This is a companion paper to “Ghost penalties in nonconvex constrained optimization: Diminishing stepsizes and iteration complexity" (to appear in Mathematics of Operations Research). We consider the ghost penalty scheme for nonconvex, constrained optimization introduced in that paper, coupled with a diminishing stepsize procedure. Under an extended Mangasarian-Fromovitz-type constraint qualification we give an expression for the maximum number of iterations needed to achieve a given solution accuracy according to a natural stationarity measure, thus establishing the first result of this kind for a diminishing stepsize method for nonconvex, constrained optimization problems.

Convergence rate for diminishing stepsize methods in nonconvex constrained optimization via ghost penalties / Facchinei, Francisco; Kungurtsev, Vyacheslav; Lampariello, Lorenzo; Scutari, Gesualdo. - In: ATTI DELLA ACCADEMIA PELORITANA DEI PERICOLANTI, CLASSE DI SCIENZE FISICHE, MATEMATICHE E NATURALI. - ISSN 1825-1242. - 98:suppl n. 2(2020), pp. 1-16. [10.1478/AAPP.98S2A8]

Convergence rate for diminishing stepsize methods in nonconvex constrained optimization via ghost penalties

Facchinei, Francisco
;
2020

Abstract

This is a companion paper to “Ghost penalties in nonconvex constrained optimization: Diminishing stepsizes and iteration complexity" (to appear in Mathematics of Operations Research). We consider the ghost penalty scheme for nonconvex, constrained optimization introduced in that paper, coupled with a diminishing stepsize procedure. Under an extended Mangasarian-Fromovitz-type constraint qualification we give an expression for the maximum number of iterations needed to achieve a given solution accuracy according to a natural stationarity measure, thus establishing the first result of this kind for a diminishing stepsize method for nonconvex, constrained optimization problems.
2020
diminishing stepsize; convergence rate; ghost penalty
01 Pubblicazione su rivista::01a Articolo in rivista
Convergence rate for diminishing stepsize methods in nonconvex constrained optimization via ghost penalties / Facchinei, Francisco; Kungurtsev, Vyacheslav; Lampariello, Lorenzo; Scutari, Gesualdo. - In: ATTI DELLA ACCADEMIA PELORITANA DEI PERICOLANTI, CLASSE DI SCIENZE FISICHE, MATEMATICHE E NATURALI. - ISSN 1825-1242. - 98:suppl n. 2(2020), pp. 1-16. [10.1478/AAPP.98S2A8]
File allegati a questo prodotto
File Dimensione Formato  
Facchinei_Convergence-rate_2020.pdf

accesso aperto

Note: link prodotto https://cab.unime.it/journals/index.php/AAPP/article/view/AAPP.98S2A8/AAPP98S2A8
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 288.76 kB
Formato Adobe PDF
288.76 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1474348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact