We study the large time behaviour of the Fisher-KPP equation ∂tu = ∆u+u−u2 in spatial dimension N, when the initial datum is compactly supported. We prove the existence of a Lipschitz function s∞ of the unit sphere, such that u(t, x) approaches, as t goes to infinity, the function Uc∗ ( |x| − c∗t + Nc+∗2 lnt + s∞(|xx| )) , where Uc∗ is the 1D travelling front with minimal speed c∗ = 2. This extends an earlier result of Gärtner.

Sharp large time behaviour in n-dimensional Fisher-KPP equations / Roquejoffre, J. -M.; Rossi, L.; Roussier-Michon, V.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 39:12(2019), pp. 7265-7290. [10.3934/dcds.2019303]

Sharp large time behaviour in n-dimensional Fisher-KPP equations

Rossi L.;
2019

Abstract

We study the large time behaviour of the Fisher-KPP equation ∂tu = ∆u+u−u2 in spatial dimension N, when the initial datum is compactly supported. We prove the existence of a Lipschitz function s∞ of the unit sphere, such that u(t, x) approaches, as t goes to infinity, the function Uc∗ ( |x| − c∗t + Nc+∗2 lnt + s∞(|xx| )) , where Uc∗ is the 1D travelling front with minimal speed c∗ = 2. This extends an earlier result of Gärtner.
2019
Fisher-KPP equation; large time behaviour; logarithmc delay
01 Pubblicazione su rivista::01a Articolo in rivista
Sharp large time behaviour in n-dimensional Fisher-KPP equations / Roquejoffre, J. -M.; Rossi, L.; Roussier-Michon, V.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 39:12(2019), pp. 7265-7290. [10.3934/dcds.2019303]
File allegati a questo prodotto
File Dimensione Formato  
Roquejoffre_preprint_Sharp-large-time_2019.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 349.95 kB
Formato Adobe PDF
349.95 kB Adobe PDF
Roquejoffre_Sharp-large-time_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 482.82 kB
Formato Adobe PDF
482.82 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1464685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact