Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion. © 2000 Mathematics Subject Classification.

The periodic patch model for population dynamics with fractional diffusion / Berestycki, H.; Roquejoffre, J. -M.; Rossi, L.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 4:1(2011), pp. 1-13. [10.3934/dcdss.2011.4.1]

The periodic patch model for population dynamics with fractional diffusion

Rossi L.
2011

Abstract

Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion. © 2000 Mathematics Subject Classification.
2011
Fractional diffusion; KPP nonlinearity; persistence; reaction-diffusion equation
01 Pubblicazione su rivista::01a Articolo in rivista
The periodic patch model for population dynamics with fractional diffusion / Berestycki, H.; Roquejoffre, J. -M.; Rossi, L.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 4:1(2011), pp. 1-13. [10.3934/dcdss.2011.4.1]
File allegati a questo prodotto
File Dimensione Formato  
Berestychi_preprint_The-periodic-patch-model_2011.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 223.76 kB
Formato Adobe PDF
223.76 kB Adobe PDF
Berestychi_The-periodic-patch-model_2011.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 179.98 kB
Formato Adobe PDF
179.98 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1464887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact