Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion. © 2000 Mathematics Subject Classification.
The periodic patch model for population dynamics with fractional diffusion / Berestycki, H.; Roquejoffre, J. -M.; Rossi, L.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 4:1(2011), pp. 1-13. [10.3934/dcdss.2011.4.1]
The periodic patch model for population dynamics with fractional diffusion
Rossi L.
2011
Abstract
Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion. © 2000 Mathematics Subject Classification.File | Dimensione | Formato | |
---|---|---|---|
Berestychi_preprint_The-periodic-patch-model_2011.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
223.76 kB
Formato
Adobe PDF
|
223.76 kB | Adobe PDF | |
Berestychi_The-periodic-patch-model_2011.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
179.98 kB
Formato
Adobe PDF
|
179.98 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.