We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type inequality that takes into account both the dimensional as well as the magnetic flux contributions. Second, in the three-dimensional Euclidean space, we derive a non-trivial magnetic Hardy inequality for a magnetic field that vanishes at infinity and diverges along a plane.

On the improvement of the Hardy inequality due to singular magnetic fields / Fanelli, L.; Krejcirik, D.; Laptev, A.; Vega, L.. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 45:9(2020), pp. 1202-1212. [10.1080/03605302.2020.1763399]

On the improvement of the Hardy inequality due to singular magnetic fields

Fanelli L.;Krejcirik D.
;
Laptev A.;
2020

Abstract

We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type inequality that takes into account both the dimensional as well as the magnetic flux contributions. Second, in the three-dimensional Euclidean space, we derive a non-trivial magnetic Hardy inequality for a magnetic field that vanishes at infinity and diverges along a plane.
2020
Aharonov-Bohm potential; Hardy inequality; singular magnetic field
01 Pubblicazione su rivista::01a Articolo in rivista
On the improvement of the Hardy inequality due to singular magnetic fields / Fanelli, L.; Krejcirik, D.; Laptev, A.; Vega, L.. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 45:9(2020), pp. 1202-1212. [10.1080/03605302.2020.1763399]
File allegati a questo prodotto
File Dimensione Formato  
Fanelli_On-the-improvement_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 645.05 kB
Formato Adobe PDF
645.05 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1509617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact