormality constraints of w(1), . . . , w(r); or sequentially, that
is, obtaining the z-th optimal set of weights only after the first z−1 have been
found. In the first case, the objective function argument is the vectorization
of the H by r unconstrained matrix w̃, where w is the Q matrix in the QR-
decomposition of w̃. Use of the QR decomposition is particularly convenient
since an efficient algorithm can be used to map an unconstrained vector to
an orthonormal matrix. For each w̃, the objective function is computed after
r EM-type inner optimization procedures for obtaining the r MLEs corre-
sponding to w(1), . . . , w(r). The inner procedures can be easily parallelized
for computational convenience.

In the second case, in order to compute ŵ(z), the first z − 1 solutions
are held fixed. The objective function argument is a unidimensional vector
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w̃(z), where w(z) is the z-th column of the Q matrix in the QR-decomposition
of the matrix whose first z − 1 columns are w(1), . . . , ŵ(z−1) and the z-th is
w̃(z). This is a very convenient way of mapping an unconstrained vector to
a unit-norm vector that is orthogonal with all previously computed vectors
of weights. A single inner optimization procedure now suffices to obtain the
MLE associated with the current value of w(z).

Our numerical experiments have indicated that the sequential procedure
is less dependent on initial solutions (that is, less likely to be trapped into
local optima) and slightly quicker than the simultaneous procedure.

The quality of each projection is measured, by definition, by the weighted
deviance (3). This is not a standardized measure. Clearly, due to (4),
D̂(ŵ(z)) ≤ D̂(ŵ(h)) and

z∑
j=1

D̂(ŵ(j)) ≥
h∑

j=1

D̂(ŵ(j))

for all z ≥ h. Consequently, calling Dmax =
∑H

j=1 D̂(ŵ(j)) we have that a

standardized measure of the quality of the j-th score is given by D̂(ŵ(j))/Dmax.
The latter is the proportion of separation that is retained by the j-th score.
This measure is standardized, with a minimum of zero for scores in which
latent groups are perfectly overlapped, and a maximum of one when only one
score gives non-zero separation.

2.3 Goodness of fit

It should be made clear that separation and goodness of fit are two different
matters, and our approach targets separation of the latent variable. This is
only indirectly pursuing goodness of fit, which therefore should be checked
alongside separation. Even in cases in which the cumulative degree of sepa-
ration

∑z
j=1 D̂(ŵ(j))/Dmax is large enough, we recommend selecting a larger

number of scores in case goodness of fit is not acceptable.
Ideally, we would need a measure of how well an optimal score S can

approximate the data Y , which is very cumbersome with binary (or even
mixed) outcomes. We thus propose a measure that is based on the following
interpretation of LM models: in LM models the outcome, be it the multi-
variate profile Y or the score S, can be assumed to be measuring, with error,
a discrete latent variable. All information about the latent variable is sum-
marized by the posterior probabilities Pr(Uit = j | Y ), and Pr(Uit = j | S),
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respectively. We point the reader to Bartolucci et al. (2014) both for further
discussion and computation of these quantities at the MLE. The latter is a
direct by-product of our estimation procedure. We therefore propose that if
posterior probabilities agree, then data Y are well explained by the score S. It
shall be pointed out that, since we are measuring association between vectors
of probabilities, we should use a log-ratio transform Aitchison (2011). When
k = 2, for simplicity, we directly compute the squared Spearman correlation
between the estimated Pr(Uit = 1 | Y ) and Pr(Uit = j | S).

3 General model for mixed outcomes and ex-

tensions

Let now Yit, t = 1, . . . , Ti, i = 1, . . . , n, denote an H-dimensional vector of
continuous, binary and/or ordinal outcomes.

We begin by discussing justification of the assumption that Sit is Gaus-
sian in general. When Yit ∈ RH , the most common parametric assumption
is that of a multivariate Gaussian distribution, possibly after transforma-
tion. Since any linear combination of Gaussian distributions is Gaussian, Sit

is exactly Gaussian under this assumption. In case different distributional
assumptions are used for Yit, the assumption that Sit is Gaussian is only a
working approximation, which is usually guaranteed as H grows by some
form of central limit theorem.

Let us now consider discrete outcomes. Suppose Yith ∈ {0, 1, . . . , ch − 1},
that is, there are ch categories for the h-th variable. These can be ordered or
unordered. If all outcomes are unordered, one can simply define ch−1 binary
dummy variables Zitl = I(Yith = l), l = 1, . . . , ch− 1. It is straightforward to
see that Bernoulli assumptions on Zitl, which correspond to general multi-
nomial assumptions on Yith, lead to

∑
l wlZitl begin distributed according to

a Poisson-Binomial law. The Poisson-Binomial indeed is the distribution of
a weighted sum of independent and non-identically-distributed random indi-
cators. A detailed description, with a strategy for efficient evaluation of its
probability mass function, can be found in Hong (2013). An ordered outcome
Yith can be treated similarly after letting Zitl = I(Yith ≥ l), l = 1, . . . , ch−1.
Our point here is that the Poisson-Binomial is well approximated by a Gaus-
sian distribution as soon as H is large (by Lyapunov central limit theorem),
with H ≥ 6 very often being sufficient. See also Deheuvels et al. (1989).
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The reasoning above can be directly extended to mixed-type outcomes.
Without loss of generality assume that Yith, for h = 1, . . . , H1, is continuous
for some 1 < H1 < H; and for h = H1 + 1, . . . , H it is binary. Call Sit =∑

hwhYith, S
(1)
it =

∑H1

h=1whYith and S
(2)
it =

∑H
h=H1+1whYith. Clearly the

distribution of Sit is the same as the distribution of S
(1)
it +S

(2)
it , where S

(1)
it and

S
(2)
it are independent conditionally on Uit as assumed above. Consequently,
Sit (conditionally on Uit) is the sum of two independent Gaussian (or at least
approximately Gaussian) random variables.

We can then use an assumption as (1), even conditionally on a vector of
covariates xit, associated with coefficients β:

Sit(w)|w,Uit = j, xit ∼ N(ξj + x′itβ, σ
2), (6)

Use of covariates in (6) has direct consequences on the interpretation of
the results. When no covariates are used, ξ̂j is simply the latent group mean
of the projected score. When covariates are included, groups are defined after
adjustment, that is, comparing measurements as if they had the same covari-
ate configuration. Accordingly, since weights are (still) chosen to maximize
(3), and β parameters do not appear in the formula, the final score maxi-
mizes the distance among latent groups after adjusting for covariates. That
is, Sit(ŵ) maximizes (on average) the distance among subjects belonging to
different latent states when they share the same covariate configuration.

Given our underlying assumptions, algorithms proposed in Sections 2.1
and 2.2 can still be used to obtain optimal orthonormal weights under (6)
and (3).

3.1 Time-dependent weights

The models considered so far involve time-fixed weights w1, . . . , wH . This
is appropriate when, as in our application, dimension reduction is used to
obtain a score which can be compared across different time points, in order
to monitor time trends. On the other hand, in other cases one might want
to target the goodness of fit, capture dynamics in the weights rather than
in the scores, or even assess the assumption that weights are time-fixed. An
extension of our approach in this direction is straightforward, where the new
variables are defined as

Sit(w
(z)
t ) =

H∑
j=1

w
(z)
jt Yitj,
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and these are still assumed to follow (6) in general. The constrained opti-
mization problem, on the other hand, should be specified in slightly different
way. While the objective function is still (5), in order to obtain interpretable
and identifiable solutions, we put forward the following set of constraints:{∑H

j=1(w
(z)
jt )2 = 1 ∀ t,∀ z∑H

j=1w
(z)
jt w

(h)
jl = 0∀ t,∀ z∀ l,∀ h < z

Namely, weights are normalized to unit norm at each time occasion; and
weights of the z-th score are orthogonal to the weights of the h-th score,
with h < z, for all time points.

Unsurprisingly, we can still use the same optimization procedure to solve
the problem; but at the price of a longer computational time since the di-
mension of the outer optimization problem is multiplied by T . It shall be
finally made clear that interpretation of scores changes at each time point,
making it quite difficult to compare new variables over time.

4 Simulations

In this section we illustrate our procedure with a simulation study.
Data were generated by considering H = {5, 10} Binomial outcomes,

T = {4, 6} occasions, n = {500, 1000, 2000} observations, and k = 2. The
outcomes follow a multivariate binary latent Markov model where latent
states are drawn at random with uniform initial probabilities. Transition
matrices are set so that transitions from the first to the second and second
to first latent states have probability 10%. Subject-time specific success
probabilities follow a logit model with latent intercepts generated from a
standard Gaussian distribution. Note therefore that the data generating
process is not (1), and our model is consequently misspecified.

For each combination of the experimental factors (H, T , n), we gener-
ate B = 500 data sets and compare the following approaches: our model
with only the first (D1), the first three (D3) and first five projections (D5);
the logistic PCA with only the first (LogPCA1), the first three (LogPCA3),
and the first five projections (LogPCA5); the logistic SVD with only the
first (LogSVD1), the first three (LogSVD3), and the first five projections
(LogSVD5); the naive approach based on equal weights (Naive); the heuris-
tic method (Heur) proposed by Dotto et al. (2019). Note that the last two
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methods are restricted, by definition, to a single projection. We recall here
also that Dotto et al. (2019) approach is based on weight calibration after
the estimation of the parameters of a multivariate latent Markov model.

Our proposal has been initialized using the output of logistic SVD as
implemented in the R package logisticPCA (Landgraf and Lee, 2015). Lo-
gistic PCA and logistic SVD use an eigen decomposition as starting values
(as default in the R package just mentioned). For the naive and heuristic ap-
proaches we use deterministic starting points, as implemented in the function
em_lm_basic included in the R package LMest (Bartolucci et al., 2015).

Figures 1 and 2 display the boxplots of the weighted deviance, at conver-
gence, over the different scenarios and model specifications.

It can be seen that in almost all scenarios our proposal leads to a larger
weighted deviance, and hence to better separated clusters, than competitors.
This difference cumulates over the number of projections, and it becomes
more and more apparent with increasing number of projections.

The naive approach of giving equal weights to all items, as could be
expected, always yields the worst performance. Surprisingly enough, the
heuristic approach of Dotto et al. (2019), despite being more variable, some-
times outperforms more formal methods like logistic PCA and logistic SVD.

Table 4 shows times in minutes needed to obtain the results in different
settings, using our non-optimized R code on a standard laptop. We believe
that these are very reasonable running times.

Table 1: Median computation time (IQR in parenthesis), in minutes, when
k = 2 and H = 5 for our model based on the first (D1), first three (D3) and
all projections (D5). Results are based on B = 500 replicates.

Scenario D1 D2 D5
n = 500, T = 4 0.47(0.48) 1.35(1.23) 1.78(1.42)
n = 500, T = 6 1.41(2.94) 5.31(5.88) 7.05(7.19)
n = 1000, T = 4 2.60(3.25) 7.43(9.75) 10.16(11.46)
n = 1000, T = 6 4.21(7.37) 12.50(16.67) 16.16(17.21)
n = 2000, T = 4 5.07(6.23) 14.65(10.15) 19.59(14.19)
n = 2000, T = 6 8.90(30.76) 30.17(45.53) 41.01(47.2)

Finally, to assess the effect of parameter initialization, we focus on the
scenarios where H = 5, n = 500 and T = 4, 6. In Table 2 we report statis-
tics about differences in weighted deviance at convergence when comparing

12



F
ig

u
re

1:
D

is
tr

ib
u
ti

on
of

th
e

w
ei

gh
te

d
d
ev

ia
n
ce

w
h
en

H
=

5
fo

r
d
iff

er
en

t
va

lu
es

of
sa

m
p
le

si
ze

n
,

ti
m

e
o
cc

as
io

n
s
T

,
an

d
n
u
m

b
er

of
p
ro

je
ct

io
n
s
P
ro
j.

F
or

P
ro
j

=
1,

3,
5

w
e

co
n
si

d
er

ou
r

p
ro

p
os

ed
m

o
d
el

(D
),

co
m

p
ar

ed
w

it
h

lo
gi

st
ic

S
V

D
(L

og
S
V

D
),

lo
gi

st
ic

P
C

A
(L

og
P

C
A

)
an

d
w

h
en
P
ro
j

=
1

al
so

w
it

h
th

e
co

u
n
ti

n
g

ap
p
ro

ac
h

(N
ai

ve
)

an
d

th
e

h
eu

ri
st

ic
m

et
h
o
d

of
D

ot
to

et
al

.
(2

01
9)

(H
eu

r)
.

R
es

u
lt

s
ar

e
b
as

ed
on

B
=

50
0

re
p
li
ca

te
s.

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=4
 a

n
d

 n
=5

00

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=4
 a

n
d

 n
=1

00
0

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=4
 a

n
d

 n
=2

00
0

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=6
 a

n
d

 n
=5

00

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=6
 a

n
d

 n
=1

00
0

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=6
 a

n
d

 n
=2

00
0

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=4
 a

n
d

 n
=5

00

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=4
 a

n
d

 n
=1

00
0

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=4
 a

n
d

 n
=2

00
0

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=6
 a

n
d

 n
=5

00

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=6
 a

n
d

 n
=1

00
0

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=6
 a

n
d

 n
=2

00
0

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=4
 a

n
d

 n
=5

00

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=4
 a

n
d

 n
=1

00
0

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=4
 a

n
d

 n
=2

00
0

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=6
 a

n
d

 n
=5

00

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=6
 a

n
d

 n
=1

00
0

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=6
 a

n
d

 n
=2

00
0

13



F
ig

u
re

2:
D

is
tr

ib
u
ti

on
of

th
e

w
ei

gh
te

d
d
ev

ia
n
ce

w
h
en

H
=

10
fo

r
d
iff

er
en

t
va

lu
es

of
sa

m
p
le

si
ze
n

,
ti

m
e

o
cc

as
io

n
s
T

,
an

d
n
u
m

b
er

of
p
ro

je
ct

io
n
s
P
ro
j.

F
or

P
ro
j

=
1,

3,
5

w
e

co
n
si

d
er

ou
r

p
ro

p
os

ed
m

o
d
el

(D
),

co
m

p
ar

ed
w

it
h

lo
gi

st
ic

S
V

D
(L

og
S
V

D
),

lo
gi

st
ic

P
C

A
(L

og
P

C
A

)
an

d
w

h
en
P
ro
j

=
1

al
so

w
it

h
th

e
co

u
n
ti

n
g

ap
p
ro

ac
h

(N
ai

ve
)

an
d

th
e

h
eu

ri
st

ic
m

et
h
o
d

of
D

ot
to

et
al

.
(2

01
9)

(H
eu

r)
.

R
es

u
lt

s
ar

e
b
as

ed
on

B
=

50
0

re
p
li
ca

te
s.

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=4
 a

n
d

 n
=5

00

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=4
 a

n
d

 n
=1

00
0

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=4
 a

n
d

 n
=2

00
0

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=6
 a

n
d

 n
=5

00

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=6
 a

n
d

 n
=1

00
0

D1

LogSVD1

LogPCA1

Naive

Heur

0123 Weighted Deviance 

P
ro

j=
1 

- 
T

=6
 a

n
d

 n
=2

00
0

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=4
 a

n
d

 n
=5

00

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=4
 a

n
d

 n
=1

00
0

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=4
 a

n
d

 n
=2

00
0

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=6
 a

n
d

 n
=5

00

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=6
 a

n
d

 n
=1

00
0

D3

LogSVD3

LogPCA3

012345 Weighted Deviance 

P
ro

j=
3 

- 
T

=6
 a

n
d

 n
=2

00
0

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=4
 a

n
d

 n
=5

00

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=4
 a

n
d

 n
=1

00
0

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=4
 a

n
d

 n
=2

00
0

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=6
 a

n
d

 n
=5

00

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=6
 a

n
d

 n
=1

00
0

D5

LogSVD5

LogPCA5

012345 Weighted Deviance 

P
ro

j=
5 

- 
T

=6
 a

n
d

 n
=2

00
0

14



different parameter initializations: random, logistic PCA and logistic SVD.
We find no evidence of strong dependence of the results on the specific ini-
tialization strategy, albeit the moderate standard deviation suggests that it
might be wise to compare different starting solutions in general.

Table 2: Mean, median and standard deviation (SD) of differrences in opti-
mal weighted deviance of the first projection when H = 5, n = 500, T = 4, 6.
Projections are obtained through different parameter initializations: Ran-
dom, logistic PCA (LogPCA) and logistic SVD (LogSVD). Results are based
on B = 500 replicates.

Random-LogPCA Random-LogSVD LogSVD-LogPCA
n = 500, T = 4

Mean 0.014 -0.012 0.026
Median 0.000 0.000 0.000
SD 0.186 0.160 0.190

n = 500, T = 6
Mean 0.017 -0.012 0.029
Median 0.000 0.000 -0.000
SD 0.277 0.241 0.254

5 An optimal scoring system for material de-

privation in three European countries

Data come from the longitudinal component of the EU-Statistics on income
and living conditions, the EU-Silc survey. We have data on households in-
terviewed each year in UK, Italy and Greece over the period 2010–2013. We
use the balanced panel, therefore ending up with a total of n = 1199 Greek,
n = 2836 Italian, and n = 1298 U.K. households; each interviewed T = 4
times. Microdata as shared by EUROSTAT include less than 0.5% missing
values. For simplicity we work with the listwise complete cases.

The severe material deprivation indicator, defined by Eurostat (2012),
corresponds to a lack of least four of the following H = 9 items:

1. the ability to keep the house adequately warm;

2. to have one week annual holiday away from home;
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3. capacity to afford a meal with meat, chicken, fish, or equivalent protein
every second day;

4. capacity to face unexpected expenses;

5. whether the household has a telephone;

6. whether the household has a color TV;

7. whether the household has a washing machine;

8. whether the household has a car;

9. whether the household is free of arrears on mortgage, rent, utility bills,
or loans.

The 9-item list is fixed for all EU countries.
To explore the impact of the assumptions behind the counting approach

adopted by Eurostat, first of all we compare the weighted deviance of unidi-
mensional projections of different approaches, for four panel data sets: the
households of each of three countries, and the entire data based on n = 5333
households pooled together. Results are reported in the upper panel of Table
3.

It is clear from Table 3 that our proposed approach (D1) outperforms all
competitors. The heuristic method proposed in Dotto et al. (2019) does not
compare well for this data set, as it outperforms only the naive approach
based on equal weighting (as formally shown in Dotto et al. (2019)). Good
results are provided by logistic PCA and logistic SVD in terms of group
separation, but D1 improves the objective function by a minimum of 2.3%
(for U.K.) to a maximum of 17% (for Greece). An advantage of D1 it that
is also more interpretable, since a latent Markov model (whose parameters
and interpretation are reported below) is estimated for the projected score.

We also evaluated our approach with time-dependent weights. This gen-
eralization does not seem to be useful for the data at hand, though. For
instance, for D1, we obtain weighted deviances of 1.524, 1.388, 1.162, and
1.432 for Greece, Italy, U.K. and the pooled data, respectively. Since a
four-fold increase in the number of weights leads to an increase in weighted
deviance of only about 2% for Greece, and less than 1% in the other cases,
we have decided not to pursue this route further. We therefore report only
results involving time-fixed weights.
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Table 3: Weighted deviance of projections for data on material deprivation in
Europe, as obtained with different methods. For the first projection (upper
panel) we compare our model (D1), with logistic SVD (LogSVD1), logistic
PCA (LogPCA1), the naive approach based on equal weights (Naive), and
the heuristic method of Dotto et al. (2019) (Heur). For the second projection
(lower panel) we compare our model (D2) with logistic SVD (LogSVD2) and
logistic PCA (LogPCA2).

D1 LogSVD1 LogPCA1 Naive Heur
Greece 1.493 1.323 1.261 0.777 0.785
Italy 1.378 1.300 1.232 0.606 0.615
U.K. 1.161 1.138 1.083 0.519 0.562

Pooled 1.429 1.355 1.309 0.685 0.779
D2 LogSVD2 LogPCA2

Greece 2.120 1.957 1.595
Italy 1.757 1.522 1.623
U.K. 1.358 1.333 1.278

Pooled 1.744 1.609 1.551

Further evidence of the good ranking and classification performance of
our approach can be provided by externally validating the resulting scores.
We do so through an assessment of their association with the equivalised
disposable income, and with an indicator of the employment status (which
was zero if no member of the household was working full time). In each of
the four data sets the scores obtained with our method were more strongly
associated with these two variables than all other methods. Associations
were measured through the Spearman correlation for equivalised disposable
income, and the point bi-serial correlation for employment status.

Finally, as an assessment of goodness of fit, we report squared Spearman
correlation between posterior probabilities for the material deprivation class
obtained using D1 vs using the entire data. For Greece this correlation is
0.947, for Italy 0.940, for U.K. 0.892, for the entire data set 0.939. We can
thus conclude that, after projection, variability in the data at hand is well
explained.

Optimal weights for method D1 are reported in the left panel of Table
4, as ŵ(1). In all cases these scores can be seen as an overall measure of
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material deprivation, as weights have concordant signs (with the exception
of item 5 in Greece and U.K., whose weight is anyway close enough to zero
to be deemed negligible). It can be seen that the first four items and the last
in general receive a strong weight. The fifth to eighth item are on the other
hand probably not as important for discrimination. These items all regard
possession of a good (namely: a telephone, a TV, a washing machine, and
a car). The first three goods are top priority in these countries regardless
of poverty status: in the pooled data set only two households do not have
at least one telephone (for a prevalence of 0.04%), three do not have a TV
(0.06%), and sixteen (0.3%) do not have a washing machine. On the other
hand, it is not surprising that owning a car is (jointly) not discriminating
poor and not poor households as in several areas a car is not needed (e.g.,
the metropolitan area of London) and in other (e.g., more rural) areas it is
almost essential. Our weighting system indicates that these four items might
be eliminated from the questionnaire, at least when restricting the survey to
these countries.

Some weights are also slightly different over countries. Ability to keep the
house warm (item 1) seems important in Greece and Italy but less in U.K.,
where probably heathing is a priority. On the other hand, ability to have a
holiday away from home (item 2) is crucial in U.K. but less important in Italy
and Greece, where holiday spots (e.g., the seashore in the Summer) might
be close to home. Less marked, and probably less relevant to classification,
differences are seen for the other items. This suggests that, as also noted
by Dotto et al. (2019), there might be some differential item functioning
within and between countries. This needs to be tackled in order to produce
meaningful and comparable classifications.

Since the scores are used directly, estimates for ξ and σ might not be
of primary interest. On the other hand, initial and transition probabilities
provide useful information. In Table 5 we report estimates for each country
and the pooled data set. It can be seen that risk of deprivation in a given
(e.g., the initial) year is quite large, especially in Greece, but persistent de-
privation (as defined by persistence in the latent status of deprivation for the
entire observation period) is not. See Dotto et al. (2019) for a more detailed
discussion on this point. More importantly, all (homogeneous) transition
matrices have slightly large values on the off-diagonal elements, with 16% to
24% probability each year to move from the deprived (D) to the non-deprived
(ND) status, and 5% to 15% probability to move from the non-deprived to
the deprived status. Overall, given that π̂D,ND > π̂ND,D in all cases, we can
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Table 4: Optimal weights for the first (ŵ(1)) and second (ŵ(2)) projection
obtained with our approach in Greece (GR), Italy (IT), U.K. and for the
pooled data (Pool).

ŵ(1) ŵ(2)

Item GR IT U.K. Pool GR IT U.K. Pool
1 -0.294 -0.326 -0.163 -0.320 -0.024 0.616 -0.073 0.693
2 -0.397 -0.530 -0.713 -0.578 -0.024 -0.735 -0.607 -0.678
3 -0.211 -0.205 -0.176 -0.218 -0.001 0.200 -0.070 0.153
4 -0.797 -0.729 -0.609 -0.668 -0.296 0.179 0.784 0.170
5 0.008 -0.006 0.010 -0.010 0.017 0.004 -0.006 0.022
6 -0.003 -0.008 0.001 -0.011 -0.011 -0.001 -0.001 0.019
7 -0.001 -0.024 -0.017 -0.015 0.011 0.019 0.000 0.008
8 -0.080 -0.039 -0.133 -0.063 0.028 0.017 -0.053 0.013
9 -0.263 -0.189 -0.212 -0.257 0.954 0.086 -0.063 0.082

claim that propensity to material deprivation has declined in each country
over the observation period, from 2010 to 2013.

Table 5: Initial (upper panel) and transition (lower panel) probabilities for
the optimal scores estimated for Greece (GR), Italy (IT), U.K. and for the
pooled data (Pool). Latent states are marked as Deprived (D) and Not
Deprived (ND) according to propensity estimated by ξ̂ (not reported).

GR IT U.K. Pool
D ND D ND D ND D ND

0.52 0.48 0.27 0.73 0.21 0.79 0.32 0.68
D 0.81 0.19 0.76 0.24 0.84 0.16 0.81 0.19

ND 0.13 0.87 0.15 0.85 0.05 0.95 0.11 0.89

We conclude this section producing bi-dimensional projections, whose
overall percentage of explained deviance is reported in the lower panel of
Table 3. Once again, our proposal outperforms the competitors. Weights
for the second projection are reported in the right panel of Table 4. Results
indicate the while the first projection is, as noted above, a measure of overall
material deprivation; the second projection has a slightly interpretation over
the four data sets. For Greece, the second projection is clearly just an indica-
tor of arrears; for Italy, the second projection is contrasting item 1 with item
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2, revealing preferences for poor households: the second score will have large
values for households unable to keep the house warm but going away from
home on holiday at least one week per year; and small values for households
whose house is warm but unable to take holidays away from home. A similar
interpretation can be given to the second score for the pooled data. Finally,
for U.K. the second score is constrasting item 4 with item 2, which has a
similar interpretation to the Italian second score after item 1 (which is top
priority in U.K.) is replaced with item 4.

6 Conclusions

It is intuitive and clearly demonstrated in this work and in Dotto et al. (2019)
that oftentimes obtaining linear combinations through equal weighting might
be inefficient.

We have proposed a method to perform dimension reduction and clus-
tering of continuous, discrete, nominal, and binary multivariate outcomes
repeatedly observed over time. Our proposal can also very naturally work
with multivariate outcomes of mixed nature (e.g., continuous and binary).
The method is based on optimization of a measure of separation of the latent
clusters. A by-product of our approach is a vector of parameter estimates for
a latent Markov model, which the linear projection is assumed to follow. The
projected scores can be simply used as new variables as usual. Clustering
is also a natural by-product given that subjects can be assigned to a latent
state using estimated posterior probabilities for the underlying latent Markov
model. A simple alternative is to directly threshold the scores. This might
be convenient in order to efficiently assign new observations to clusters. We
have not discussed for brevity how to do so, and point the reader to references
like Zheng and Heagerty (2004) and Barbati and Farcomeni (2018). Clearly,
score thresholding is useful only when at least some labels are observed.

In our implementation we have used a specific measure of group separa-
tion, given in (3). Expression (3) gives an absolute measure of variability,
while a relative measure is obtained by expressing the model as a function
of class-specific variances and taking those into account. Use of other group
variation functions is straightforward given our numerical outer optimization
strategy. In our example and a subset of simulations we have seen that use
of other measures, anyway, does not modify the comparative merits of our
proposal with respect to other methods like logistic PCA and logistic SVD.
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In summary, we have presented a method for dimension reduction of
longitudinal data of mixed type that leads to new variables as linear combi-
nations of the multivariate outcome. Unlike similar approaches, the method
can deal quite simply with repeated measures, use of weights allows us to
compute projected measurements on new subjects directly, and the underly-
ing latent Markov model is interpretable and naturally leads to cluster labels
(e.g., poor/not poor). Optimization of an objective function leads to optimal
separation by construction.

Further improvements of our approach can be made by tackling the fol-
lowing assumptions. First of all, our approach is parametric in nature, being
based on the assumption that linear combinations are Gaussian and follow a
latent Markov model. Secondly, being based on nested optimizations (an in-
ner optimization for estimating the parameters of each latent Markov model,
and an outer optimization for the weights), it is computationally intense. In
our implementation we have used Fortran routines of the R package LMest

(Bartolucci et al., 2015), and computational times are more than reasonable
for the real and simulated examples shown; but we do not expect this ap-
proach to scale well to much larger data sets. Finally, the assumption that
weights are orthogonal is useful for interpretation and for having the possi-
bility of plotting scores. On the other hand, interpretation might be difficult
in certain applications. One possibility is to put forward a pseudo-rotation,
by relaxing orthogonality constraints. This can be done for istance by penal-
izing the objective function for the degree of non-orthogonality of the weights
(e.g., Farcomeni (2017)).
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quantile regression models for longitudinal data with possibly incomplete
sequences. Statistical Methods in Medical Research, 27, 2231–2246.

A. Maruotti (2015). Handling non-ignorable dropouts in longitudinal data:
A conditional model based on a latent Markov heterogeneity structure.
TEST , 24, 84–109.

A. Maruotti, J. Bulla, F. Lagona, M. Picone, and F. Martella
(2017). Dynamic mixtures of factor analyzers to characterize multivariate
air pollutant exposures. Annals of Applied Statistics , 11, 1617–1648.

H.E. Najera Catalan (2017). Multiple deprivation, severity and latent
sub-groups: Advantages of factor mixture modelling for analysing material
deprivation. Social Indicators Research, 131, 681–700.

A. Punzo and A. Maruotti (2016). Clustering multivariate longitudinal
observations: The contaminated Gaussian hidden Markov model. Journal
of Computational and Graphical Statistics , 25, 1097–1098.

L. Scrucca (2013). GA: A package for genetic algorithms in R. Journal of
Statistical Software, 53, 1–37.

A. K. Sen (1981). Poverty and Famines. Essay on Entitlement and Depri-
vation. Clarendon Press, Oxford.

X. Song, Y. Xia, and H. Zhu (2017). Hidden Markov latent variable
models with multivariate longitudinal data. Biometrics , 73, 313–323.

25



D. Steinley and R. Henson (2005). OCLUS: an analytic method for
generating clusters with known overlap. Journal of Classification, 22,
221–250.

J. K. Vermunt and J. Magidson (2016). Technical Guide for Latent
GOLD 5.1: Basic, Advanced, and Syntax . Statistical Innovations Inc.,
Belmont, MA.

L. V. D. E. Vogelsmeier, J. K. Vermunt, E. van Roekel, and
K. De Roover (2019). Latent Markov factor analysis for exploring mea-
surement model changes in time-intensive longitudinal studies. Structural
Equation Modeling: A Multidisciplinary Journal , 26, 557–575.

Y. Xia, N-S. Tang, and J-W. Gou (2016). Generalized linear latent mod-
els for multivariate longitudinal measurements mixed with hidden Markov
models. Journal of Multivariate Analysis , 152, 259 – 275.

M. Yamamoto and K. Hayashi (2015). Clustering of multivariate binary
data with dimension reduction via L1-regularized likelihood maximization.
Pattern Recognition, 48, 3959–3968.

Y. Zheng and P. Heagerty (2004). Semiparametric estimation of time-
dependent ROC curves for longitudinal marker data. Biostatistics , 5, 615–
632.

26


