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Abstract. Fractional diffusions arise in the study of models from population
dynamics. In this paper, we derive a class of integro-differential reaction-

diffusion equations from simple principles. We then prove an approximation

result for the first eigenvalue of linear integro-differential operators of the frac-
tional diffusion type, and we study from that the dynamics of a population in

a fragmented environment with fractional diffusion.

1. Introduction

Consider α ∈ (0, 1) and denote

l = (l1, · · · , lN ), Cl = (0, l1)× · · · × (0, lN ).

Let Tα be the fractional laplacian of order α ∈ (0, 1):

(1) Tαu = cαP.V.

(∫
RN

u(x)− u(y)
|x− y|N+2α

dy

)
,

where P.V. denotes the principal value. The symbol of the operator inside the
principal value is - see e.g. [5] - proportional to |ξ|2α, the constant cα is chosen so
that this symbol is exactly |ξ|2α. In the sequel this constant will not play any role
and will be omitted in order to make the notations lighter. The precise definition
of Tα is

(2) Tαu = cα lim
ε→0

∫
|x−y|≥ε

u(x)− u(y)
|x− y|N+2α

dy.
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We will also consider Tα as an operator acting on the space of smooth functions
on Ω which vanish on ∂Ω, where Ω is a a smooth bounded domain of RN . It will still
be given by (1), but it will always be understood that u is extended by 0 outside Ω.

The main contribution of this paper is the analysis of the eigenvalues of the
fractional laplacian with a potential:

(3) Lu = Tαu− µ(x)u,

in a bounded domain with Dirichlet conditions outside the domain, or in the whole
space with periodicity conditions. As an operator with positive and compact inverse
- see again [5], it lends itself to the application of the Krěin-Rutman Theorem: the
bottom of the spectrum is a real eigenvalue, simple in the geomeric and algebraic
sense, with a positive eigenfunction. The main result of this paper is an approxima-
tion property of the first periodic eigenvalue by that of the first Dirichlet eigenvalue
in a ball, when the radius of the ball becomes infinite. This property is already
known for local operators - see [3], [7] for second order elliptic operators, it is less
expected for nonlocal oprators such as Tα. It is even somewhat counter-intuitive:
one could have guessed that the long range diffusion would have introduced more
visible nonlocal effects.

Let TN be the torus
RN/Cl.

Let λ1(r) and λper denote the principal eigenvalue of L respectively in Br under
Dirichlet boundary conditions and in TN , i.e. λ1(r) (resp. λper) is the smallest λ
such that the problem

Lu = λu

has a solution u ∈ C1,α(Br(0)) such that u ≡ 0 outside Br(0) (resp. u ∈ C1,α(TN )).
The approximation result is then

Theorem 1.1. When r goes to +∞, then λ1(r) converges to λper.

One of the motivations of Theorem 1.1 is the long term dynamics of an evolution
equation of the KPP type involving Tα. In this context we prove theorems analogous
to Theorems 2.1, 2.4 and 2.6 in [3]; the aimed application being to understand a
scalar reaction-diffusion model for the interaction of a population with a fragmented
environment.

Let us now describe the setting. Consider the semi-linear equation

(4) ut + Tαu = f(x, u), t > 0, x ∈ RN

with:

x 7→ f(x, u) Cl-periodic for all u, and s 7→ f(x, s)
s

is decreasing;

∀x ∈ RN , f(x, 0) = 0, and ∃M > 0, ∀x ∈ RN , ∀s ≥M, f(x, s) ≤ 0.

A typical example of such function f is the logistic nonlinearity

f(x, u) = µ(x)u− u2.

In the next section, we will describe how model (4) arises naturally when one
wishes to describe the dynamics of a population with integral dispersal. We will
then prove the
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Theorem 1.2. Assume that f is as above, set µ(x) = fu(x, 0) and let L be given
by (3). Equation (4) has a unique bounded positive steady solution u+ if and only
if λper < 0. When it exists, the solution is unique and any solution to (4) starting
with a bounded nonnegative initial datum u0 6≡ 0 tends to u+ as t → +∞. For an
initial datum bounded away from 0, the convergence is uniform.

In the opposite case, namely λper ≥ 0, every solution to (4) with bounded non-
negative initial datum goes to 0 (and there is extinction).

For a detailed biological interpretation, we refer the reader to [3], and we will not
reproduce all the details here. Of course, the novelty in this paper resides in the
nonlocal dispersal term, that induces different qualitative behaviours. Indeed, while
this part of the analysis is qualitatively similar to what happens in [3], the picture
changes drastically when we turn to the study of the invasion of the unstable state
by the stable one. In the standard diffusion case, it is described in [4]: there are
pulsating waves connecting 0 to u+ and there is a constant average invasion velocity.
We already know that such will not be the case here: from [6], the invasion rate
will be exponential in time.

The paper is organised as follows. In Section 2 we provide a derivation of (4)
as a model for the description of the migration, birth and death of a population.
Actually, we point out that most of it is already in [11]; a deeper understanding
would involve a probabilistic modelling that we leave out of the scope this paper.
The simple presentation that we give here has the advantage of providing a unified
point of view that includes local diffusion as well. In Section 3 we give elementary
properties of the eigenvalues of L, and the main result about the approximation of
the periodic eigenvalue by a sequence of Dirichlet eigenvalues is proved in Section
4. In Section 5 we prove Theorem 1.2.

2. Derivation of the model

The purpose of this secton is to show that our model (4) is obtained as the
limit of a dispersal model that yields, in a different limit and different structure
assumptions on the coefficients, the classical KPP type equations

(5) ut −D∆u = µ(x)u− u2

There are many of ways to derive this model. See, for instance, Fife [10] or Murray
[12] for a detailed discussion on the various approaches - probabilistic or determin-
istic - and the modelling assumptions that lead to (5). Our derivation is much more
elementary. It follows the lines of the intrduction of [11] and, as said before, has
the merit of making quite evident that models (4) and (5) are both limiting cases
of a common integro-differential equation. See also [9] for a recent derivation of the
classical reaction-diffusion equation from the integral equation.

Consider a population that we may describe - and this is a strong assumption
- by its density u(t, x) per time and volume unit. To count the variation of the
number of individuals at x and in the time interval [t, t + ∆t], we first assume -
another strong assumption - that it is proportional to ∆t. We need to take into
account:

• the births and deaths occurring at x during the time interval; we model
them by a source term f(x, u(t, x))∆t.

• The migrations from and to the point x. We assume that, in the interval
[t, t+ ∆t] and at the point x, the fraction of the population migrating from
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y to x has the form

(6) J(x, x− y)∆t

where J(x, z) is a positive, integrable function. We have chosen J not
to depend on time. Putting a time dependence would also be a relevant
assumption, and would lead to the same kind of model.

The total increase of the population due to the migrations on the one hand, and to
the births and deaths on the other hand, is given by

u(t+ ∆t, x)− u(t, x) =
∫

RN
u(t, y)J(x, y − x)∆t dy

−
∫

RN
u(t, x)J(y, x− y)∆t dy + f(x, u(t, x))∆t.

The first two integrals represent the individuals moving respectively towards and
away from the point x.

Lastly, we make the scaling assumption that

J(x, z) =
1
εN

j(x,
z

ε
),

with 0 < ε << 1. This expresses the fact that the migration range around x -
described by the tail of the function z 7→ J(x, z) - are mostly localised around x
with a specified scaling. Notice that this scaling is natural in view of the preservation
of the L1 norm. The additional dependence of J on x expresses that migrations can
be favoured - or hampered - by the local environment. Summarising, we obtain

ut(t, x) = ε−N
(∫

RN
j(x,

y − x
ε

)u(t, y) dy −
∫

RN
j(y,

x− y
ε

) dy
)

+f(x, u(t, x)).

We consider two cases. These may not be the most general, but will allow us to
recover many classical models of interest as limiting cases.

Case 1. The distribution j has uniformly bounded third moments. This means

‖ymynypj(., y1, . . . , yN )‖L1(RN ) ≤ C

for all m,n, p ∈ {1, . . . , N}. Write

u(t, x+ εz) = u(t, x) + εDu(t, x) · z +
ε2

2

N∑
i,j=1

∂iju(t, x)zizj + o(ε2)O(|z|2),

and

ε−N
∫

RN
(j(x,

y − x
ε

)u(t, y)− j(y, x− y
ε

)u(t, x)) dy

=
∫

RN
(j(x, z)u(t, x+ εz)− j(x+ εz,−z)u(t, x)) dz

=
∫

RN
(j(x, z)− j(x+ εz,−z)) dzu(t, x) + ε

∫
RN

j(x, z)z dz ·Du(t, x)

+
ε2

2

∫
RN

j(x, z)zizj dz
N∑

i,j=1

∂iju(t, x) + o(ε2) := Aεu+ o(ε2)

We choose to discard the o(ε2) terms, thus obtaining the equation

(7) ut +Aεu = f(x, u).
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Let us assume that j is smooth enough, at least C3. We have

Aεu = εdivx(u(t, x)V (x)) +
ε2

2

(
c(x)u(t, x) +

∑
i,j

aij(x)∂iju(t, x)
)

+o(ε2)

with

c(x) = −
∫

RN
D2
xj(x, z) dz, aij(x) =

1
2

∫
RN

j(x, z)zizj dz, V (x) =
∫

RN
j(x, z)z dz.

Discard the additional o(ε2) terms, and define a new time scale τ = ε2t. It is then
appropriate to choose the birth and death term as f(x, u) = ε2g(x, u); the final
model is thus

(8) uτ −
∑
i,j

aij(x)∂iju+
1
ε

div(uV ) = h(x, u) := c(x)u+ g(x, u).

We recognise here a reaction-diffusion model with large drift. When the vector field
V (x) is divergence-free (which is not necessarily imposed by the assumptions on J)
this kind of models has been studied very much, see [2], [8] for recent advances.
When the function j does not depend on x and is radially symmetric with respect
to its second argument, we retrieve the classical Fisher-KPP equation

(9) ut = D∆u+ f(x, u), D =
1

2N

∫
RN
|y|2j(y) dy

Case 2. The distribution j has infinite second moments. We postulate for the
distribution j the following decomposition

(10) j(x, z) = jα(x, z) + j1(x, z)

where j1 satisfies the assumptions of the above Case 1. The function jα, with
α ∈ (0, 1), has the form

j(x, z) =
k(x)γ(z)
|z|N+2α

.

where the function γ(z) is a smooth nonnegative function, supported outside B1

and equal to 1 outside B2. Ideally, we should assume jα to have the form of Case 1,
with an imposed decay at infinity. However, without any further assumption there
need not be a limit ε→ 0 for the model under study.

We have, as the preceding case:

ε−N
∫

RN
(j1(x,

y − x
ε

)u(t, y)− j1(y,
x− y
ε

)u(t, x)) dy = εdiv x(u(t, .)V ) +O(ε2).

On the other hand there holds

ε−N
∫

RN

(
jα(x,

y − x
ε

)u(t, y)− jα(y,
x− y
ε

)u(t, x)
)
dy

= ε2αP.V.

(∫
RN

k(x)u(t, y)− k(y)u(t, x)
|x− y|N+2α

dy

)
+o(ε2α)

:= ε2αSαu(t, x) + o(ε2α)

Discarding the o(ε2α), choosing the time scale τ = ε2αt and the reaction term
f(x, u) = ε2αg(x, u) we obtain

(11) uτ + Sαu+
1

ε2α−1
div (uV ) = g(x, u).

Once again we have a large drift reaction-diffusion model, at least if α > 1
2 . If

α = 1
2 the drift and the diffusion balance exactly, both by the order of magnitude
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and the order of the derivatives involved. If α < 1
2 , the drift should be discarded

for the sake of consistency.
If the function k(x) is constant, and if the dispersal term j1 is even in its second

variable z, we retrieve the reaction-diffusion model (4). From now on, we will
concentrate on it, leaving the more general model (11) for a future study.

Remark. The preceding derivation makes precise the role of the tail of the prob-
ability density. As soon as it has finite second moments, the limiting equation
becomes universal. In the opposite situation, a case by case study is needed. In any
event, the characteristic time scale (ε−2 in the first case, ε−2α in the second case) is
much shorter in the fractional diffusion case than in the purely local diffusion case.
This is made mathematically rigorous in [6].

3. Rayleigh quotients and first eigenvalue

Let us recall that [5], for large enough µ > 0, the operator Tα + µI is invertible
from its domain in C(TN ) to C(TN ) and, for such a value of µ:

• if f ∈ C(TN ) is nonnegative, not everywhere zero, and if u ∈ C1,α(TN )
satisfies Tαu+ µu = f , then u > 0 on TN .
• If Ω is a smooth bounded domain of RN , f ∈ C(Ω), f ≥ 0, f 6≡ 0 and if
u ∈ C1,α(Ω)∩C(Ω) satisfies Tαu+µu = f with u ≡ 0 outside Ω, then u > 0
in Ω and, for all x0 ∈ ∂Ω and δ > 0:

lim inf
x→x0, (x−x0).ν(x0)≤−δ

u(x)
|x− x0|α

> 0.

where ν(x0) is the outer unit normal to Ω at x0.
Hence, (Tα + µI)−1 maps the cone of nonnegative, nonzero functions of C(TN )
(resp. of C(Ω) vanishing on ∂Ω) into its interior. Therefore, the classical Krein-
Rutman theorem applies and provides a principal eigenvalue1 for L, both in the
case of periodic - we denote it by λper - and Dirichlet conditions - we denote it by
λ1(Ω). In this section, we prove some Rayleigh-type formulae.

Proposition 3.1. λ1(Ω) is the minimum of

(12)

1
2

∫
RN

(∫
RN

(φ(x)− φ(y))2

|x− y|N+2α
dy

)
dx−

∫
Ω

µ(x)φ2(x)]dx∫
Ω

φ2(x)dx
,

taken over all functions φ ∈ C1(Ω) ∩ C0(Ω), φ 6≡ 0, vanishing on ∂Ω and extended
by 0 outside Ω, whereas λper is the minimum of

(13)

1
2

∫
Cl

(∫
RN

(φ(x)− φ(y))2

|x− y|N+2α
dy

)
dx−

∫
Cl
µ(x)φ2(x)dx∫

Cl
φ2(x)dx

over all functions φ ∈ C1(RN ), φ 6≡ 0, periodic with period (l1, · · · , lN ). In both
cases the minimum is uniquely (up to a multiplicative constant) attained by the
principal eigenfunction (ϕΩ and ϕp respectively).

1 That is, λper and λ1(Ω) are the unique eigenvalues with an associated positive eigenfunction,

called principal eigenfunction and denoted in the sequel by ϕp and ϕΩ respectively, which in

addition is unique up to a scalar multiple.
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Proof. We begin by recalling that, for α ≥ 1
2 , the expression Tαu does not make

sense as an integral, but does make sense as a principal value provided that u ∈ C1,α.
It will therefore be convenient to work with the truncated kernels

kε(x) = max(ε, |x|N+2α).

The remaining is classical. We notice that

Tαu(x) = lim
ε→0

∫
RN

u(x)− u(y)
kε(x− y)

dy := lim
ε→0
T εαu(x)

If u is smooth and zero outside Ω, we set

(14)
EΩ(u) =

1
2

∫
RN×RN

(u(x)− u(y))2

|x− y|N+2α
dxdy −

∫
Ω

µ(x)u2 dx,

EΩ,ε(u) =
1
2

∫
RN×RN

(u(x)− u(y))2

kε(x− y)
dxdy −

∫
Ω

µ(x)u2 dx

and, if u is Cl-periodic we set

(15)
Eper(u) =

1
2

∫
Cl×RN

(u(x)− u(y))2

|x− y|N+2α
dxdy −

∫
Cl
µ(x)u2 dx,

Eper,ε(u) =
1
2

∫
Cl×RN

(u(x)− u(y))2

kε(x− y)
dxdy −

∫
Cl
µ(x)u2 dx

Now, we have

Eper,ε(u+ v)

= Eper,ε(u) + Eper,ε(v)− 2
∫
Cl
µ(x)uv dx

+
∫
Cl

∫
RN

(u(x)− u(y))(v(x)− v(y))
kε(x− y)

dxdy

= Eper,ε(u) + Eper,ε(v) + 2
∫
Cl

(Lu)v dx

,

whereas, for u, v smooth and vanishing outside Ω,

EΩ,ε(u+ v) = EΩ,ε(u) + EΩ,ε(v) + 2
∫

Ω

(Lu)v dx.

Passing to the limit ε → 0 yields that the differentials of Eper and EΩ at u are
respectively

v 7→ 2
∫
Cl

(Lu)v dx and v 7→ 2
∫

Ω

(Lu)v dx.

Note that minimising the formulae (12) and (13) is equivalent to minimise the
energy E under the constraint

∫
Ω
φ2(x) dx = 1 and

∫
Cl φ

2(x) dx = 1 respectively.
Also, recall that Hα

0 (Ω) - resp. Hα(TN ) - is relatively compact in L2(Ω) - resp.
L2(TN ). Hence the minimum of the energy in Hα

0 (Ω) - resp. Hα(TN ) - is attained
on the unit sphere of L2(Ω). Hence, applying the method of Lagrange multipliers,
we see that the mimimum is achieved at an eigenfunction ϕ. Then, taking φ = ϕ in
the formulae, we see that it is equal to the associated eigenvalue. To see that it is
the principal eigenvalue it is enough to prove that ϕ > 0. We could directly invoke
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Krein-Rutman, but it is worth seeing how it works here: we have

Eper,ε(u) = Eper,ε(u+) + Eper,ε(u−) +
∫
Cl×NR

u+(x)u−(y)
kε(x− y)

dxdy

Eper,ε(|u|) = Eper,ε(u+) + Eper,ε(u−)−
∫
Cl×NR

u+(x)u−(y)
kε(x− y)

dxdy

hence Eper(|u|) < Eper(u) if both u+ and u− are nonzero. Thus any principal
eigenfunction has constant sign, and the same argument works in the Dirichlet
case.

4. The approximation theorem

Consider a family (χr)r>1 of cutoff functions in C2(RN ), uniformly bounded in
W 2,∞(RN ), such that 0 ≤ χr ≤ 1, suppχr ⊂ Br and χr = 1 in Br−1. For any
r > 1 we set φr := ϕpχr.

Lemma 4.1. There holds:

lim
r→∞

∫
RN

(∫
RN

(φr(x)− φr(y))2

|x− y|N+2α
dy

)
dx∫

Br

φ2
r(x)dx

=

∫
Cl

(∫
RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx∫

Cl
ϕ2
p(x)dx

.

Proof. Step 1. We claim that lim
r→∞

Er(φ) = 0, with

Er(φ) :=

∫
RN\Br+√r

(∫
RN

(φr(x)− φr(y))2

|x− y|N+2α
dy

)
dx∫

Br

φ2
r(x)dx

.

Indeed, since
∫
Br

φ2
r(x)dx ≥ |Br−1|minϕ2

p, there exists a constant C > 0 such that

Er(φ) ≤ Cr−N
∫
|x|≥r+

√
r

(∫
RN

(φr(x)− φr(y))2

|x− y|N+2α
dy

)
dx

= Cr−N
∫
|x|≥r+

√
r

(∫
Br

φ2
r(y)

|x− y|N+2α
dy

)
dx

≤ C ′r−N
∫
Br

(∫
|x+y|≥r+

√
r

|z|−N−2αdz

)
dy,

where C ′ is another positive constant. Note that if y ∈ Br and z ∈ RN\Br+√r(−y)
then |z| ≥

√
r. Hence,∫

RN\Br+√r

(∫
RN

(φr(x)− φr(y))2

|x− y|N+2α
dy

)
dx∫

Br

φ2
r(x)dx

≤ C ′r−N
∫
Br

(∫
RN\B√r

|z|−N−2αdz

)
dy,

and the RHS is less than ≤ C ′′r−α for some constant C ′′ > 0.
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Step 2. Let us prove that

lim
r→∞

∫
Br+

√
r

(∫
RN

(φr(x)− φr(y))2 − (ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx∫

Br

φ2
r(x)dx

= 0.

Let us set for short ψr(x, y) := |(φr(x)−φr(y))2− (ϕp(x)−ϕp(y))2|. We have that∫
Br+

√
r

(∫
RN

ψr(x, y)
|x− y|N+2α

dy

)
dx∫

Br

φ2
r(x)dx

≤ Cr−N
∫
Br+

√
r

(∫
RN

ψr(x, y)
|x− y|N+2α

dy

)
dx

= Cr−NI(r),

where C > 0 is independent of r. Our aim is to show that

(16) lim
r→∞

r−NI(r) = 0,

for this we set I(r) = I1(r) + I2(r) where I1, I2 are given by

I1(r) :=
∫
Br+

√
r\Br−1

(∫
RN

ψr(x, y)
|x− y|N+2α

dy

)
dx,

I2(r) :=
∫
Br−1

(∫
RN

ψr(x, y)
|x− y|N+2α

dy

)
dx.

Using the equi Lipschitz-continuity of the φr and ϕp we get∫
RN

ψr(x, y)
|x− y|N+2α

dy =
∫

RN\B1(x)

ψr(x, y)
|x− y|N+2α

dy +
∫
B1(x)

ψr(x, y)
|x− y|N+2α

dy

≤ k + k′
∫
B1

|z|2−N−2αdz ≤ k′′,

for some positive constants k, k′, k′′. Thus, I1(r) = O(rN−
1
2 ). With a view to

estimate I2(r), we note that ψr = 0 in Br−1 ×Br−1 and then

I2(r) =
∫
Br−1

(∫
RN\Br−1

ψr(x, y)
|x− y|N+2α

dy

)
dx.

Now, consider γ ∈ (0, 1) and decompose I2 into the sum of

J1(r) :=
∫
Br−1\B(1−γ)(r−1)

(∫
RN\Br−1

ψr(x, y)
|x− y|N+2α

dy

)
dx

and

J2(r) :=
∫
B(1−γ)(r−1)

(∫
RN\Br−1

ψr(x, y)
|x− y|N+2α

dy

)
dx.

Since, as we have seen before,∫
RN

ψr(x, y)
|x− y|N+2α

dy ≤ k′′,

there exists h > 0 such that J1(r) ≤ h[1− (1− γ)N ](r − 1)N . On the other hand,

J2(r) ≤ h′
∫
B(1−γ)(r−1)

(∫
RN\Br−1(−x)

|z|−N−2αdz

)
dx,
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for some constant h′ > 0. If x ∈ B(1−γ)(r−1) and z ∈ RN\Br−1(−x) then |z| ≥
γ(r − 1). As a consequence,

J2(r) ≤ h′
∫
B(1−γ)(r−1)

(∫
RN\Bγ(r−1)

|z|−N−2αdz

)
dx

≤ h′′(1− γ)N (r − 1)N [γ(r − 1)]−2α

≤ h′′γ−2α(r − 1)N−2α,

where h′′ > 0 is independent of r and γ. For any ε > 0 there exists γε ∈ (0, 1) such
that h[1− (1− γε)N ] ≤ ε. Thus,

r−NI2(r) ≤ r−N
[
h[1− (1− γε)N ](r − 1)N + h′′γ−2α

ε (r − 1)N−2α
]

≤ ε+ h′′γ−2α
ε (r − 1)−2α,

Then, owing to the arbitrariness of ε,

lim
r→∞

r−NI2(r) = 0.

Therefore, (16) holds.
Step 3. Let us prove finally that

lim
r→∞

∫
Br+

√
r

(∫
RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx∫

Br

φ2
r(x)dx

=

∫
Cl

(∫
RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx∫

Cl
ϕ2
p(x)dx

.

Let nr be the number of cells of the type {z}+ Cl, z ∈ ΠN
i=1Zli, contained in Br−1,

that is,
nr := |{z ∈ ΠN

i=1Zli : {z}+ Cl ⊂ Br−1}|.

It is easy to check that nr = O(rN ) and, since ϕp and x 7→
∫

RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

are (l1, · · · , lN ) periodic, that

(17)
∫
Br

φ2
r(x)dx = n(r)

∫
Cl
ϕ2
p(x)dx+O(rN−1),∫

Br+
√
r

(∫
RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx = n(r)

∫
Cl

(∫
RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx

+O(rN−
1
2 ).

Therefore,

∫
Br+

√
r

(∫
RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx∫

Br

φ2
r(x)dx

=

∫
Cl

(∫
RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx+O(r−

1
2 )∫

Cl
ϕ2
p(x)dx+O(r−1)

Now, the proof is complete by gathering together steps 1-3.
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Proof of Theorem 1.1. We know that the function r 7→ λ1(r) is decreasing and that
λ1(r) ≥ λper for any r > 0. Thus, we only need to show that limr→∞ λ1(r) ≤ λper.
The variational formula (12) yields

(18) λ1(r) ≤

1
2

∫
RN

(∫
RN

(φr(x)− φr(y))2

|x− y|N+2α
dy

)
dx−

∫
Br

[µ(x)φ2
r(x)]dx∫

Br

φ2
r(x)dx

.

Hence, by Lemma 4.1 we obtain

lim
r→∞

λ1(r) ≤

1
2

∫
Cl

(∫
RN

(ϕp(x)− ϕp(y))2

|x− y|N+2α
dy

)
dx−

∫
Cl
µ(x)ϕ2

p(x)dx∫
Cl
ϕ2
p(x)dx

= λper,

which completes the proof of the theorem.

5. Application to Theorem 1.2

Recall the following from [1]:

Theorem 5.1. Set µ(x) = fu(x, 0) and L given by (3). Equation (4), posed either
on TN or in BR with Dirichlet conditions, has a unique positive steady solution
u+ if and only if λper < 0 (resp. λ1(R) < 0). In such a case, any solution to (4)
starting from a nonnegative, nontrivial initial datum tends, as t→ +∞, to u+. The
convergence is uniform in TN (resp. BR).

In [1], it is stated there for a second order elliptic operator but it works just as
well with Tα, we only need a strong maximum principle. And, just as in [3], the
delicate point is that there is, for a potential positive steady solution to (4), no
obvious reason to be periodic. The main argument to bypass the difficulty is the

Lemma 5.2. Assume that λper < 0, let v be a positive steady solution to (4). Then
inf
RN

v > 0.

Proof. From Theorem 1.1 we may fix R0 > 0 large enough so that Cl ⊂ BR0 and

(19) λ1(R0) ≤ λper
2

< 0.

Let ϕR0 be a principal eigenfunction for λ1(R0) and, for ε > 0, let uR0,ε be the
solution to

(20) ut + Tαu = f(x, u) in BR0 , u ≡ 0 outside BR0

starting from εϕR0 . Now that we are operating in a bounded domain, we may
apply Theorem 5.1 and infer that, because of (19), there is a unique positive steady
solution vR0 to (20), which attracts uR0,ε as t→ +∞, for any ε > 0. Choosing ε > 0
small enough in such a way that εϕR0 ≤ v, we derive, by mean of the parabolic
comparison principle,

∀ x ∈ BR0 , v(x) ≥ lim
t→+∞

uR0,ε(t, x) = vR0(x).

Note that, because of the periodicity, for any z ∈ ΠN
i=1Zli, the principal eigenvalue of

L in BR0(z) coincides with λ1(R0). Moreover, the unique positive steady solution
to the problem (20) set in BR0(z) instead of BR0 is given by vR0(· − z). As a
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consequence, repeating the same arguments as before yields v(x) ≥ vR0(x − z) for
x ∈ BR0(z). We eventually infer that

inf
RN

v = inf
z∈ΠNi=1Zli

(
min
{z}+Cl

v

)
≥ min
Cl

vR0 > 0,

the desired lower bound.

Proof of Theorem 1.2. It mimics the proof of Theorem 2.1 of [3].
1. If λper ≥ 0 we use Theorem 5.1 to deduce that any positive, initially periodic
solution of (4) goes to 0 as t→ +∞. If v(x) is a potential steady solution to (4), we
put it under a large constant, and apply the above statement to infer that v ≡ 0.
2. If λper < 0, apply Theorem 5.1 to infer the existence of a steady periodic solution
u(x) to (4). Let v(x) be another solution, let k0 > 0 be the smallest k such that
v ≤ ku. If there is a contact point between v and ku, we have v ≡ ku by the strong
maximum principle. If not, there is a sequence (pn)n of integers, whose size goes to
+∞, such that lim

n→+∞
sup
pnl+Cl

(ku − v) = 0. By the elliptic estimates, a subsequence

of (v(.+ pnl))n, denoted by (vn)n, converges to a steady solution v∞ of (4) and we
have ku ≡ v∞.
In both cases, if k 6= 1, we have constructed a second positive periodic steady
solution to (4), namely ku: impossible in view of Theorem 5.1, thus v ≤ u. The
reverse inequality is obtained by exchanging the roles of u and v. Notice that the
existence of a constant k such that u ≤ kv - which allows one to repeat the previous
arguments - follows from Lemma 5.2.
The rest of the theorem is proved by putting a small multiple of the first eigenfunc-
tion of L in a large ball under u(1, .). This implies the local uniform convergence
to the positive steady state. If u(0, .) is bounded away from 0, we may put be-
low a small multiple of the periodic eigenfunction, which then yields the uniform
convergence.
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