We study decentralized estimation of time-varying signals at a fusion center, when energy harvesting sensors transmit sampled data over rate-constrained links. We propose dynamic strategies to select radio parameters, sampling set, and harvested energy at each node, with the aim of estimating a time-varying signal while ensuring: i) accuracy of the recovery procedure, and ii) stability of the batteries around a prescribed operating level. The approach is based on stochastic optimization tools, which enable adaptive optimization without the need of apriori knowledge of the statistics of radio channels and energy arrivals processes. Numerical results validate the proposed approach for decentralized signal estimation under communication and energy constraints typical of Internet of Things (IoT) scenarios.

Dynamic resource optimization for decentralized estimation in energy harvesting IoT networks / Battiloro, C.; Di Lorenzo, P.; Banelli, P.; Barbarossa, S.. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. - (2020), pp. 1-13. [10.1109/JIOT.2020.3046383]

Dynamic resource optimization for decentralized estimation in energy harvesting IoT networks

Battiloro C.;Di Lorenzo P.;Banelli P.;Barbarossa S.
2020

Abstract

We study decentralized estimation of time-varying signals at a fusion center, when energy harvesting sensors transmit sampled data over rate-constrained links. We propose dynamic strategies to select radio parameters, sampling set, and harvested energy at each node, with the aim of estimating a time-varying signal while ensuring: i) accuracy of the recovery procedure, and ii) stability of the batteries around a prescribed operating level. The approach is based on stochastic optimization tools, which enable adaptive optimization without the need of apriori knowledge of the statistics of radio channels and energy arrivals processes. Numerical results validate the proposed approach for decentralized signal estimation under communication and energy constraints typical of Internet of Things (IoT) scenarios.
File allegati a questo prodotto
File Dimensione Formato  
Battiloro_Dynamic_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 899.21 kB
Formato Adobe PDF
899.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1478714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact