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CONVERGENCE RATE FOR DIMINISHING STEPSIZE METHODS
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VIA GHOST PENALTIES
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LORENZO LAMPARIELLO c AND GESUALDO SCUTARI d

ABSTRACT. This is a companion paper to “Ghost penalties in nonconvex constrained
optimization: Diminishing stepsizes and iteration complexity" (to appear in Mathematics of
Operations Research). We consider the ghost penalty scheme for nonconvex, constrained
optimization introduced in that paper, coupled with a diminishing stepsize procedure. Under
an extended Mangasarian-Fromovitz-type constraint qualification we give an expression for
the maximum number of iterations needed to achieve a given solution accuracy according to
a natural stationarity measure, thus establishing the first result of this kind for a diminishing
stepsize method for nonconvex, constrained optimization problems.

1. Introduction

We consider the nonconvex constrained optimization problem

minimize
x∈Rn

f (x)

s.t. g(x)≤ 0
(P)

where f : Rn→ R and g : Rn→ Rm are C1,1 (i.e., continuously differentiable with locally
Lipschitz gradients) functions on Rn. Equality constraints can be added, but we avoid this
for the sake of simplicity.

The main aim of this paper is to study the convergence rate of a Diminishing Stepsize
Method (DSM) proposed by Facchinei et al. (2020). The analysis of Facchinei et al. (2020)
fills a gap in the literature in that, for the first time, it shows convergence of a DSM for a
constrained optimization problem with nonconvex constraints. The results in this paper
complete and complement the analysis of Facchinei et al. (2020) by providing a convergence
rate study for that method. We refer the interested reader to (Facchinei et al. 2020) for a
more detailed discussion of all of the background and formulation of the method and its
motivation.
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A8-2 F. FACCHINEI ET AL.

Our framework is of a generalized Sequential Quadratic Programming (SQP)-type.
At each iteration xν we generate a search direction d(xν) by solving a strongly convex
optimization subproblem, which is described in Section 3, constructed along the lines
discussed in the seminal papers of Burke (1989) and Burke and Han (1989) and also taking
into account the developments of Scutari et al. (2014) and Facchinei et al. (2017). A step
γν is then taken along d(xν) so that

xν+1 = xν + γ
ν d(xν). (1)

In (Facchinei et al. 2020), subsequential convergence to (generalized) stationary points of
problem P is established for:

(a) the classical diminishing stepsize method, in which the stepsize policy is chosen
according to the following rules:

lim
ν→∞

γ
ν ↓ 0 and

∞

∑
ν=0

γ
ν = ∞;

(b) some more problem-oriented choices (including the case of a constant stepsize
strategy) where the stepsize is held constant until some condition is met and then it
is suitably reduced.

Iteration complexity for (b) is analyzed by Facchinei et al. (2020); in this paper we complete
the analysis giving some corresponding complexity results for (a).

The paper is organized as follows. In the next section we recall some basic definitions. In
Section 3 we define the search-direction subproblem and consider some related properties.
In Section 4 we establish an upper bound on the number of iterations needed to satisfy a
certain stopping criterion and also discuss the relationship of the stopping criterion to the
KKT residual for problem (P).

2. KKT conditions and the eMFCQ

Consider Problem (P): our aim is to find a KKT point, i.e. a (feasible) point x ∈ Rn that,
together with a vector of multipliers ξ ∈ Rm, satisfies the KKT system

∇ f (x)+∇g(x)ξ = 0

0≤ ξ ⊥ g(x)≤ 0,
(2)

where ∇ f (x) is the gradient of f and ∇g(x) is the transposed Jacobian of g evaluated at x,
and ⊥ mean orthogonal, so that ξ ⊥ g(x) stands for ξ T g(x) = 0. We find it convenient to
describe the set of multipliers associated to a KKT point x as

M1(x)≜
{︂

ξ | ξ ∈ NRm
−(g(x)), 0 = ∇ f (x)+∇g(x)ξ

}︂
,

where NRm
−(g(x)) denotes the normal cone to the non positive orthant at g(x) (note that this

implies that M1(x) is surely empty at infeasible points, so that M1(x) ̸= /0 implies feasibility
for x). Note that, if x is feasible, i.e. g(x)≤ 0, condition ξ ∈ NRm

−(g(x)) can be rewritten as

ξi ≥ 0, ξigi(x) = 0
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for all i. Similarly we define the set of “abnormal” multipliers:

M0(x)≜
{︃

ξ | ξ ∈ NRm
−(g(x)−max

i
{gi(x)+}e), 0 = ∇g(x)ξ

}︃
, (3)

where e ∈ Rm is the vector with all components being one. Let x̂ be a local minimum
point of (P), then it is well-known that either M1(x̂) ̸= /0, (the point is a KKT solution) or
M0(x̂) ̸= {0} (the point is a Fritz-John point), or both. However, there may be feasible
points x, possibly not minimum points, for which M0(x) ̸= {0}, these are precisely the
points where the Mangasarian-Fromovitz constraint qualification fails. On the contrary, it is
classical to show that if x̂ is not feasible, i.e. if gi(x̂)> 0 for at least an index i ∈ {1, . . . ,m},
then the stationarity condition for the problem minimize

x
maxi{gi(x̂)+}, that is

0 ∈ ∂ max
i
{gi(x̂)+},

is equivalent to M0(x̂) ̸= {0}.
The Constraint Qualification (CQ) we use in this paper is the Mangasarian-Fromovitz

CQ, suitably extended to infeasible points.

Definition 2.1. We say that the extended Mangasarian-Fromovitz Constraint Qualification
(eMFCQ) holds at x if

M0(x) = {0}.

Indeed, note that if x is feasible, then the condition M0(x) = {0} is nothing else but the
standard MFCQ. We make the following blanket assumption

Assumption CQ The eMFCQ holds at any point x ∈ Rn.

3. Direction Finding Subproblem and its Properties

At each iteration of our algorithm we move from the current iteration xν along a dire-
ction d(xν) with a stepsize γν , see (1). While the stepsize is chosen according to classic
diminishing stepsize rules, the direction d(xν) is the solution of a suitable strongly convex
subproblem that we describe next.

Given a point x (which will actually be xν in the algorithm) d(x) is the unique solution
of the optimization problem:

minimize
d

˜︁f (d;x)

s.t. ˜︁g(d;x)≤ κ(x)e

∥d∥∞ ≤ β ,

(Px)

where e ∈ Rm is the vector with all components being one, κ(x) a nonnegative quantity
to be defined shortly, and β is a user-chosen positive constant. Moreover, ˜︁f is a strongly
convex surrogate of the original objective function f while ˜︁g is a convex surrogate of the
original constraint functions g (see Assumption A below for the conditions we impose on
these surrogates).

The term κ(x)e in the subproblem constraints serves to enlarge the feasible set of the
subproblem in order to ensure it is always nonempty. The additional constraint ∥d∥∞ ≤ β
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A8-4 F. FACCHINEI ET AL.

allows one to avoid issues with search directions becoming too large. We denote by ˜︂X (x)
the convex feasible set of subproblem (Px), i.e.˜︂X (x)≜ {d ∈ Rn : ˜︁g(d;x)≤ κ(x)e, ∥d∥∞ ≤ β} ,

and, when convenient, we rewrite the constraint ∥d∥∞ ≤ β as d ∈ βBn
∞, where Bn

∞ is the
closed unit ball in Rn associated with the infinity-norm.

The direction finding subproblem (Px) is a direct generalization of the subproblems
considered by Burke (1989), to which it reduces when the classical quadratic/linear approxi-
mations are used for ˜︁f :

˜︁f (d;x)≜ ∇ f (x)T d +
1
2
∥d∥2; ˜︁g(d;x)≜ g(x)+∇g(x)T d. (4)

Note that if these approximations are employed and we set κ(x) = 0 and β =+∞, subpro-
blem (Px) boils down to the classical SQP-type subproblem. Here we adopt the approach
of Burke (1989) by taking κ(x) not necessarily zero and β <+∞ in order to guarantee the
existence and continuity of the solution mapping d(x). In addition we introduce the use
of general approximations ˜︁f and ˜︁g, this may be very convenient in practice by allowing
flexibility in tailoring the direction finding subproblem to the problem at hand and to exploit
any available specific structure in (P), see Scutari et al. (2014) and Facchinei et al. (2017).
Of course, an underlying assumption of our approach is that subproblem (Px) can be solved
efficiently. We do not insist on this point because it is very dependent on the choice of ˜︁f
and ˜︁g which in turn is dictated by the original problem (P). But we observe that the use
of models that go beyond the standard quadratic/linear one in constrained optimization is
emerging consistently in the literature, motivated, on the one hand, by the possibility to
solve efficiently more complex subproblems than the classical quadratic ones and, on the
other hand, by the desire of faster convergence rates, see for example the discussion in
Section 3 of (Martínez 2017).

For this approach to be legitimate and lead to useful convergence results, we obviously
need to make assumptions on the surrogate functions ˜︁f and ˜︁g.

Assumption Approx

Let Od be an open neighborhood of βBn
∞ and ˜︁f : Od×Rn→ R and ˜︁gi : Od×Rn→ R for

every i = 1, . . . ,m be continuously differentiable on Od with respect to the first argument
and such that

A1): ˜︁f (•;x) is a strongly convex function on Od for every x ∈ Rn with modulus of
strong convexity c > 0 independent of x;

A2): ˜︁f (•;•) is continuous on Od×Rn;
A3): ∇1 ˜︁f (•;•) is continuous Od×Rn;
A4): ∇1 ˜︁f (0;x) = ∇ f (x) for every x ∈ Rn;
A5): ˜︁gi(•;x) is a convex function on Od for every x ∈ Rn;
A6): ˜︁gi(•;•) is locally Lipschitz continuous on Od×Rn;
A7): ˜︁gi(0;x) = gi(x) for every x ∈ Rn;
A8): ∇1˜︁gi(•;•) is locally Lipschitz continuous on Od×Rn;
A9): ∇1˜︁gi(0;x) = ∇gi(x), for every x ∈ Rn;
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where ∇1 ˜︁f (u;x) and ∇1˜︁gi(u;x) denote the partial gradient of ˜︁f (•;x) and ˜︁gi(•;x) evaluated
at u.

These conditions are easily satisfied in practice and have been used in many recent papers;
we refer the reader to (Scutari et al. 2014; Facchinei et al. 2017) as a good source of
examples. Here we only note that the classical quadratic/linear approximations (4) satisfy
Assumption A, provided f and g are C1,1.

To complete the description of subproblem (Px), we must give the definition of κ(x).
Following Burke (1989), we set

κ(x)≜ (1−λ )max
i
{gi(x)+}+λ min

d

{︃
max

i
{˜︁gi(d;x)+} |∥d∥∞ ≤ ρ

}︃
, (5)

with λ ∈ (0,1) and ρ ∈ (0,β ). Note that the computation of κ(x) requires the computation
of the optimal value of the convex (see A5) optimization problem

min
d

{︃
max

i
{˜︁gi(d;x)+} |∥d∥∞ ≤ ρ

}︃
that always has an optimal solution because the feasible set is nonempty and compact. This
problem can easily be reformulated as a smooth optimization problem. In addition, if ˜︁g
is linear, as in the classical choice given in (4), this problem reduces to a linear program
and can be efficiently solved. Note also that if x is feasible for (P), i.e. g(x)≤ 0, we have
κ(x) = 0, so that our subproblem (Px) is very similar to standard SQP subproblems. The
term κ(x) plays a key role when the SQP-type subproblems have an empty feasible set, a
well-known issue with SQP schemes. In fact, observing that κ(x) is always nonnegative
being the sum of two nonnegative quantities, it restores feasibility by enlarging (with respect
to the SQP choice ˜︁g(d;x)≤ 0) the range of admissible values. Hence, the feasible set of
problem (Px), for every x, is nonempty: choosing d̂ at which the minimum in the expression
of κ(x) is attained, we have

˜︁g(d̂;x)≤min
d

{︃
max

i
{˜︁gi(d;x)+}|∥d∥∞ ≤ ρ

}︃
e = max

i
{gi(d̂;x)+}e,

and, in turn,˜︁g(d̂;x) = (1−λ )˜︁g(d̂;x)+λ ˜︁g(d̂;x)

≤ [(1−λ )maxi{˜︁gi(0;x)+}+λ mind {maxi{˜︁gi(d;x)+}|∥d∥∞ ≤ ρ}]e = κ(x)e.

Finally, we discuss briefly the KKT conditions for problem (Px). Observe preliminarily
that the constraint ∥d∥∞ ≤ β corresponds to 2n bounds of the type −β ≤ di ≤ β . However,
in what follows, we are interested only in the multipliers corresponding to the constraints˜︁g(d;x)≤ 0 and therefore we find it expedient to write the KKT conditions as

0 ∈ ∇1 ˜︁f (d(x);x)+∇1˜︁g(d(x);x)ξ +NβBn
∞
(d(x))

0≤ ξ ⊥ [˜︁g(d(x);x)−κ(x)]≤ 0
(6)

with the multipliers ξ satisfying the conditions ξ ≥ 0 and ξ T ˜︁g(d(x);x) = 0, and where
NβBn

∞
(d(x)) is the normal cone to βBn

∞ at d(x).
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The following proposition, collecting several useful facts about the objects considered so
far, shows, among other things, that the KKT conditions are always satisfied at a solution of
problem (Px).

Proposition 3.1. Under Assumptions CQ and Approx, the following properties hold:

(a): κ(•) is locally Lipschitz continuous on Rn;
(b): for every x, the feasible set ˜︂X (x) of (Px) is non empty and (Px) has a unique

solution d(x);
(c): the MFCQ holds at every point of ˜︂X (x), for every x;
(d): the function d(•) is continuous on Rn and d(x) = 0 if and only if x is a KKT

solution for (P);
(e): the unique solution d(x) of (Px) is a KKT solution of problem (Px) and the set of

KKT multipliers is locally bounded at any x ∈ Rn.

Proof. Some of the statements are readily seen to hold and, in any case, with the
exception of the fact that d(x) = 0 if and only if x is a KKT point of problem (P), all the
properties can immediately be derived from Propositions 2, 4, and 6 in (Facchinei et al.
2020), taking into account that here the eMFCQ is assumed to hold at every point. The
statement about d(x) = 0 can be proved by simply comparing (2) and (6), taking into
account A4 and A9 and the fact that NβBn

∞
(0) = {0}: it is enough to observe that

maxi{gi(x)+}−κ(x) ≤ maxi{gi(x)+}−maxi{˜︁gi(d(x);x)+}
≤ maxi{gi(x)+}−maxi{(gi(x)+∇gi(x)T d(x))+}
≤ ∥∇g(x)T∥∞∥d(x)∥,

(7)

which is due to

κ(x) ≥ ˜︁gi(d(x);x)≥ ˜︁gi(0;x)+∇˜︁gi(0;x)T d(x) = gi(x)+∇gi(x)T d(x), (8)

for every i. In turn, with d(x) = 0, maxi{gi(x)+}= κ(x) and the claim follows from Lemma
2 of (Facchinei et al. 2020). 2

4. Algorithm and Convergence Rate

Our scheme is based on the successive solution of subproblems (Px) and the iterative
process xν+1 = xν + γν dν , where the stepsizes γν are non-increasing and such that

lim
ν→∞

γ
ν ↓ 0 and

∞

∑
ν=0

γ
ν = ∞. (9)
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Algorithm 1: DSM Algorithm for (P)

Data: γ0 ∈ (0,1], δ ≥ 0, x0, ν ←− 0;
repeat

(S.1) compute κ(xν) and the solution d(xν) of problem (Pxν );
(S.2) if ∥dν∥ ≤ δ then

stop and return xν ;
end

(S.3) set xν+1 = xν + γν d(xν), ν ←− ν +1;
end

The algorithm is always well defined if Assumption A, which guarantees existence and
uniqueness of d(xν), holds. We also note that the stopping criterion at step S.2 is sound
and sensible. In fact, in light of Proposition 3.1, ∥d(x)∥ is a valid stationarity measure,
being a continuous function which is zero if and only if x is a KKT point of problem (P). In
subsection 4.1 we complete the study of this stationarity measure showing its quantitative
relationship with the approximate KKT conditions residual.

Remark 4.1. Note that we included the possibility of taking δ = 0 in Algorithm 1. This
choice will generally lead the algorithm to produce an infinite sequence {xν}: in fact, the
algorithm will stop only in the exceptional case of d(xν) = 0 for some ν , i.e. the algorithm
will stop only if an exact KKT point is reached. This is the case considered by Facchinei
et al. (2020): there, it is shown that, if δ = 0, any limit point of the sequence {xν} is a
KKT point for problem (P). Of course, to have finite termination, we must assume δ > 0;
however, the case δ = 0 will be considered in order to state a boundedness condition used
in Theorem 4.1, see Assumption Compact below. 2

The distinctive aspect of Algorithm 1 is its simplicity, a feature shared with all DSMs.
The main (and essentially only) computational burden is given by the computation of κ(xν)
and of the solution for the strongly convex subproblem (Pxν ). Before giving the result on
the convergence rate properties of Algorithm 1, we state the last assumption needed.

Assumption Compact The sequence {xν} generated by Algorithm 1 with δ = 0 is bounded.
Hence, the whole sequence {xν} is contained in some compact set S⊆ Rn.

We will comment further on this assumption in Remark 4.3, after Theorem 4.1.
The proof of Theorem 4.1 below is based on the nonsmooth penalty function

W (x;ε)≜ f (x)+
1
ε

max
i
{gi(x)+} (10)

where, as usual, a+ = max{0,a}. Essentially, and rather classically, we will show that for a
certain sufficiently small value ε̄ of the penalty parameter, d(xν) is a direction of sufficient
decrease for W (x; ε̄) at xν . Based on this fact, we can derive the desired results. Note
however that the penalty function itself is never used in the algorithm and, in particular, the
user need not know the value of ε̄ , in contrast to standard penalty approaches in constrained
optimization. For this reason, we use the term ghost penalty. We underline also the fact that
we can see the penalty function as a Lyapunov function because we assume that the eMFCQ
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holds; in (Facchinei et al. 2020), where this assumption is not made, the role played by the
ghost penalty is more complicated.

Theorem 4.1. Let {xν} be the sequence generated by Algorithm 1 with δ > 0 under
Assumptions CQ , Approx, and Compact. Then, Algorithm 1 finds a point for which
∥d(xν)∥ ≤ δ and stops in at most N iterations, where

(a): if γ0 is sufficiently small, N is the first iteration index for which
N−1

∑
ν=0

γ
ν ≥ [W 0−W m]

ω δ 2 , (11)

where, ω = c/2 (see Assumption Approx for the definition of c), ε̄ is a value of
the penalty parameter to be specified in the proof, W 0 ≜W (x0; ε̄), and W m is the
minimum value attained by the continuous function W (x; ε̄) on the compact set S;

(b): if no assumptions are made on γ0, N is the first iteration index for which
ν̄+N−1

∑
ν=ν̄

γ
ν ≥ [W M−W m]

ω δ 2 , (12)

for some suitable iteration ν̄ and where W M is the maximum value attained by the continuous
function W (x; ε̄) on the compact set S.

Proof. Essentially, we aim at showing that a certain decrease in the penalty function is
achieved at each iteration. The proof proceeds by a sequence of lemmas.

Lemma 4.1. There is a positive constant Ξ such that for any x ∈ S the multipliers ξ

associated to the constraints ˜︁g(d;x) ≤ κ(x)e at the solution d(x) in subproblem (Px) are
bounded by Ξ, i.e. ∥ξ∥∞ ≤ Ξ for any optimal multiplier ξ .

Proof. The lemma follows from Proposition 3.1 (e) and the compactness of S. 2

The following lemma gives a bound on the directional derivative of the objective function f
in the direction d(xν) at every iteration ν .

Lemma 4.2. At each iteration ν the following bound holds for the directional derivative of
the objective function at xν in the direction d(xν):

∇ f (xν)T d(xν)≤−c∥d(xν)∥2 +mΞ [max
i
{gi(xν)+}−κ(xν)]. (13)

Proof. Recall first that, given xν , d(xν) satisfies the KKT conditions (6) by Proposition
3.1:

0 ∈ ∇1 ˜︁f (d(xν);xν)+∇1˜︁g(d(xν);xν)ξ ν +NβBn
∞
(d(xν)), (14)

for some multipliers ξ ν ∈ NRm
−(˜︁g(d(xν);xν)−κ(xν)e). Observe now that, thanks to A1

and A4,

∇1 ˜︁f (d(xν);xν)T d(xν) = [∇1 ˜︁f (d(xν);xν)−∇1 ˜︁f (0;xν)+∇1 ˜︁f (0;xν)]T d(xν)

≥ c∥d(xν)∥2 +∇ f (xν)T d(xν).
(15)

Moreover, in view of A5,

−∇1˜︁gi(d(xν);xν)T d(xν)≤ ˜︁gi(0;xν)− ˜︁gi(d(xν);xν)
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and, by A7, since ξ ν is nonnegative, in turn,

−ξ
ν
i ∇1˜︁gi(d(xν);xν)T d(xν)≤ ξ

ν
i [˜︁gi(0;xν)− ˜︁gi(d(xν);xν)] = ξ

ν
i [gi(xν)−κ(xν)], (16)

where the equality follows observing that ξ ν belongs to NRm
−(˜︁g(d(xν);xν)−κ(xν)e).

Therefore, by (14), (15) and (16), we have, for some ζ ν ∈ NβBn
∞
(d(xν)),

c∥d(xν)∥2 +∇ f (xν)T d(xν) ≤ ∇1 ˜︁f (d(xν);xν)T d(xν)

= −ξ ν T
∇1˜︁g(d(xν);xν)T d(xν)−ζ ν T d(xν)

≤ ξ ν T [g(xν)−κ(xν)e]≤ ξ ν T [maxi{gi(xν)+}−κ(xν)]e,

and, thus, (13) easily follows taking into account Lemma 4.1 and the fact that, by definition,
κ(xν)≤maxi{gi(xν)+}. 2

Lemma 4.3. For any positive ε , we have

W (xν+1;ε)−W (xν ;ε)

≤ γ
ν
∇ f (xν)T d(xν)− γν

ε

[︂
max

i
{gi(xν)+}−κ(xν)

]︂
+

(γν)2

2
(L∇ f +

maxi{L∇gi}
ε

)∥d(xν)∥2, (17)

∇ f (xν)T d(xν)− 1
ε

[︂
max

i
{gi(xν)+}−κ(xν)

]︂
≤−c∥d(xν)∥2 +(mΞ− 1

ε
)
[︂

max
i
{gi(xν)+}−κ(xν)

]︂
. (18)

Proof. Inequality (17) is due to the following chain on relations:

W (xν+1;ε) − W (xν ;ε)

= f (xν + γν d(xν))− f (xν)+ 1
ε

[︂
max

i
{gi(xν + γ

ν d(xν))+}−max
i
{gi(xν)+}

]︂
(a)
≤ γν ∇ f (xν)T d(xν)+

(γν )2L∇ f
2 ∥d(xν)∥2

+ 1
ε

[︂
max

i
{(gi(xν)+ γ

ν
∇gi(xν)T d(xν))+}

−max
i
{gi(xν)+}+

(γν)2 maxi{L∇gi}
2

∥d(xν)∥2
]︂

(b)
≤ γν ∇ f (xν)T d(xν)+ 1

ε

[︂
max

i
{(1− γ

ν)gi(xν)++ γ
ν
κ(xν)}−max

i
{gi(xν)+}

]︂
+ (γν )2

2 (L∇ f +
maxi{L∇gi

}
ε

)∥d(xν)∥2

≤ γν ∇ f (xν)T d(xν)− γν

ε

[︂
max

i
{gi(xν)+}−κ(xν)

]︂
+ (γν )2

2 (L∇ f +
maxi{L∇gi

}
ε

)∥d(xν)∥2,
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where (a) follows applying the descent lemma to f and gi for every i = 1, . . . ,m, with
L∇ f and L∇gi being the Lipschitz moduli of ∇ f and ∇gi; (b) holds for γν ≤ 1 since, in
view of (8), ∇gi(xν)T d(xν)≤ κ(xν)−gi(xν). Inequality (18) is obtained by Lemma 4.2 by
subtracting 1

ε

[︂
max

i
{gi(xν)+}−κ(xν)

]︂
from both sides of (13). 2

Proof of Theorem 4.1 (a). Set ε̄ ≜ 1
mΞ

. We immediately get from (18)

∇ f (xν)T d(xν)− 1
ε̄

[︂
max

i
{gi(xν)+}−κ(xν)

]︂
≤−c∥d(xν)∥2.

Plugging this expression in (17) we obtain

W (xν+1; ε̄)−W (xν ; ε̄) ≤ −γν c∥d(xν)∥2 + (γν )2

2 (L∇ f +
maxi{L∇gi

}
ε̄

)∥d(xν)∥2

= −γν

[︂
c− γν

2 (L∇ f +
maxi{L∇gi

}
ε̄

)
]︂
∥d(xν)∥2.

(19)

If
γ

ν ≤ c
L∇ f +mΞ maxi{L∇gi}

≜ γ̄, (20)

the quantity in square brackets in the formula (19) is greater than or equal to 1/2 and we
can write

W (xν+1; ε̄)−W (xν ; ε̄)≤−ωγ
ν∥d(xν)∥2, ω ≜

c
2
,

and hence

γ
ν∥d(xν)∥2 ≤ [W (xν ; ε̄)−W (xν+1; ε̄)]

ω
.

Assume now that γ0 ≤ γ̄ and recall that the sequence {γν} is non-increasing. Supposing
that ∥d(xν)∥> δ for every ν ∈ {0, . . . ,N−1} and taking the sum up to N−1, we have

δ
2

N−1

∑
ν=0

γ
ν <

N−1

∑
ν=0

γ
ν∥d(xν)∥2 ≤ W (x0; ε̄)−W (xN ; ε̄)

ω
≤ W 0−W m

ω
.

We therefore see that the maximum number of iterations required in order to make d(xν)
smaller than δ is N, with N such that

N−1

∑
ν=0

γ
ν ≥ [W 0−W m]

ω δ 2

Proof of Theorem 4.1 (b). When considering a diminishing stepsize procedure, a
finite ν̄ exists such that, for every ν ≥ ν̄ , (20) holds; clearly, the number of iterations ν̄ is
problem-dependent and relies on initial algorithmic choices such as the updating rule for
the diminishing stepsize.

Supposing ∥d(xν)∥ > δ for every ν ∈ {0, . . . , ν̄ + N} and summing γν∥d(xν)∥2 ≤
[W (xν ; ε̄)−W (xν+1; ε̄)]/ω from ν̄ up to ν̄ +N−1, we have

δ
2

ν̄+N

∑
ν=ν̄

γ
ν <

ν̄+N

∑
ν=ν̄

γ
ν∥d(xν)∥2 ≤ W (xν̄ ; ε̄)−W (xν̄+N ; ε̄)

ω
≤ W M−W m

ω
,

Reasoning as in (a), we get (12). 2
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Remark 4.2. In order for case (a) to hold, γ0 must be “sufficiently small”, as stated in the
theorem; the proof shows, more precisely, that actually γ0 must be smaller than γ̄ , with γ̄

defined in (20). 2

Remark 4.3. Meaningful results are obtained in Theorem 4.1 if the sequence {xν} gener-
ated by the algorithm with δ = 0 is bounded. Although this is practically rather sensible, the
question naturally arises if one can give a priori conditions guaranteeing the boundedness
of the iterations. It is possible to give a satisfactory answer to these questions only for
the price of a much more convoluted analysis; we eschew this for the sake of simplicity of
presentation. The topic is however treated in great detail by Facchinei et al. (2020) to which
we refer the reader for further information. All results on this aspect exposed by Facchinei
et al. (2020) can be adapted to our setting. Here we only mention that there are two main
avenues. One is that of giving explicit a priori coercivity-type conditions on problem (P)
that guarantee boudedness of the iterates. The other approach is more direct and simply
amounts to assuming that the original problem (P) includes a constraint of the type x ∈ K,
where K ⊆ Rn is a (typically simple) compact, convex set. For example K could define
upper and lower bounds an all variables. It is easy, although formally complicated, to show
that all the results in this section still hold if we redefine subproblem (Px), by appending the
constraint K to it, as

minimize
d

˜︁f (d;xν) s.t. ˜︁g(d;xν)≤ κ(xν)e, ∥d∥∞ ≤ β , xν +d ∈ K, (21)

and by similarly modifying the feasible set of the minimization problem in the definition
of κ . If one, then, requires the algorithm to start from an initial point x0 ∈ K, this simple
strategy obviously guarantees the boundedness of the iterations, which all belong to the
compact set K, since γν ∈ (0,1] and K is convex. 2

The practical meaning of Theorem 4.1 depends on the actual rule according to which we
choose γν . To make a concrete example, suppose that one relies on the classical generic term
of the harmonic series and sets γν = γ0

ν+1 and that we are considering case (a) in Theorem 4.1.

Observing that ∑
N−1
ν=0 γν = ∑

N−1
ν=0

γ0

ν+1 = ∑
N
ν=1

γ0

ν
and γ0 ln(N+1)< ∑

N
ν=1

γ0

ν
< γ0[lnN+1],

⌊︄
exp

[W0−Wm]

γ0ωδ2 −1
⌋︄
< N <

⌈︄
exp

[W0−Wm]

γ0ωδ2

⌉︄
. (22)

Case (b) is a variant of case (a). It is clear that if we use a diminishing stepsize rule, then,
sooner or later, an iteration ν̄ occurs for which γ ν̄ satisfies the condition in point (a) and
we can apply the results in (a) starting from that iteration. This case is worth considering
because in practice it is the most realistic one, since in general it is difficult to establish the
“sufficiently smal” value γ̄ that should be used in case (a). It is easy to see that when the
generic term of the harmonic series γ0

ν+1 is employed, we can take

ν̄ =

⌈︃
γ

0 L∇ f +mΞmaxi{L∇gi}
2c

⌉︃
−1
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and, since ∑
ν̄+N−1
ν=ν̄

γν = ∑
ν̄+N−1
ν=ν̄

γ0

ν+1 = ∑
N
ν=1

γ0

ν̄+ν
, we have

γ
0 ln

(︃
ν̄ +N
ν̄ +1

+
1

ν̄ +1

)︃
<

N

∑
ν=1

γ0

ν̄ +ν
< γ

0
[︃

ln
(︃

ν̄ +N
ν̄ +1

)︃
+

1
ν̄ +1

]︃
,

and, in turn,⌊︄
(ν̄ +1)exp

[W0−Wm]

γ0ωδ2 −
1

ν̄+1

⌋︄
− ν̄ < N <

⌈︄
(ν̄ +1)exp

[W0−Wm]

γ0ωδ2

⌉︄
− ν̄ . (23)

The discussion above hints at the fact that the use of a diminishing stepszize is, in a
sense, a necessary evil, that one has to accept because the critical value γ̄ is not known
in advance. It is clear that, if γ0 ≤ γ̄ , it is better to have a sequence {γν} that decreases
“slowly”. From this point of view, the best possible choice would be the limiting case
of a constant stepsize γν = γ0 ≤ γ̄ for all ν . Of course, this choice does not give rise to
a DSM since the conditions (9) are not satisfied. Nevertheless, it is easy to check that
this choice would still give termination in a finite number of steps. Indeed, since (20)
is still satisfied, we can follow the proof of Theorem 4.1 from there and we still have
∥d(xν)∥2 ≤ [W (xν ; ε̄)−W (xν+1; ε̄)]/γ0 ω for every ν . Supposing that ∥d(xν)∥ > δ for
every ν ∈ {0, . . . ,N−1} and taking the sum of iterations up to N, we have

Nγ
0
δ

2 <
N−1

∑
ν=0

γ
0∥d(xν)∥2 ≤ W (x0; ε̄)−W (xN ; ε̄)

ω
≤ W 0−W m

ω
,

where W 0 ≜W (x0; ε̄) and W m is the minimum value attained by the continuous function
W (x; ε̄) on the compact set S. Therefore, our procedure finds a point satisfying ∥d(xν)∥ ≤ δ

in N iterations, with

N =

⌈︃
[W 0−W m]

γ0 ω δ 2

⌉︃
. (24)

This bound on the number of iterations is clearly much better in general than bounds like
(22) or (23). Informally speaking, the bound (24) should be regarded as an ideal, limiting
case for DSMs, a case obtained by taking the slowest possibly decreasing sequence past the
necessary value γ̄ .

4.1. Approximate KKT Conditions. We already discussed how ∥d(x)∥ is a valid sta-
tionarity measure that can be resorted to in order to devise a sensible stopping criterion.
However, it is of interest to give quantitative relations between the stopping criterion
∥d(x)∥ ≤ δ and the fulfillment of δ−approximate KKT conditions (see below for a precise
definition). It turns out that the condition ∥d(x)∥ ≤ δ entails the δ̂−approximate KKT
conditions, where δ̂ is equal to δ up to a fixed multiplicative factor. Lemma 4.4 below is
the key tool in establishing the connection between the ∥d(x)∥ ≤ δ stopping criterion and
the approximate KKT conditions. In what follows, L

∇˜︁f , L∇˜︁g and L˜︁g denote the Lipschitz

moduli of ∇1 ˜︁f (•;•), ∇1˜︁g(•;•) and ˜︁g(•;•) on βBn
∞×S.

Lemma 4.4. Let {xν} be the sequence generated by Algorithm 1 with δ = 0 under Assump-
tions CQ, Approx and Compact. Then, a common positive constant a exists such that, for
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every xν , we have

∥∇ f (xν)+∇g(xν)ξ ν∥ ≤
[︃

L
∇˜︁f +

(︃
L∇˜︁g + 1

β

)︃
Ξ

]︃
∥d(xν)∥, (25)

max
i
{gi(xν)+} ≤

(︃
L˜︁g
λ

+a
)︃
∥d(xν)∥, (26)

max
i
|gi(xν)ξ ν

i | ≤max
{︃

2L˜︁g,
(︃

L˜︁g
λ

+a
)︃}︃

Ξ∥d(xν)∥, (27)

for some 0≤ ξ ν ∈ Rm.

Proof. As for the perturbed gradient of the Lagrangian-related condition, letting ξ ν ∈
NRm
−(˜︁g(d(xν);xν)−κ(xν)e), which implies ξ ≥ 0, we have

∥∇ f (xν)+∇g(xν)ξ ν∥ = ∥∇1 ˜︁f (0;xν)−∇1 ˜︁f (d(xν);xν)+∇1 ˜︁f (d(xν);xν)

+∇1˜︁g(d(xν);xν)ξ ν +∇1˜︁g(0;xν)ξ ν −∇1˜︁g(d(xν);xν)ξ ν∥
≤ L

∇˜︁f ∥d(xν)∥+L∇˜︁g∥ξ ν∥∥d(xν)∥+∥ζ ν∥,
(28)

for some ζ ν ∈ NβBn
∞
(d(xν)), where the equality is due to A4 and A9 and the inequal-

ity follows from (6). Since ζ ν = 0 whenever ∥d(xν)∥∞ < β , consider d(xν) such that
∥d(xν)∥∞ = β : by (28),

∥∇ f (xν)+∇g(xν)ξ ν∥ ≤ L
∇˜︁f ∥d(xν)∥+L∇˜︁g∥ξ ν∥∥d(xν)∥+∥ζ ν∥ ∥d(x

ν )∥∞
β

≤ L
∇˜︁f ∥d(xν)∥+L∇˜︁g∥ξ ν∥∥d(xν)∥+ 1

β
∥ζ ν∥∥d(xν)∥

≤
[︂
L

∇˜︁f +
(︂

L∇˜︁g + 1
β

)︂
Ξ

]︂
∥d(xν)∥,

(29)

where the last inequality follows observing that, in view of Proposition 3.1 and Lemma 4.1
and by continuity, ζ ν is bounded on S, and we can take, without loss of generality, Ξ to be an
upper bound also for ∥ζ ν∥. Regarding feasibility, by (7), we get maxi{gi(xν)+}−κ(xν)≤
L˜︁g∥d(xν)∥, and, in turn,

maxi{gi(xν)+}−κ(xν) = λ [maxi{gi(xν)+}−mind {maxi{˜︁gi(d;xν)+}|∥d∥∞ ≤ ρ}]
≤ L˜︁g∥d(xν)∥.

(30)
We now show that, for any xν ,

min
d

{︃
max

i
{˜︁gi(d;xν)+}|∥d∥∞ ≤ ρ

}︃
≤ a∥d(xν)∥ (31)

for some positive constant a.
Suppose on the contrary that subsequences {aν}N ∈ R+ and {xν}N exist such that

aν →
N

+∞ and

min
d

{︃
max

i
{˜︁gi(d;xν)+}|∥d∥∞ ≤ ρ

}︃
> aν∥d(xν)∥. (32)
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Relation (32) implies

min
d

{︃
max

i
{˜︁gi(d;xν)+}|∥d∥∞ ≤ ρ

}︃
> 0. (33)

Observing that, by A7, maxi{gi(xν)+} ≥mind {maxi{˜︁gi(d;xν)+}|∥d∥∞ ≤ ρ}> 0, thanks
to Assumptions CQ and Compact, and in view of Lemma 2 of Facchinei et al. (2020),
we have κ(xν) < maxi{gi(xν)+} and ∥d(xν)∥ ≠ 0 for every ν ∈ N . Moreover, since
mind {maxi{˜︁gi(d;•)+}|∥d∥∞ ≤ ρ} and d(•) are continuous on Rn and S, respectively, see
Proposition 3.1, we have, invoking Theorem 1 of Facchinei et al. (2020), ∥d(xν)∥ →

N
∥d(x̂)∥ = 0, with x̂ cluster point of subsequence {xν}N . Resorting again to Lemma 2
of Facchinei et al. (2020), κ(x̂) = maxi{gi(x̂)}+ and d̂ ∈ ρBn

∞ exist such that ˜︁g(d̂; x̂)< 0.
Hence, by continuity (A6), a neighborhood of d̂ exists such that, for any d ∈ ρBn

∞ belonging
to it, and for ν ∈N sufficiently large, we have ˜︁g(d;xν)< 0, in contradiction to (33). Hence,
(31) holds.

Combining (30) and (31), we get

max
i
{gi(xν)+} ≤

L˜︁g
λ
∥d(xν)∥+min

d

{︃
max

i
{˜︁gi(d;xν)+}|∥d∥∞ ≤ ρ

}︃
≤
(︃

L˜︁g
λ

+a
)︃
∥d(xν)∥.

(34)
Concerning the complementarity condition, again without loss of generality, letting
maxi |gi(xν)ξ ν

i |= |gı̄(xν)ξ ν
ı̄ |> 0 for some ı̄ ∈ {1, . . . ,m} such that ˜︁gı̄(d(xν);xν) = κ(xν),

we distinguish two cases.
If gı̄(xν) > 0, thanks to the local boundedness of the set of KKT multipliers (recall

Proposition 3.1 and Lemma 4.1), we have

|gı̄(xν)ξ ν
ı̄ | ≤max

i
{gi(xν)+}|ξ ν

ı̄ | ≤
(︃

L˜︁g
λ

+a
)︃

Ξ∥d(xν)∥. (35)

If, on the contrary, gı̄(xν)< 0, in view of A7,

0≤ κ(xν) = ˜︁gı̄(d(xν);xν)− ˜︁gı̄(0;xν)+ ˜︁gı̄(0;xν)≤ L˜︁g∥d(xν)∥+gı̄(xν)< L˜︁g∥d(xν)∥,

and, thus,

|gı̄(xν)ξ ν
ı̄ | = |˜︁gı̄(0;xν)− ˜︁gı̄(d(xν);xν)+ ˜︁gı̄(d(xν);xν)| |ξ ν

ı̄ |
≤ (L˜︁g∥d(xν)∥+ |gı̄(d(xν);xν)|) |ξ ν

ı̄ |
≤ 2L˜︁g|ξ ν

ı̄ |∥d(xν)∥ ≤ 2L˜︁gΞ∥d(xν)∥.
(36)

2

We remark that the results in Lemma 4.4, which are obtained considering δ = 0, are still
valid for any xν that is generated by Algorithm 1 with δ > 0, since the sequence produced
in the latter case results in nothing else but a truncation of the one generated whenever δ is
set to zero.

We now define xν to be a δ−approximate KKT point for problem (P) if each of the
conditions in the KKT system is satisfied within a tolerance δ : more precisely,

max
{︃
∥∇ f (xν)+∇g(xν)T

ξ
ν∥, |max

i
gi(xν)+|,max

i
|gi(xν)ξ ν

i |
}︃
≤ δ .
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Note that in principle we should also include the term ∥ξ ν
−∥ in the max above, but this is not

necessary here, because we already know that ξ ν ≥ 0. It is interesting to highlight that this
definition of approximate KKT point meets some important criteria for an approximate, or
sequential, optimality condition (Andreani et al. 2010). The following theorem establishes
the desired connection between the stopping criterion of Algorithm 1 and approximate KKT
points; its proof follows easily from (25)-(27).

Theorem 4.2. Let {xν} be the sequence generated by Algorithm 1 under Assumptions CQ,
Approx and Compact. If, at iteration ν of Algorithm 1, we have ∥d(xν)∥ ≤ δ , then xν is a
δ ′−approximate KKT point for problem P with

δ
′ ≜ δ max

{︃[︃
L

∇˜︁f +
(︃

L∇˜︁g + 1
β

)︃
Ξ

]︃
,

[︃
L˜︁g
λ

+a
]︃
,

[︃
max

{︃
2L˜︁g,

(︃
L˜︁g
λ

+a
)︃}︃

Ξ

]︃}︃
.
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