Monitoring air pollution plays a key role when trying to reduce its impact on the environment and on human health. Traditionally, two main sources of information about the quantity of pollutants over a city are used: monitoring stations at ground level (when available), and satellites’ remote sensing. In addition to these two, other methods have been developed in the last years that aim at understanding how traffic emissions behave in space and time at a finer scale, taking into account the human mobility patterns. We present a simple and versatile framework for estimating the quantity of four air pollutants (CO2, NOx, PM, VOC) emitted by private vehicles moving on a road network, starting from raw GPS traces and information about vehicles’ fuel type, and use this framework for analyses on how such pollutants distribute over the road networks of different cities.

Quantifying the presence of air pollutants over a road network in high spatio-temporal resolution / Bohm, Matteo; Mirco, Nanni; Luca, Pappalardo. - (2020). (Intervento presentato al convegno Tackling Climate Change with Machine Learning workshop at NeurIPS 2020 tenutosi a Online).

Quantifying the presence of air pollutants over a road network in high spatio-temporal resolution

Matteo Böhm;
2020

Abstract

Monitoring air pollution plays a key role when trying to reduce its impact on the environment and on human health. Traditionally, two main sources of information about the quantity of pollutants over a city are used: monitoring stations at ground level (when available), and satellites’ remote sensing. In addition to these two, other methods have been developed in the last years that aim at understanding how traffic emissions behave in space and time at a finer scale, taking into account the human mobility patterns. We present a simple and versatile framework for estimating the quantity of four air pollutants (CO2, NOx, PM, VOC) emitted by private vehicles moving on a road network, starting from raw GPS traces and information about vehicles’ fuel type, and use this framework for analyses on how such pollutants distribute over the road networks of different cities.
2020
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1488638
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact