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Abstract

We study the large time behaviour of the Fisher-KPP equation ∂tu = ∆u + u− u2

in spatial dimension N , when the initial datum is compactly supported. We prove the
existence of a Lipschitz function s∞ of the unit sphere, such that u(t, x) converges, as t

goes to infinity, to Uc∗

(
|x|−c∗t+

N + 2

c∗
lnt+s∞

( x

|x|

))
, where Uc∗ is the 1D travelling

front with minimal speed c∗ = 2. This extends an earlier result of Gärtner.

1 Introduction

The paper is devoted to the large time behaviour of the solution of the reaction-diffusion
equation

∂tu = ∆u+ f(u), t > 0 , x ∈ RN (1)

u(0, x) = u0(x), x ∈ RN (2)
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We will take
f(u) = u(1− u);

thus f is, in reference to the pioneering paper [19], said to be of the Fisher-KPP type. The
initial datum u0 is smooth and there exist 0 < R1 < R2 such that

∀x ∈ RN , 1BR1
(x) ≤ u0(x) ≤ 1BR2

(x), (3)

where 1A is the indicator of the set A and BR is the ball of RN of radius R centered at the
origin. By the maximum principle and the standard theory of parabolic equations (see for
instance [17]), equation (1) has a unique classical solution u(t, x) in C∞([0,+∞[×RN , [0, 1])
emanating from u0. The first and most general result is due to Aronson and Weinberger [1].
The solution u spreads at the speed c∗ = 2

√
f ′(0) = 2 in the sense that

min
|x|≤ct

u(t, x)→ 1 as t→ +∞ , for all 0 ≤ c < c∗

and
sup
|x|≥ct

u(t, x)→ 0 as t→ +∞ , for all c > c∗.

The goal of this paper is to sharpen this result.

Let us briefly recall what happens in the case N = 1. Equation (1) with N = 1 reads

∂tu = ∂xxu+ f(u), t > 0 , x ∈ R. (4)

It admits one-dimensional travelling fronts U(x − ct) if and only if c ≥ c∗ = 2 where the
profile U , depending on c, satisfies

U ′′ + c U ′ + f(U) = 0, x ∈ R, (5)

together with the conditions at infinity

lim
x→−∞

U(x) = 1 and lim
x→+∞

U(x) = 0. (6)

Any solution U to (5)-(6) is a shift of a fixed profile Uc: U(x) = Uc(x + s) with some fixed
s ∈ R. The profile Uc∗ at minimal speed c∗ = 2 satisfies, up to translation,

Uc∗(x) = (x+K) e−x +O(e−(1+γ0)x) , as x→ +∞

for some universal constants K ∈ R and γ0 > 0. The large time behaviour of (4) has a
history of important contributions, we only list two lasting ones. The first is the paper of
Kolmogorov, Petrovskii and Piskunov [19]. They proved that the solution of (4) starting
from the initial datum 1(−∞,0] converges to Uc∗ in shape: there is a function

σ∞(t) = 2t+ ot→+∞(t),

such that
lim
t→+∞

u(t, x+ σ∞(t)) = Uc∗(x) uniformly in x ∈ R.

The second contribution makes precise the σ∞(t): in [5], Bramson proves the existence of a
constant x∞, depending on u0, such that

σ∞(t) = 2t− 3

2
ln t− x∞ + ot→+∞(1). (7)
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Formula (7) was proved through elaborate probabilistic arguments. As said before, the prob-
lem, as well as more complex variants of it, are currently the subject of intense investigations.
See for instance [20] for an account of them.

In several space dimensions, the asymptotics have been pushed less far. In the framework
of the Fisher-KPP equation that we are studying, the Aronson-Weinberger result is made
precise up to O(1) terms in Gärtner [12]. If N is the space dimension, the main result of
[12] is that, for every λ ∈ (0, 1), the level set {u = λ} is trapped, for large times, between
two spheres of radius

R(t) = c∗t− N + 2

c∗
lnt+Ot→+∞(1).

The Ot→+∞(1) terms are not studied. It is shown by the second author in [25] that one
cannot get rid of these terms, in the sense that generally the difference between the radii of
the spheres does not tend to zero as t→ +∞.

Gärtner’s contribution is probabilistic, and a PDE proof of his result is provided by
Ducrot [8], adapting to higher dimension the proof of (a weaker version of) Bramson’s
formula (7), given by F. Hamel, J. Nolen, L. Ryzhik and the first author in [15].

When the coefficients of the equation actually depend on x in a periodic fashion, as for
instance for the equation

∂tu = ∆u+ µ(x)u− u2, t > 0, x ∈ RN ,

with µ periodic and positive (actually, more general assumptions on µ can be allowed, as
well as inhomogeneous diffusion terms, or the presence of advection), a lot is now known
on the spreading speed, or, in other words, the position of the level sets up to Ot→+∞(1)
terms. The first result in this direction is Freidlin-Gärtner [13], which gives, through a
probabilistic approach, an almost explicit expression (the Freidlin-Gärtner formula) of the
spreading speed in each direction. Several proofs and generalisations of this formula have
been given, by various approaches: viscosity solutions [10], abstract dynamical systems [28],
PDE approach [2], [24]. Let us mention an important contribution [27], which generalises
Gärtner’s result to periodic functions µ(x), by computing the relevant logarithmic shift. This
work also generalises [16], a contribution that computes the shift for periodic µ, but in one
space dimension.

Coming back to (1), the goal of the present paper is to show that it is actually possible to
make precise the Ot→+∞(1) in Gärtner’s expansion in terms of a function s∞ depending on
the spherical variable. Our result is the

thm 1.1 Let u0 satisfy assumption (3). There is a Lipschitz function s∞, defined on the
unit sphere of RN , such that the solution u of (1) emanating from u0 satisfies

lim
t→+∞

sup
x∈RN

∣∣∣∣u(t, x)− Uc∗
(
|x| − c∗t+

N + 2

c∗
lnt+ s∞

( x
|x|

))∣∣∣∣ = 0

with c∗ = 2.

This completes the result of [12]. At this stage, let us anticipate the proof of the theorem,
and let us give a brief explanation of the logarithmic shift observed here: it can be decom-
posed into two shifts having different origins. One is due to the curvature term N−1

c∗
ln t,

it systematically arises in this type of large time issues for reaction-diffusion equations, the
nonlinearity f does not need to be of the KPP type. See for instance [26], [29]. The other is
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the one-dimensional shift 3
c∗

lnt, it is typical of the KPP nonlinearity. All this will be made
clearer in Section 2.

Theorem 1.1 is in contrast with a recent paper [23] of the first and third authors, which
studies (1) when the initial datum is trapped between two planar travelling waves. In this
setting, the logarithmic shift is 3

c∗
lnt, as in the one-dimensional case. However, the dynamics

beyond the logarithmic shift is given by that of the heat equation on the whole line. This last
equation, though extremely well-behaved as far as the regularity of its solutions is concerned,
exhibits solutions that do not converge, as time goes to infinity, to anything. However, this
last feature holds for reaction-diffusion that need not be of the KPP type, see [22].

Before starting the proof of our results, let us make a few remarks. The first one concerns
the assumption (3), which does not encompass, strictly speaking, all compactly supported
initial data. For a general (nontrivial) compactly supported initial datum, there exist K > 1
such that

∀x ∈ RN ,
1

K
1BR1

(x) ≤ u0(x) ≤ K1BR2
(x).

The left inequality is in fact inconsequential, the whole paper would hold under this assump-
tion without any modification. The right inequality would not alter our conclusions, either;

to obtain the compactness of the solutions in the area |x| ∼ c∗t−
N + 2

2
lnt one should simply

work with the nonlinearity f(u) = Ku− u2, which is obviously larger than u− u2.

Let us also mention that it would be certainly interesting to understand sharper asymptotics
of u(t, x). In one space dimension, a full expansion has been proposed, in the formal style, in
[9], or with another approach in [4]. The next term in the expansion of the shift is computed,
in a mathematically rigorous way, in [21]. The expansion is pushed even further in [14].

Let us finally say that the observed behaviour is quite typical of Fisher-KPP equations with
second-order linear diffusion. Another important class of nonlinearities f(u) in (1) satisfies

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, with
∫ 1

0
f(u)du > 0. A typical example is

f(u) = u(u− θ)(1− u), 0 < θ <
1

2
.

In such case, a statement of the same type as Theorem 1.1 is contained in [26], with the
important difference that the logarithmic delay is solely due to the curvature terms; the
dynamics beyond the shift is the same as the one presented in Theorem 1.1. And, although
the phenomenon does not look so remote to the one displayed in [26], it is quite different in
nature, as the convergence to the wave is dictated by what happens in the region where the
solution takes intermediate values. A similar, and recent contribution [7] treats the porous
medium equation with Fisher-KPP nonlinearity; although the nonlinearity is the same as
in the present paper, the result is of the type of [26] (although the dynamics beyond the
shift is not made precise when the initial datum is nonradial), this is due to the fact that
the solution does not have a tail that would govern the overall dynamics. We end this series
of remarks by recalling a result of Jones [18], stating that the level sets of the solution of
(1), whatever the nonlinearity is, will have oscillations only of the size Ot→+∞(1). This is a
consequence of the following fact: if λ is a regular value of u, the normal to the λ-level set
of u meets the convex hull of the support of the initial datum. A very simple proof of this
fact is given by Berestycki in [3].

In the next section, we transform the equations so as to uncover the basic mechanism at
work, namely the fact that the whole phenomenon is dictated by the tail of the solution. The
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subsequent sections are different steps of the proof of Theorem 1.1, this will be explained in
more detail in Section 2.

Acknowledgement. JMR and LR are supported by the European Union’s Seventh Frame-
work Programme (FP/2007-2013) / ERC Grant Agreement n. 321186 - ReaDi - “Reaction-
Diffusion Equations, Propagation and Modelling”. VRM is supported by the ANR project
NONLOCAL ANR-14-CE25-0013.

2 Preparation of the equations, strategy of the proof,

plan of the paper

There is a sequence of transformations that bring equation (1) to a form that will make clear
that the region |x| ∼

√
t in the moving frame, that we will subsequently call the diffusive

zone, dictates the whole dynamics.

From now on, we take t = 1 as initial time and (2) is replaced by u(1, x) = u0(x). This
will be handier in view of the following transformations and, since equation (1) is invariant
by translation in time, there is no loss of generality.

1. We first use the polar coordinates

x 7→ (r = |x| > 0,Θ =
x

|x|
∈ SN−1)

then (1) becomes

∂tu = ∂rru+
N − 1

r
∂ru+

∆Θu

r2
+ u− u2, t > 1, r > 0, Θ ∈ SN−1.

Here, ∆Θ is the Laplace-Beltrami operator on the unit sphere of RN . Its precise
expression will not be needed in the sequel. The initial condition reads u(1, r,Θ) =
u0(r,Θ).

2. Let us believe that the transition zone where u is neither close to 1 nor 0 is located
around R(t) = 2t − k ln t (k to be chosen later) and choose the change of variables
r′ = r−R(t) and u(t, r,Θ) = u1(t, r−R(t),Θ). We drop the primes and indexes, and
(1) becomes

∂tu = ∂rru+
N − 1

r + 2t− klnt
∂ru+ (2− k

t
)∂ru+

∆Θu

(r + 2t− klnt)2
+ u− u2. (8)

The equation is valid for t > 1, r > −2t+klnt, and Θ ∈ SN−1 and the initial condition
becomes u(1, r,Θ) = u0(r + 2,Θ).

3. To unreveal the mechanisms at work in the tail of the solution, we take out the expo-
nential decay of the wave Uc∗ , and set u(t, r,Θ) = e−rv(t, r,Θ); the equation transforms
into

∂tv = ∂rrv + (
N − 1

r + 2t− klnt
− k

t
) (∂rv − v) +

∆Θv

(r + 2t− klnt)2
− e−rv2, (9)

with t > 1, r > −2t+ k ln t, Θ ∈ SN−1 and initial datum v(1, r,Θ) = eru0(r + 2,Θ).
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4. We now choose k. Our first guess is that the term in ∆Θv will not matter too much,
because it decays like t−2 (an integrable power of t), except in the zone r ∼ −2t, where
we know (for instance [1]) that u(t, r,Θ) goes to 1 as t → +∞. Hence we expect the
dynamics to be like that of the one-dimensional equation. On the other hand, in the

advection term, the quantity
N − 1

r + 2t− klnt
is nonintegrable in t, except for extremely

large r. Thus we wish to balance it with the
k

t
term. However, instructed by the

large time behaviour in one space dimension, we keep in mind that we should keep the

quantity − 3

2t
factoring ∂rv − v. Hence we choose

N − 1

2
− k = −3

2
, (10)

hence

k =
N + 2

2
=
N + 2

c∗
.

In the sequel, we will keep the notation k, keeping in mind that k is given by the above
formula.

5. In order to study (9) in the diffusive zone, that is, the region r ∼
√
t, we use the

self-similar variables ξ =
r√
t
, τ = ln t. The variable Θ is unchanged:

ŵ(τ, ξ,Θ) = ŵ

(
ln t,

r√
t
,Θ

)
=

1√
t
v(t, r,Θ). (11)

Then (9) becomes

∂τ ŵ+Lŵ =
eτ∆Θŵ

(2eτ + ξeτ/2 − kτ)2
+h(τ, ξ)e−

τ
2 ∂ξŵ−

(
h(τ, ξ)+

3

2

)
ŵ−e

3
2
τ−ξe

τ
2 ŵ2, (12)

where

Lw = −∂ξξw −
ξ

2
∂ξw − w,

and

h(τ, ξ) =
N − 1

2 + ξe−τ/2 − kτe−τ
− k.

Equation (12) is valid for τ > 0, ξ > −2e
τ
2 + kτe−

τ
2 and Θ ∈ SN−1. The lower bound

on ξ is a very negative quantity if τ is very large. As the range of negative ξ that are
relevant will turn out to be extremely modest (we will always have ξ ≥ −e−( 1

2
−δ)τ , that

is, r ≥ −tδ for some δ ∈ (0, 1
4
)), we will not mention this constraint on ξ in the sequel.

Finally, the initial datum at τ = 0 is

ŵ0(ξ,Θ) = eξu0(ξ + 2,Θ),

therefore still compactly supported. Since u ∈ (0, 1), we also have the upper bound

ŵ(τ, ξ,Θ) ≤ exp
(
ξeτ/2 − τ

2

)
. (13)
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Since k = N−1
2

+ 3
2
, we have for all δ ∈ (0, 1

2
):

h(τ, ξ) =

{
−3

2
+O(ξe−τ/2) for ξ ≤ e(1/2−δ)τ , that is, r ≤ t1−δ,

O(1) for ξ ≥ e(1/2−δ)τ , that is, r ≥ t1−δ.

The information on h that we are going to retain is however the followig weaker version
for δ ∈ (0, 1

4
):

h(τ, ξ) =

{
−3

2
+O(e−( 1

2
−δ)τ ) for ξ ≤ eδτ , that is, r ≤ t1/2+δ,

O(1) for ξ ≥ eδτ , that is, r ≥ t1/2+δ.

6. To construct sub and super solutions, we will need to translate the solution ŵ. So let
us set

ξ±δ (τ) = ±e−( 1
2
−δ)τ ,

we will often use the notation ξ±δ and not mention the dependence in τ , as things will
- hopefully - be clear from the context. The constant δ > 0 will be suitably small and,
in any case, less that 1/4. The point ξ = ξ+

δ (τ) corresponds, in the (t, r,Θ) variables,
to r = tδ in the moving frame, that is, far ahead of the supposed location of the front
(r = O(1)), but not quite as far as the diffusive zone (r ∼

√
t). The point ξ = ξ−δ (τ)

therefore corresponds to r = −tδ, that is, far at the back of the front location, but,
again, not quite as far as −

√
t.

In order to consider at once the different zones involved, we let ξδ(τ) denote one of the
following three functions:

ξ−δ (τ), ξ+
δ (τ), 0,

and define the translations

ŵ(τ, ξ) = w̃(τ, ξ − ξδ(τ)), (14)

Equation (12) transforms into the following three equations (depending on the trans-
lation we made):

∂τ w̃ + Lw̃ =
(
δξδ + h(τ, ξ + ξδ)e

− τ
2

)
∂ξw̃ −

(
h(τ, ξ + ξδ) +

3

2

)
w̃

+
∆Θw̃

(2e
τ
2 + ξ + ξδ − kτe−τ/2)2

− e
3
2
τ−(ξ+ξδ)e

τ
2 w̃2,

(15)

which are valid for τ > 0, ξ > −ξδ − 2e
τ
2 + kτe−

τ
2 and Θ ∈ SN−1. As before, the lower

bound for ξ is in all cases very negative when τ is large, thus negligible. The initial
datum at τ = 0 is

w̃0(ξ,Θ) = eξ+ξδ(0)u0(ξ + ξδ(0) + 2,Θ),

still compactly supported.

7. The last transformation turns L into the self-adjoint operator

Mw = −∂ξξw + (
ξ2

16
− 3

4
)w.
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This amounts to setting

w̃(τ, ξ,Θ) = e−
ξ2

8 w(τ, ξ,Θ). (16)

The equation for w is

∂τw +Mw = l1(τ, ξ)∂ξw + l2(τ, ξ)w +
∆Θw(

ξ + ξδ + 2e
τ
2 − kτe− τ2

)2 − e
3τ
2
− ξ

2

8
−(ξ+ξδ)e

τ
2w2

(17)
which is valid for τ > 0, ξ > −ξδ − 2e

τ
2 + kτe−

τ
2 (as usual very negative for τ large)

and Θ ∈ SN−1. The initial datum at τ = 0 is

w0(ξ,Θ) = eξ+ξδ(0)+ ξ2

8 u0(ξ + ξδ(0) + 2,Θ), (18)

still compactly supported. The functions l1 and l2 depend on h and are given by

l1(τ, ξ) = δξδ + h(τ, ξ + ξδ)e
−τ/2, l2(τ, ξ) = −3

2
− h(τ, ξ + ξδ)−

ξ

4
l1(τ, ξ).

They satisfy, for ξ ≥ 0 and whatever ξδ is, the following estimates:

|l1(τ, ξ)| ≤ Ce−( 1
2
−δ)τ

|l2(τ, ξ)| ≤ C

(
ξe−( 1

2
−δ)τ + 1ξ+ξδ≥eδτ + e−( 1

2
−δ)τ1ξ+ξδ≤eδτ

)
,

(19)

the constant C only depending on N and δ.

Equipped with all these transformations, we are now able to explain the core of the proof
of Theorem 1.1. It is inspired by the ideas of [20] in one space dimension, with some novelties
due to the transverse variable. Our main step will be to prove the

thm 2.1 Let ŵ be the solution of (12) with compactly supported initial datum ŵ0. There
exists a positive Lipschitz function α∞ on the unit sphere such that

lim
τ→+∞

sup
ξ∈R+,Θ∈SN−1

e
3ξ2

16 |ŵ(τ, ξ,Θ)− α∞(Θ)φ0(ξ)| = 0,

where φ0(ξ) = ξe−ξ
2/4 satisfies Lφ0 = 0.

The function α∞ is possibly more regular than Lipschitz. Proving some additional regular-
ity would entail nontrivial additional technicalities, we will explain this when it comes to
studying the regularity in Θ.

The parallel step in [20] for N = 1 was to prove, for the equation

∂τ ŵ + Lŵ = −3

2
e−

τ
2 ∂ξŵ − e

3
2
τ−ξe

τ
2 ŵ2 , τ > 0 , ξ ∈ R,

the existence of a constant α∞ > 0 such that

ŵ(τ, ξ) −−−−→
τ→+∞

α∞ξe−ξ
2/4, in {ξ ≥ e−( 1

2
−δ)τ}.

The main effort was to prove the compactness of the trajectories (ŵ(τ+T, ξ))T>0 as T → +∞;
because the limiting trajectories satisfied the Dirichlet heat equation in self-similar variables,
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this entailed the convergence to a single Gaussian. To prove the compactness, we used a pair
of sub/super solutions very much in the spirit of Fife-McLeod [11]; that one could actually
use ideas from the analysis of bistable equations came as a surprise to us.

However, the barriers devised in [20] rely on the good sign of the disturbances (that is, the
exponential correction in the function h) which allowed them to be sub and super solutions
all the way down to ξ = 0. Because we are now dealing with a more complex equation, we
can no longer rely on sign considerations, and we devise a pair of barriers that are sub and
super solutions for more robust reasons than in [20]. While still being radial, these barriers
rely on a technical innovation in the vicinity of ξ = 0, that is, if one thinks very much about
the Fife-McLeod sub/super solutions, quite in the spirit of [11] once again.

Once this is achieved, an additional issue will be to deal with the variable Θ: as τ →
+∞, the Laplace-Beltrami operator will disappear from the asymptotic equations. That is,
asymptotic regularity in Θ will have to be retrieved with bare hands.

Once convergence in the diffusive area is under control, the next step is to fix the trans-
lation σ∞(t,Θ). We choose it such that

Uc∗(r + σ∞(t,Θ))

∣∣∣∣
r=tδ

= e−rv(t, r,Θ)

∣∣∣∣
r=tδ

.

That is,
σ∞(t,Θ) = −lnα∞(Θ) +O(t−δ).

We then prove the uniform convergence to Uc∗(r − lnα∞(Θ)) by examining the difference

ṽ(t, r,Θ) =
∣∣v(t, r,Θ)− erUc∗(r + σ∞(t,Θ))

∣∣
in the region {r < tδ}. For N = 1, it turned out in [20] that ṽ(t, x) was a sub-solution of (a
perturbation of) the heat equation

Vt = Vxx +O(t1−δ) , t > 0 , −tδ < x < tδ

V (t,−tδ) = e−t
δ
, t > 0

V (t, tδ) = 0 , t > 0.
(20)

The condition at x = −tδ simply comes from the fact that v(t, x) decays, by definition, like
ex at −∞. Although the domain might look very large, its first Dirichlet eigenvalue is of the
order t−2δ, hence a much larger quantity than the right hand side of (20). Thus V (t, x) could
be proved to go to 0 uniformly in x as t → +∞, which implied the sought for convergence
result. The same idea will work here again, up to the caveat that α∞ is only Lipschitz in
Θ, something that does not go very well with taking a Laplace-Beltrami operator. A simple
regularisation argument will settle the issue.

Our experience with working with multi-dimensional reaction-diffusion equations is that
the main additional difficulty is the transverse diffusion, which, in a very paradoxical way,
does not help. This is not a rhetorical argument: its presence is really what prevented
convergence in the earlier paper [23]. This explains why we have to be extra careful with
the estimates.

The plan of the rest of the paper is the following: in Section 3, we construct the announced
radial barriers for the solutions of (17) with ξδ = 0 that are initially compactly supported.
In Section 4, we successively prove Theorem 2.1, then Theorem 1.1. The paper ends with a
discussion.
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3 Radial barriers

As announced in the previous sections, we wish to construct a radial sub-solution in the
region {ξ ≥ ξ+

δ (τ)} (that is, r starting far ahead of the front) and a radial super-solution in
the region {ξ ≥ ξ−δ (τ)}, (that is, r starting far at the back of the front). From now on we
drop the Θ variable; in the (τ, ξ) variables, the two end points ξ±δ (τ) will rejoin at ξ = 0 as
τ → +∞: this will provide an estimate of the solution in the self-similar variables at ξ ∼ 0,
whereas the main body of the sub and super solutions will estimate w in the diffusive zone.
For radial functions, equations (17) reduce to

∂τw +Mw = l1(τ, ξ)∂ξw + l2(τ, ξ)w − e
3τ
2
− ξ

2

8
−(ξ+ξδ)e

τ
2w2 (21)

This part is the most technical of the paper, we will try to keep the computations as
light as possible. Many of them are in the spirit of those of [20] or [23]. Let us introduce
some auxiliary quantities.

First, let φ0(ξ) = ξe−ξ
2/4, it solves

Lφ = 0 (ξ > 0), φ(0) = φ(+∞) = 0. (22)

Any solution of (22) is a multiple of φ0. And its counterpart with respect to transformation

(16) is ϕ0(ξ) = ξe−
ξ2

8 which satisfies Mϕ0 = 0, ϕ0(0) = ϕ0(+∞) = 0.

For a > 0, we call

λ1(a) =
π2

4a2
, φ1,a(ξ) = cos

( π
2a
ξ
)
.

Namely, λ1(a) is the first Dirichlet eigenvalue of −∆ on (−a, a) ⊂ R and φ1,a is the associated
eigenfunction with maximum equal to 1. We choose a0 ∈ (0, 1) small enough to have λ1(a0) ≥
100. It will be suitably decreased in the sequel, independently of all other coefficients and
variables. We set

λ1 = λ1(a0), φ1(ξ) = φ1,a0(ξ).

Moreover, let γ1(ξ) be a nonnegative smooth function, equal to 1 if ξ ≤ a0
2

, and zero if
ξ ≥ 2

3
a0, and γ2(ξ) be a nonnegative smooth function, equal to zero if ξ ≤ 1 and to 1 if

ξ ≥ 2.

We are now in a position to construct the sought for super and sub-solutions for (21):

Proposition 3.1 There exist six functions q±1 (τ), q±2 (τ), ζ±(τ) which satisfy:

•
e−τ

C
≤ q±i (τ) ≤ Ce−( 1

2
−δ)τ , (23)

for some C ≥ 1,

• there are ζ0 ≥ ζ
0
> 0 such that, for all τ ≥ 0, ζ±(τ) ∈ [ζ

0
, ζ0] and ζ̇+(τ) > 0,

ζ̇−(τ) < 0.

In addition, the function

w(τ, ξ) := ζ+(τ)ϕ0(ξ) + q+
1 (τ)φ1(ξ)γ1(ξ) + q+

2 (τ)γ2(ξ)e−ξ
2/16 (24)

is a super-solution to (21) with ξδ = ξ−δ in the range τ > 0, ξ > 0, whereas

w(τ, ξ) := ζ−(τ)ϕ0(ξ)− q−1 (τ)φ1(ξ)γ1(ξ)− q−2 (τ)γ2(ξ)e−ξ
2/16 (25)

is a sub-solution to (21) with ξδ = ξ+
δ in the range τ ≥ τ1, ξ > 0, for some τ1 > 0.

10



Before proving this proposition, we need to state two ODE statements.

3.1 Two elementary ODE statements

Consider the system {
q̇ + q = C0(ζ + γ)e−( 1

2
−δ)τ

ζ̇ = C0(q + ζe−( 1
2
−δ)τ )

(26)

By elementary Cauchy theory, this system has a unique solution for any given pair of initial
data.

Proposition 3.2 Let (q, ζ) be the solution to (26) with parameters C0 > 0, γ ∈ [0, 1] and
initial conditions

q(0) = q0 > 0, ζ(0) = ζ0 > 0

satisfying, for some h0 > 0,
ζ0 + γ

q0

≤ h0,
q0

ζ0

≤ h0. (27)

Then, there is K > 0, only depending on C0 and h0, such that

∀τ ≥ 0 , 0 < ζ0 ≤ ζ(τ) ≤ Kζ0, q0e
−τ ≤ q(τ) ≤ Kq0e

−( 1
2
−δ)τ . (28)

Proof. From the first equation in (26) we see that the function eτq is increasing as long as ζ
remains nonnegative. Then, by the second equation, this holds true for ζ. As a consequence
both q and ζ remain positive throughout their evolution. The lower bounds for q and ζ then
follow.

For the upper bound on q, we subtract the equations in (26) to get

ζ̇ = q̇ + (C0 + 1)q − C0γe
−( 1

2
−δ)τ ≤ q̇ + (C0 + 1)q.

Then, the first equation yields

q̇ + q ≤ C0e
−( 1

2
−δ)τ

(
γ + ζ0 +

∫ τ

0

(
q̇ + (C0 + 1)q

))
.

We derive from (27)

q̇ + q ≤ Ke−( 1
2
−δ)τ

(
h0q0 + q +

∫ τ

0

q
)
, (29)

where K denotes some positive constant, only depending on C0 and h0, whose value can be
possibly increased along the proof. From this we shall infer the upper exponential estimate
on q. It is enough to prove the existence of some (possibly larger) K such that q(τ) ≤ Kq0

for all τ > 0. Indeed, once this is at hand, we find that

d

dτ

(
q(τ)eτ

)
≤ Ke( 1

2
+δ)τq0(1 + τ) ≤ Kq0e

7
8
τ ,

where we have used that δ < 1/4, which implies that q(τ) ≤ Kq0e
− 1

8
τ . Plugging this

information back into (29) yields q(τ) ≤ Kq0e
−( 1

2
−δ)τ . So, let us concentrate on the global

upper bound on q.

11



We first prove that q grows at most exponentially fast, namely, there exists Λ > 0 large
enough such that q(τ) ≤ 2q0e

Λτ for any τ ≥ 0. Indeed, if this property fails for some Λ,
defining

τ̄ := sup{τ ≥ 0 | ∀s ∈ [0, τ ] , q(s) ≤ 2q0e
Λs},

we derive q(τ̄) = 2q0e
Λτ̄ and

q̇(τ̄) ≥ d

dτ

(
2q0e

Λτ
)
τ=τ̄

= Λq(τ̄).

Then, owing to (29), using that q(s) ≤ 2q0e
Λs for s ∈ [0, τ ] we deduce that

Λ ≤ −1 +K

(
h0q0

q(τ̄)
+ 1 +

∫ τ̄
0
q

q(τ̄)

)
≤ K

(h0

2
+ 1 +

1

Λ

)
.

This is a contradiction for Λ large enough, depending algebraically on K and h0.

Let us now improve this exponential bound to a constant. From (29) we get

q̇ ≤ Ke−( 1
2
−δ)τq0

(
h0 + 2eΛτ +

2

Λ
eΛτ
)
.

Using again the crude estimate
1

2
−δ ≥ 1

4
, we infer the existence of another positive constant

K1, depending on K, h0 and Λ, such that

q ≤ K1q0

(
1 + e(Λ−1/4)τ

)
.

Then, iterating n-times, we get

q ≤ Knq0

(
1 + e(Λ−n/4)τ

)
.

When n ≥ Λ/4 we have obtained the desired upper bound.

Finally, for the upper bound on ζ, we derive from (26) and (27)

ζ̇ ≤ Ke−( 1
2
−δ)τ (ζ0 + ζ),

where again K is some constant depending on C0 and h0. This implies that

d

dτ
ln(ζ + ζ0) ≤ Ke−

1
4
τ ,

from which we deduce the desired bounded. This concludes the proof. �

We now deal with the following system:{
q̇ + q = C0 ζe

−( 1
2
−δ)τ , τ > τ1

ζ̇ = −C0(q + ζe−( 1
2
−δ)τ ), τ > τ1,

(30)

where the initial time τ1 is a parameter to be chosen. This system has a unique global
solution and we have the

Proposition 3.3 There is τ1 > 0 depending on C0 for which the solution to (30) with initial
data q(τ1) = 0 and ζ(τ1) = 1 satisfies:

12



• 1/2 ≤ ζ(τ) < 1 for all τ > τ1,

• 0 < q(τ) ≤ 2C0e
−( 1

2
−δ)τ for all τ > τ1.

Proof. Let τ2 > τ1 be such that ζ > 0 in [τ1, τ2). We infer from (30) that in the interval
(τ1, τ2) the function q is positive and thus ζ̇ < 0. Then, in such interval,

d

dτ
(q(τ)eτ ) = C0ζ(τ)e( 1

2
+δ)τ ≤ C0e

( 1
2

+δ)τ ,

which implies that

q(τ) ≤ C0

1/2 + δ
e−( 1

2
−δ)τ ≤ 2C0e

−( 1
2
−δ)τ .

Plugging this bound as well as ζ ≤ 1 into the equation for ζ and integrating on (τ1, τ2) we
obtain

ζ(τ) ≥ 1− C0(2C0 + 1)

1/2− δ
e−( 1

2
−δ)τ1 .

Recalling that δ < 1/4, we can therefore choose τ1 large enough, only depending on C0, in
such a way that, say, ζ(τ2) ≥ 1/2 in [τ1, τ2]. This means that, with this choice, 1/2 ≤ ζ(τ) < 1
for all τ > τ1. From this, the bounds for q are readily derived. �

3.2 Super-solution

We want to prove Proposition 3.1 for super-solutions. So we look for a super-solution to (21)
with ξδ = ξ−δ of the form (24) and q1, q2, ζ are positive functions that will be suitably chosen,
with ζ̇ ≥ 0. (We drop the + exponents on q1, q2 and ζ in this sub-section for simplicity).
Let us set

Nw = ∂τw +Mw − l1(τ, ξ)∂ξw − l2(τ, ξ)w + e
3τ
2
− ξ

2

8
−(ξ+ξ−δ )e

τ
2w2.

We want w to satisfy Nw ≥ 0 for τ > 0, ξ > 0. A sufficient condition for that is

Nw ≥ 0,

with
Nw = ∂τw +Mw − l1(τ, ξ)∂ξw − l2(τ, ξ)w;

in other words we have dropped the positive nonlinear term.

We remark here that we are in the spirit of Fife-McLeod [11]: because the null space of
M is not empty, the best we can do with a bare hand computation is estimating the solution,
but not proving its convergence, as we have no idea of what multiple of ϕ0 will be eventually
picked. In [11], a similar computation estimated the position of the front, but did not prove
convergence to a wave, as the translation invariance would not permit to guess the correct
translate of the wave.

1. The region 0 ≤ ξ ≤ a0

2
. This is, in comparison to [20] and [23], the newest part. Here,

we have γ2 = 0 since a0 < 1, so that, using Mϕ0 = 0 and −φ′′1 = λ1φ1, we have:

Nw =

(
q̇1 + (λ1 +

ξ2

16
− 3

4
)q1

)
φ1 −

(
l1(τ, ξ)φ′1 + l2(τ, ξ)φ1

)
q1

+ζ̇ϕ0 − ζ
(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
.

13



Recall that

φ1(ξ) = cos

(
π

2a0

ξ

)
,

so that
|φ′1(ξ)| ≤

√
λ1 φ1(ξ) on [0,

a0

2
].

The functions ϕ0 and ϕ′0 are bounded from above by a universal constant C, whereas φ1

stays above
√

2/2 on the interval [0, a0/2]. The term l1 is estimated in (19) by Ce−( 1
2
−δ)τ ,

where, here and in the rest of this proof, C will be a suitably large constant independent of
q1, q2 and ζ. In the range that we consider for ξ, the first indicator function appearing in
the estimate (19) of l2 vanishes after a (controlled) finite time and therefore l2 is estimated
by the same term as l1. As a consequence, because we look for ζ satisfying ζ̇ ≥ 0, we infer
that

Nw
φ1

≥ q̇1 + (λ1 − C
√
λ1 − C)q1 − Cζe−( 1

2
−δ)τ .

We choose a0 > 0 such that λ1 is large enough to have

λ1 − C
√
λ1 − C ≥ 1,

this will fix a0 once and for all. And so, a sufficient condition to have Nw ≥ 0 in this
region is

q̇1 + q1 ≥ Cζe−( 1
2
−δ)τ . (31)

2. The region ξ large. By this, we mean that ξ will be larger than a constant ξ0 ≥ 2 that
we will fix in the course of this section. In any case we have γ1(ξ) = 0 and γ2(ξ) = 1. And
so, using ζ̇ ≥ 0, we find that

eξ
2/16Nw ≥ q̇2 +

(
3

64
ξ2 − |l1(τ, ξ)|ξ

8
− |l2(τ, ξ)| − 5

8

)
q2 − ζ

(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
eξ

2/16.

We estimate li(τ, ξ) from (19) as

|l1(τ, ξ)| ≤ C and |l2(τ, ξ)| ≤ C(ξ + 1) .

Thus, the term in factor of q2 can be bounded from below by 3
64
ξ2 − 9

8
Cξ − (C + 5

8
). Now,

we fix ξ0 large enough so that

3

64
ξ2

0 −
9

8
C ξ0 − (C +

5

8
) ≥ 1 .

Finally, recalling that ϕ0(ξ) = ξe−ξ
2/8, whence ϕ′0 decays as ξ2e−ξ

2/8, we derive from (19)

|l1(τ, ξ)ϕ′0(ξ) + l2(τ, ξ)ϕ0(ξ)| eξ2/16 ≤ C|l1ξ2 + l2ξ|e−ξ
2/16

≤ C
(
ξ2e−( 1

2
−δ)τ + ξ1ξ+ξ−δ ≥eδτ

+ ξ1ξ+ξ−δ ≤eδτ
e−( 1

2
−δ)τ

)
e−ξ

2/16

≤ Ce−( 1
2
−δ)τ

Indeed, when ξ + ξ−δ ≤ eδτ , we use the boundedness of (ξ + ξ2)e−ξ
2/16 on R and when

ξ+ξ−δ ≥ eδτ , we bound ξe−ξ
2/16 by e−ξ

2/32 which decreases at least as e−( 1
2
−δ)τ as ξ ≥ eδτ−ξ−δ .

Then, the inequality Nw ≥ 0 is satisfied if we have the sufficient condition

q̇2 + q2 ≥ Cζe−( 1
2
−δ)τ . (32)
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3. The region
a0

2
≤ ξ ≤ ξ0. Notice that, in this range, the functions li may be estimated

by Ce−( 1
2
−δ)τ . The functions γi may take all values between 0 and 1, and their derivatives

are bounded. Thus we have

Nw = ζ̇ϕ0 − ζ
(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
+q̇1γ1φ1 + q̇2γ2e

−ξ2/16 +

(
M− l1(τ, ξ)∂ξ − l2(τ, ξ)

)
(q1γ1φ1 + q2γ2e

−ξ2/16)

≥ ζ̇ϕ0 − ζ
(
l1(τ, ξ)ϕ′0 + l2(τ, ξ)ϕ0

)
+q̇1γ1φ1 + q̇2γ2e

−ξ2/16 − C(q1 + q2).

To renderNw nonnegative in this range, a sufficient condition is to assume that (31) and (32)
are satisfied, so that q̇1 ≥ −q1, q̇2 ≥ −q2. Moreover, ϕ0 is bounded away from 0 in this range,
so that the final sufficient condition is

ζ̇ ≥ C(q1 + q2 + ζe−( 1
2
−δ)τ ). (33)

4. Proof of Proposition 3.1 for super-solutions. From Proposition 3.2 there exist
positive functions q1 = q2 = q

2
and ζ satisfying the equalities in (31)-(33). Moreover, ζ̇ ≥ 0

and the bounds (23) hold. Define w as in (24). By the three above steps, w is a super-
solution to (21) with ξδ = ξ−δ in the range τ > 0, ξ > 0. This proves Proposition 3.1 for
super-solutions. �

3.3 Sub-solution

Proof of Proposition 3.1 for sub-solutions. We proceed as in the preceding section for
super-solutions. The nonlinear operator N is

Nw = ∂τw +Mw − l1(τ, ξ)∂ξw − l2(τ, ξ)w + e
3τ
2
− ξ

2

8
−(ξ+ξ+δ )e

τ
2w2.

and we want w, defined by (25) (we again drop the superscript −), to satisfy Nw ≤ 0 for
τ possibly large and ξ > 0. On the contrary to the previous section, we may not drop the
nonlinear term as it does not have the right sign. Moreover, the nonlinear term is quadratic,
thus a possible source of trouble. However, let us anticipate that the solution w(τ, ξ,Θ) of
(21) with ξδ = 0 will be dominated by a super-solution w(τ, ξ) of the type (24). We use the
(quite non-optimal) estimate

w ≤ C,

C once again possibly huge. Let us also notice that, for ξ ≥ 0, we have

3τ

2
− ξ2

8
− (ξ + ξ+

δ )e
τ
2 ≤ 3τ

2
− ξ+

δ e
τ
2 =

3τ

2
− eδτ ,

so that, all in all, we have for τ > 0 and ξ ≥ 0,

e
3τ
2
− ξ

2

8
−(ξ+ξ+δ )e

τ
2w2 ≤ Ce−( 1

2
−δ)τw.

The nonlinear term may therefore be included in l2(τ, ξ), and a sufficient condition for
Nw ≤ 0 is

N w ≤ 0,
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with N having the same form as N before:

Nw = ∂τw +Mw − l1(τ, ξ)∂ξw − l2(τ, ξ)w,

but with l2 now incorporating an additional Ce−( 1
2
−δ)τ . From then on, the computations

proceed in a similar fashion as before, yielding the following conditions for qi and ζ:

q̇1 + q1 ≥ Cζe−( 1
2
−δ)τ , for the region 0 ≤ ξ ≤ a0

2
.

q̇2 + q2 ≥ Cζe−( 1
2
−δ)τ , for the region ξ ≥ ξ0.

ζ̇ ≤ −C
(
q1 + q2 + ζe−( 1

2
−δ)τ), for the region

a0

2
≤ ξ ≤ ξ0.

From Proposition 3.3, there exist positive functions q1 = q2 = q
2

and ζ solutions to the three

equations above in some interval (τ1,+∞) only depending on C. Moreover, ζ̇ ≤ 0 and the
right handside of (23) holds. Then, the function w defined by (25) is a sub-solution to (21)
with ξδ = ξ+

δ in the range τ > τ1, ξ > 0. This proves Proposition 3.1 for sub-solutions. �

3.4 A sharp version of Proposition 3.1 with small parameters

Pick ε ∈ (0, 1], τ̄ ≥ 0 and consider the solution w(τ, ξ) of

∂τw +Mw − l1(τ, ξ)∂ξw − l2(τ, ξ)w = f(τ, ξ) (τ ≥ τ̄ , ξ > 0)
w(τ, 0) = exp(−eδτ ) (τ ≥ τ̄)

|w(τ̄ , ξ)− εϕ0(ξ)| ≤ εe−ξ
2/16.

(34)

with

|f(τ, ξ)| ≤ Ce−τ

ε2
e−ξ

2/16. (35)

Notice the inhomogeneous term f(τ, ξ) that was not present in the equation covered by
Proposition 3.1. This inhomogeneous term is, however, harmless, as its treatment will not
require any new idea. The estimate on w(τ, ξ) is the following

Proposition 3.4 For every ε > 0, there exists τ̄ε > 0 such that, for all τ ≥ τ̄ε, and for
some universal C > 0 and δ ∈ (0, 1

4
), we have

|w(τ, ξ)| ≤ Cεe−ξ
2/16(ξ + e−( 1

2
−δ)(τ−τ̄ε)).

Proof. In view of (35), we choose

Ce−τ̄ε

ε2
= ε, that is, τ̄ε = 3ln

1

ε
+O(1).

We make a translation in time. Set τ ′ = τ − τ̄ε, with τ ′ ≥ 0 and W (τ ′, ξ) = w(τ ′ + τ̄ε, ξ) =
w(τ, ξ). Given the assumption on f , we have W (τ ′, ξ) ≤ W̃ (τ ′, ξ) with

∂τW̃ +MW̃ − l1(τ ′ + τ̄ε, ξ)∂ξW̃ − l2(τ ′ + τ̄ε, ξ)W̃ = εe−τ
′−ξ2/16 (τ ′ ≥ 0, ξ > 0)

W̃ (τ ′, 0) = exp
(
− eδτ

′

Cδε3δ

)
W̃ (0, ξ) = εϕ0(ξ) + εe−ξ

2/16

(36)
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Moreover, due to (19), the functions li satisfy for τ ′ ≥ 0 and ξ ≥ 0:

|l1(τ ′ + τ̄ε, ξ)| ≤ Cε3( 1
2
−δ)e−( 1

2
−δ)τ ′

|l2(τ ′ + τ̄ε, ξ)| ≤ Cε3( 1
2
−δ)ξe−( 1

2
−δ)τ ′ + 1

ξ≥ eδτ
′

ε3δ
+ε3(

1
2−δ)e−( 12−δ)τ

′

+Cε3( 1
2
−δ)e−( 1

2
−δ)τ ′1

ξ≤ eδτ
′

ε3δ
+Cε3(

1
2−δ)e−( 12−δ)τ

′

the constant C only depending on N and δ. A super-solution to (36) is then sought for
under the form

w(τ ′, ξ) = ζ(τ ′)ϕ0(ξ) + q1(τ ′)φ1(ξ)γ1(ξ) + q2(τ ′)γ2(ξ)e−ξ
2/16.

The equations for the qi and ζ are

q̇1 + q1 ≥ C(ζ + ε)e−( 1
2
−δ)τ ′ , for the region 0 ≤ ξ ≤ a0

2
.

q̇2 + q2 ≥ C(ζ + ε)e−( 1
2
−δ)τ ′ , for the region ξ ≥ ξ0.

ζ̇ = C
(
q1 + q2 + ζe−( 1

2
−δ)τ ′), for the region

a0

2
≤ ξ ≤ ξ0,

a possible admissible set of initial data being qi(0) = ε, ζ(0) = ε. Application of Proposition
3.2 yields the desired upper bound for W and hence for w. We proceed in the same way for
a sub-solution leads to Proposition 3.4: a sub-solution is sought for under the form

w(τ ′, ξ) = ζ(τ ′)ϕ0(ξ)− q1(τ ′)φ1(ξ)γ1(ξ)− q2(τ ′)γ2(ξ)e−ξ
2/16.

with, this time, ζ̇ < 0. The equations for the qi and ζ , as well as their initial data, are the
same as above, except in the equation for ζ, where the right handside comes with a minus
sign. �

4 Convergence

As announced in Section 2, this section is divided in two parts: in the first subsection,
we prove Theorem 2.1, namely, what happens for r ∼

√
t. We use the barriers constructed

before, and the fact that the solutions of the limiting problem are quite simple. In the second
subsection, we derive sharper information at the border of the domain, that is, r ∼ tδ. We
use this to control the behaviour of the solution for finite r, thus proving Theorem 1.1.

4.1 Convergence to an angle-depending self-similar solution

We want to prove theorem 2.1. Let ŵ be the solution of (12) with compactly initial datum
ŵ0. In particular, in agreement with (14) we take ξδ(τ) = 0. The main effort in this section is
to derive the compactness of the trajectories (ŵ(T + τ, ξ,Θ))T>0 in a weighted L∞ norm. As
the asymptotic problem will simply be the heat equation in the variables (τ, ξ), convergence
will follow. Let us first translate the radial barriers into an effective control of the solution.

Proposition 4.1 (1. Control of ŵ from above and from the back of the front)
There is a pair of positive functions (q+(τ), ζ+(τ)) such that ζ+ is bounded and bounded away
from 0 by constants that depend only on the initial datum and the constants appearing in the
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equation, whereas there is δ ∈ (0, 1
4
) such that q+(τ) = O(e−( 1

2
−δ)τ ) as τ → +∞. Moreover,

for τ ≥ 0, ξ ≥ ξ−δ (τ) and Θ ∈ SN−1, we have

ŵ(τ, ξ,Θ) ≤ ζ+(τ)φ0(ξ − ξ−δ (τ)) + q+(τ)

(
(1[0,a0/2]φ1)(ξ − ξ−δ (τ)) + e−

(ξ−ξ−
δ

)2

16

)
e−

(ξ−ξ−
δ

)2

8 (37)

(2. Control of ŵ from below and from the head of the front.)
There is a pair of positive functions (q−(τ), ζ−(τ)) that satisfy the same estimates as for q+

and ζ+ in item 1 above, and such that, for ξ ≥ ξ+
δ (τ), τ ≥ τ1 and Θ ∈ SN−1, we have

ŵ(τ, ξ,Θ) ≥ ζ−(τ)φ0(ξ − ξ+
δ (τ))− q−(τ)

(
(1[0,a0/2]φ1)(ξ − ξ+

δ (τ)) + e−
(ξ−ξ+

δ
)2

16

)
e−

(ξ−ξ+
δ

)2

8 (38)

Proof. Let us prove Point 1. Let ŵ be the solution of (12) with compactly initial datum
ŵ0. Perform transformations 6. and 7. in section 2 with ξδ = ξ−δ . Then, the new function
w defined by (14) and (16) satifies equation (17) with ξδ = ξ−δ and initial datum w0 defined
in (18). This is the same equation as (21), up to the Laplace-Beltrami term. Moreover,
w0(ξ,Θ) is still compactly supported and the upper bound (13) yields

w(τ, 0,Θ) ≤ exp(−eδτ − τ

2
), (39)

that is, the Dirichlet condition is doubly exponentially small.

Applying Proposition 3.1, there exist three functions q+
1 , q+

2 and ζ+ such that w defined
by (24) is a super-solution to (21) and therefore to (17) with ξδ = ξ−δ in the range τ > 0,
ξ > 0 and Θ ∈ SN−1.

On one hand, if we choose q+
1 (0), q+

2 (0) and ζ+(0) large enough, we have w(0, ξ) ≥
w0(ξ,Θ) for all ξ ≥ 0 and Θ ∈ SN−1 because w0 is compactly supported. On the other hand,
we have from (23) that q+

1 (τ) ≥ e−τ

C
. Thus, from (39), we have, at the expense of choosing

C even smaller:
w(τ, 0,Θ) ≤ w(τ, 0).

The comparison principle then yields w ≤ w for τ ≥ 0, ξ ≥ 0 and Θ ∈ SN−1. Reverting to
the original function ŵ, we infer that the desired upper estimate holds with q+ = q+

1 + q+
2 ,

ζ+ = ζ+, which, by Proposition 3.1, satisfy the properties stated in point 1. of Proposition
4.1

Let us prove Point 2. Let ŵ be the solution of (12) with compactly initial datum
ŵ0. Perform transformations 6. and 7. in section 2 with ξδ = ξ+

δ . Then, the new function
w defined by (14) and (16) satifies equation (17) with ξδ = ξ+

δ and initial datum w0 defined
in (18). Applying Proposition 3.1, there exist three functions q−1 , q−2 and ζ− such that w
defined by (25) is a sub-solution to (21) and therefore to (17) with ξδ = ξ+

δ in the range
τ > τ1, ξ > 0 and Θ ∈ SN−1.

At τ = τ1, we have that w < 0 for ξ sufficiently large and then, up to multiplying it
by a small positive constant (which preserves the inequality N w ≤ 0 because the operator
N is linear), we can fit it below the positive solution w for all ξ ≥ 0. Moreover, at ξ = 0,
w = 0 < w. We can therefore apply the comparison principle, concluding the proof of point
2. of Proposition 4.1. �

Proposition 4.1 has the following corollary.
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Corollary 4.2 For τ ≥ 1, ξ > 0 and Θ ∈ SN−1, we have

|∂τ ŵ(τ, ξ,Θ)|+ |∂ξŵ(τ, ξ,Θ)| ≤ Ce−3ξ2/16.

Moreover, there are two constants 0 < k ≤ k, and k1 > 0 such that, for τ ≥ 1, ξ ≤ 1 and
Θ ∈ SN−1, we have

k(ξ − k1e
−( 1

2
−δ)τ ) ≤ ŵ(τ, ξ,Θ) ≤ k(ξ + e−( 1

2
−δ)τ ). (40)

Proof. Parabolic regularity yields the boundedness of ∂τ ŵ, ∂ξŵ and ∂ξξŵ in terms of the
supremum of ŵ on the product of (τ−1, τ+1)×(ξ−1, ξ+1)×SN−1. Of course the diffusion
in Θ is degenerate, but it suffices to rescale Θ by the square root of the diffusion at the point
under consideration, and drop the useless estimate in Θ. Inequality (40) just comes from
the analysis of w and w in the vicinity of ξ = 0. �

As far as the variable Θ is concerned, we need an additional argument.

Proposition 4.3 There is C > 0, depending only on the data, such that, for τ > 0, ξ ≥ 0
and Θ ∈ SN−1, we have

|∇Θŵ(τ, ξ,Θ)| ≤ Ce−3ξ2/16.

Proof. Let ŵ be the solution of (12) with compactly initial datum ŵ0. Perform transfor-
mations 6. and 7. in Section 2 with ξδ = ξ−δ . Then, the new function w defined by (14) and
(16) satifies equation (17) with ξδ = ξ−δ and initial datum w0 defined in (18).

Let Θi be any coordinate on the unit sphere, and

wi(τ, ξ,Θ) = ∂Θiw(τ, ξ,Θ).

As there is no dependence with respect to Θ in the coefficients of (17), the equation for wi
is very similar to that for w:

∂τwi +Mwi = l1(τ, ξ)∂ξwi + l2(τ, ξ)wi

+
∆Θwi(

ξ + ξ−δ + 2e
τ
2 − kτe− τ2

)2 − 2e
3τ
2
− ξ

2

8
−(ξ+ξ−δ )e

τ
2wwi

wi(0, ξ,Θ) = ∂Θiw0(ξ,Θ) compactly supported.

Multiplying the equation for wi by the sign of wi and using Kato’s inequality, as well as
w ≥ 0, we find out that |wi| solves the inequation

∂τ |wi|+M|wi| − l1(τ, ξ)∂ξ|wi| − l2(τ, ξ)|wi| −
∆Θ|wi|(

ξ + ξ−δ + 2e
τ
2 − kτe− τ2

)2 ≤ 0.

If now wi,0(ξ) is the supremum of |wi(0, ξ, .)| over the unit sphere, then we have |wi(τ, ξ,Θ)| ≤
wi(τ, ξ) with {

∂τwi +Mwi = l1(τ, ξ)∂ξwi + l2(τ, ξ)wi
wi(0, ξ) = wi,0(ξ) compactly supported.

Moreover, parabolic regularity yields, for the solution u(t, r,Θ) of (8):

|∇Θu(t,−tδ,Θ)| ≤ C(1 + t);

this translates into
|∇Θv(t,−tδ,Θ)| ≤ C(1 + t)e−t

δ

,

thus |wi(τ, 0,Θ)| ≤ Ce
τ
2
−eδτ . Hence, wi may be controlled by a super-solution similar to that

constructed in Section 3.2, which proves the proposition. �
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Remark 4.4 The referee pointed out to us that an argument of the same sort could suc-
cessively control the second derivatives, then the third derivatives, and so on. It may be so,
but this is not a completely trivial fact which, in any case, requires additional arguments.
Indeed, using the notations of the above proof, let wii := ∂ΘiΘiw be the pure second angular
derivative of w in the direction ei. Let wi the ith component of ∇Θw. The equation for wii
is

∂τwii +Mwii−
∆Θwii(

ξ + ξ−δ + 2e
τ
2 − kτe− τ2

)2 − l1(τ, ξ)∂ξwii − l2(τ, ξ)wii

= −2e
3τ
2
− ξ

2

8
−(ξ+ξ−δ )e

τ
2 (wwii + w2

i ).

The trouble is that the Kato’s inequality process will not work here, as the term

e
3τ
2
−(ξ+ξ−δ )e

τ
2− ξ

2

8 sgn(wii)w
2
i

will not have a definite sign, and it may be huge in the region ξ ∼ e−τ/2. The best that can
be expected at this stage, with no other ingredients, is a bound from above for wii, but it is
not clear to us how to use it.

In order to bound wii, one can probably try to use the fact that the term is large only on
a very small support - as in [21] - to infer the boundedness of wii, but it would add quite a
few technicalities. Therefore we decide to limit ourselves to the Lipschitz regularity of w in
Θ, which is enough for the sequel. This will force us to use arguments that are a little more
abstract, but much less technical. In any case we thank the referee for giving us the occasion
to clarify this issue.

Proof of Theorem 2.1

Let ŵ be the solution of (12) with compactly initial datum ŵ0. Perform transformations
6. and 7. in Section 2 with ξδ = 0. Then, the new function w defined by (14) and (16)
satifies equation (17) with ξδ = 0 and initial datum w0 defined in (18).

Propositions 4.2 and 4.3 yield the compactness of the trajectory (w(T + ., ., .))T>0 in the
L∞τ,ξ,Θ norm, weighted by eξ

2/16. Therefore, there is a function w∞ and a sequence (Tn)n
going to infinity such that

lim
n→+∞

eξ
2/16|w(Tn + τ, ξ,Θ)− w∞(τ, ξ,Θ)| = 0, (41)

the limit being locally uniform in τ , and uniform in (ξ,Θ). Moreover, w∞ is Lipschitz-
continuous in all its variables, and (40) entails w∞(τ, 0,Θ) = 0.

On the other hand, for any smooth function ϕ over the unit sphere, consider the integral

wϕ(τ, ξ) =

∫
SN−1

w(τ, ξ,Θ)ϕ(Θ)dΘ.

The equation for wϕ is this time:
∂τwϕ +Mwϕ = l1(τ, ξ)∂ξwϕ + l2(τ, ξ)wϕ − e

3τ
2
− ξ

2

8
−ξe

τ
2

∫
SN−1

w2ϕdΘ

wϕ(0, ξ) =

∫
SN−1

w0(ξ,Θ)ϕ(Θ)dΘ compactly supported.

Consider first ϕ ≥ 0 on SN−1. The integral term

∫
SN−1

w2ϕdΘ is nonnegative, so the same

type of super-solution as in Section 3.2 may be constructed for wϕ, just by discarding this
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term. Moreover, the same type of subsolution for wϕ can also be constructed, as we may

simply estimate wϕ by a constant, and as the exponential factor e
3τ
2
−ξe

τ
2 is exponentially

decaying in τ , as soon as ξ is just a little larger than e−τ/2. This yields the compactness of wϕ
in the weighted L∞ norm, but wϕ additionally satisfies a standard parabolic equation in the
(τ, ξ) variables. Therefore, parabolic estimates hold, and a subsequence of (wϕ(T + ., .))T>0

converges, locally in τ , and in the weighted L∞ norm in ξ, to a solution w∞ϕ of{
∂τw

∞
ϕ +Mw∞ϕ = 0, τ ∈ R , ξ ≥ 0
w∞ϕ (τ, 0) = 0.

(42)

The same argument as in [20], Lemma 5.1, yields the convergence of the full trajectory
(wϕ(T + ., .))T>0 to a steady state solution of (42), namely, a multiple of ϕ0. This multiple
has to be positive, because of Proposition 4.1, Point 2. We name it αϕϕ0. If now the function
ϕ is allowed to change sign, the result persists because ϕ may be decomposed into ϕ+−ϕ−.

The functional ϕ 7→ αϕ is a nonnegative functional acting on the set of all continuous
functions of the unit sphere. On the other hand, (41) yields, for all τ ∈ R:

αϕϕ0(ξ) =

∫
SN−1

w∞(τ, ξ,Θ)ϕ(Θ)dΘ.

This implies the following cascade of facts. First, the function w∞ does not depend on τ ,
we call it w∞(ξ,Θ). Second, the functional ϕ 7→ αϕ is linear, so, combined with positivity,
it is a measure that we call µ. Third, we have, for all ξ > 0:∫

SN−1

ϕ(Θ)dµ(Θ)ϕ0(ξ) =

∫
SN−1

w∞(ξ,Θ)ϕ(Θ)dΘ.

This entails that
w∞(ξ,Θ)

ϕ0(ξ)
does not depend on ξ, call it α∞(Θ). So, we have∫

SN−1

ϕ(Θ)dµ(Θ) =

∫
SN−1

α∞(Θ)ϕ(Θ)dΘ.

so that µ is absolutely continuous with respect to the Lebesgue measure, dµ(Θ) = α∞(Θ)dΘ.
Because w∞ is Lipschitz in Θ, this implies that α∞ is Lipschitz by its above definition.

As a conclusion, we obtained the convergence of w(τ, ξ,Θ) as τ goes to infinity towards
α∞(Θ)ϕ0(ξ) in the L∞ξ,Θ norm, weighted by eξ

2/16. Reverting to the original function ŵ, we
get the desired convergence. �

4.2 Convergence to the shifted wave

The challenge is now to transmit the information given by Theorem 2.1 from the diffusive
zone to the area of bounded x. To achieve that goal, we need to estimate the solution
precisely in the transition zone, namley, x ∼ tδ, i.e. to understand the behaviour of the
solution ŵ(τ, ξ,Θ) of (12) in the area ξ ∼ e−( 1

2
−δ)τ .

We would like to write an equation for ŵ(τ, ξ,Θ) − α∞(Θ)ϕ0(ξ) and infer from the
analysis of the equation that this difference converges to 0 as τ → +∞. The trouble is that
we deliberately stopped investigating the regularity of α∞, and that a term of the form

φ0(ξ)∆Θα
∞(

ξ + 2e
τ
2 − kτe− τ2

)2
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will be present in the equation for the difference, something that is not so easy to study as
α∞ is only known to be Lipschitz. So, we use a regularisation. If (ρε)ε>0 is an approximation
of the identity on the unit sphere, we set

α∞ε (Θ) = (ρε ∗ α∞)(Θ).

Because α∞ is Lipschitz and positive, we have α∞ε − Cε ≤ α∞ ≤ α∞ε + Cε. We start with
the following proposition.

Proposition 4.5 Let ŵ be the solution of (12) with compactly initial datum ŵ0. Then, for
every ε > 0, there are τε > 0 (possibly depending also on δ) and ηε > 1 such that, for all
τ ≥ τε and ξ ∈ [ξ−δ (τ), ηε] we have:

(α∞ε (Θ)− Cε) (ξ − Ce−( 1
2
−δ)(τ−τε)) ≤ ŵ(τ, ξ,Θ) ≤ (α∞ε (Θ) + Cε) (ξ + Ce−( 1

2
−δ)(τ−τε)). (43)

Proof. We shall prove the upper estimate. For every ε ∈ (0, 1], there is, from Theorem 2.1,
a time τε > 0 such that

(α∞ε (Θ)− Cε)φ0(ξ)− εe−3ξ2/16 ≤ ŵ(τε, ξ,Θ) ≤ (α∞ε (Θ) + Cε)φ0(ξ) + εe−3ξ2/16.

Perform transformations 6. and 7. in Section 2 with ξδ = ξ−δ . Then, the new function w
defined by (14) and (16) satifies equation (17) with ξδ = ξ−δ and initial datum w0 defined in
(18). Then,

(α∞ε (Θ)− Cε)ϕ0(ξ)− εe−ξ2/16 ≤ w(τε, ξ,Θ) ≤ (α∞ε (Θ) + Cε)ϕ0(ξ) + εe−ξ
2/16.

Thus,
w(τ, ξ,Θ) ≤ w+(τ, ξ,Θ)

where

∂τw
+ +Mw+ = l1(τ, ξ)∂ξw

+ + l2(τ, ξ)w+ +
∆Θw

+(
ξ + 2e

τ
2 − kτe− τ2

)2 ,

for ξ ≥ 0, θ ∈ SN−1 and τ ≥ τε, with datum

w+(τε, ξ,Θ) = (α∞ε (Θ) + Cε)ϕ0(ξ) + εe−ξ
2/16

and Dirichlet condition
w+(τ, 0, θ) = O(e−e

δτ

).

Consider now the difference

z(τ, ξ,Θ) = w+(τ, ξ,Θ)− (α∞ε (Θ) + Cε)ϕ0(ξ).

Then z(τ, ξ,Θ) solves an equation of the type

∂τz +Mz = l1(τ, ξ)∂ξz + l2(τ, ξ)z +
∆Θz(

ξ + 2e
τ
2 − kτe− τ2

)2 + f(τ, ξ,Θ),

with the force terme being estimated by

|f(τ, ξ,Θ)| ≤ C
e−ξ

2/16e−τ

ε2
.
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Moreover, the initial datum is z(τε, ξ,Θ) = εe−ξ
2/16 and the Dirichlet condition z(τ, 0,Θ) =

O(e−e
δτ

). The 1/ε2 factor comes from the Laplacian of α∞ε , that is certainly no more than
a multiple of 1/ε2. By Kato’s inequality, we have |z(τ, ξ,Θ)| ≤ wε(τ, ξ), with

∂τ w̄ε +Mw̄ε = l1(τ, ξ)∂ξw̄ε + l2(τ, ξ)w̄ε + C
e−τe−ξ

2/16

ε2

Application of Proposition 3.4 yields the right handside of (43) since ξ is bounded.

As for the left handside, we work with a sub-solution defined for ξδ = ξ+
δ (τ), and replace

the nonlinear term w2 by a constant, due to the boundedness of w. The proof follows the
same pattern as above. �
Proof of Theorem 1.1. We revert to the (t, r,Θ) variables, and to the function v(t, r,Θ)
defined in Section 2. Recall that the equation for v is

∂tv = ∂rrv +

(
N − 1

r + 2t− klnt
− k

t

)
(∂rv − v) +

∆Θv

(r + 2t− klnt)2
− e−rv2. (44)

Also recall that the initial unknown u(t, r,Θ) in the moving frame satisfies u(t, r,Θ) =
e−rv(t, r,Θ). We apply inequalities (43) in the following range of parameters: we first pick

ε > 0. Then, fix δ0 ∈ (0, 1/100) and set δ = δ0
2

. Consider r = tδ0 , so that ξ = e−( 1
2
−δ0)τ .

There is tε = eτε > 0 such that, for t ≥ tε, Θ ∈ SN−1, we have

(α∞ε (Θ)−Cε)(tδ0 −C
√
tε

1−δ0
tδ0/2) ≤ v(t, tδ0 ,Θ) ≤ (α∞ε (Θ) +Cε)(tδ0 +C

√
tε

1−δ0
tδ0/2), (45)

We set
ψ±ε (r,Θ) = (α∞ε (Θ)± Cε)(r ± C

√
tε

1−δ0√
r),

then, inequation (45) becomes for t ≥ tε, Θ ∈ SN−1,

ψ−ε (tδ0 ,Θ) ≤ v(t, tδ0 ,Θ) ≤ ψ+
ε (tδ0 ,Θ).

Taking ε even smaller and tε larger, we may assume that those functions are nonnegative.
In the similar spirit as [23] Section 3, we define the upper and lower shifts as

∀t ≥ tε , Θ ∈ SN−1 , Uc∗(r + s±ε (t,Θ))

∣∣∣∣
r=tδ0

= ψ±ε (r,Θ)e−r
∣∣∣∣
r=tδ0

.

Note that s±ε are both well-defined. Moreover, recall the equivalent

Uc∗(r) = (r +K)e−r +Or→+∞(e−(1+γ0)r);

the implicit functions theorem yields, therefore for t ≥ tε and Θ ∈ SN−1,

s±ε (t,Θ) = − ln(α∞ε (θ)± Cε) +O(
1

tδ0
), ∂ts

±
ε (t,Θ) = O(

1

t1+δ0
).

Moreover, the L∞ norm of ∆Θs
±
ε is bounded by a constant that may blow up as ε→ 0. Let

us define v±ε as the solutions of (44) for t ≥ tε, r ∈ (−tδ0 , tδ0), Θ ∈ SN−1, that have v(tε, r,Θ)
as initial datum at t = tε, and that satisfy the Dirichlet conditions:

v±ε (t, tδ0 ,Θ) = ψ±ε (tδ0 ,Θ), v+
ε (t,−tδ0 ,Θ) = e−t

δ0 , v−ε (t,−tδ0 ,Θ) = 0,
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for t ≥ tε, r ∈ (−tδ0 , tδ0), Θ ∈ SN−1, we have

v−ε (t, r,Θ) ≤ v(t, r,Θ) ≤ v+
ε (t, r,Θ).

The last step of the proof is to prove that the functions v±ε (t, r,Θ) converge to erUc∗(r+s±ε ),
uniformly in r and Θ in their domains. Because ε is arbitrary, this will imply the convergence
of v. We set

V ±ε (t, r,Θ) = v±ε (t, r,Θ)− erUc∗(r + s±ε );

we have

∂tV
±
ε = ∂rrV

±
ε +

(
N − 1

r + 2t− klnt
− k

t

)(
∂rV

±
ε − V ±ε

)
+

∆ΘV
±
ε

(r + 2t− klnt)2
− (e−rv±ε + Uc∗)V

±
ε +O(

1

t1−δ0
).

We use one last time the process consisting in multiplying the equation by the sign of V ±ε ,
then using Kato’s inequality and the positivity of Uc∗ + e−rv±ε . This yields for t ≥ tε, r ∈
(−tδ0 , tδ0), Θ ∈ SN−1, |V ±ε (t, r,Θ)| ≤ V

±
ε (t, r), where V

±
ε satifies for t ≥ tε and r ∈ (−tδ0 , tδ0)

∂tV
±
ε = ∂rrV

±
ε + (

N − 1

r + 2t− klnt
− k

t
)
(
∂rV

±
ε − V

±
ε

)
+O(

1

t1−δ0
)

V
±
ε (t,−tδ0) = e−t

δ0 , V
±
ε (t, tδ0) = 0 V

±
ε (tε, r) = Cε.

We infer that both functions V
±
ε (t, .) converge to 0 as t → +∞. The reason is that the

equation has lower order coefficients and right handside of order less than 1
t
, whereas the

first eigenvalue of the Dirichlet Laplacian on (−tδ0 , tδ0) is of order t−2δ0 . This heuristics in
mind, we may find a barrier: the function

z̄(t, r) =
A

tδ0
cos

(
r

t2δ0

)
is a super-solution to the equation for V

±
ε , for t larger than some (possibly quite large)

tε > 0. It is also larger than the values of V
±
ε at the boundary {−tδ0 , tδ0}, and, for A large

enough, can be put above V
±
ε at time tε. This concludes the proof of theorem 1.1 with

s∞(Θ) = − ln(α∞(Θ)) which is at least Lipschitz. �

5 Discussion

Let us first mention that our result remains valid for more general nonlinearities. For an
equation of the form

∂tu = ∆u+ f(u), t > 0, x ∈ RN ,

it suffices to assume that f is concave and positive on (0, 1), with f(0) = f(1) = 0. Thus
f ′(0) > 0 and the bottom speed is given by c∗ = 2

√
f ′(0). Our result becomes the existence

of a Lipschitz function s∞ defined on the unit sphere such that

u(t, x) = Uc∗

(
|x|+ c∗t−

N + 2

c∗
lnt+ s∞(

x

|x|
)

)
+ot→+∞(1).
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uniformly in x ∈ RN . In the course of the proof, the nonlinear term is no more u2 but
g(u) = f ′(0)u − f(u), which is positive and nondecreasing on (0, 1). It is not clear to us
whether the result would subsist by merely assuming f(u) ≤ f ′(0)u. What would probably
be true is a statement of the form

u(t, x) = Uc∗

(
|x|+ c∗t−

N + 2

c∗
lnt+ s∞(t,

x

|x|
)

)
+ot→+∞(1),

with s∞(t,Θ) = O(1). Let us also mention that we could have given a slightly different
version of Theorem 1.1 by stating that, for every direction e ∈ SN−1, then

{u(t, x) = λ} ∩ {x = re, r > 0} ⊂ {r = c∗t−
N + 2

c∗
lnt− s∞(e) + U−1

c∗ (λ) + ot→+∞(1)}.

The analysis of the solution on the diffusive zone would have been slightly simpler, in the
sense that we would not have had to handle an asymptotically degenerate diffusion in e. On
the other hand, recovering the convergence at the O(1) spatial scale would have been more
delicate. Additionally, this would not have proved the Lipschitz regularity of s in e. This
last approach is, sometimes, better tailored to the geometric situation, where the front has
a preferered direction of propagation. This is the case in the forthcoming paper [6], where
the Fisher-KPP invasion occurs orthogonally to a line of fast diffusion.

We may adapt the preceding ideas to asymptotically homogeneous models of the form

∂tu = ∆u+ µ(x)u− u2, (t > 0, x ∈ RN) (46)

where the function ν(x) := µ(x)− 1 satisfies

ν(x) =
λ

|x|α
+O|x|→+∞(

1

|x|α+δ
), |∇ν(x)| = αλ

|x|1+α
+O|x|→+∞(

1

|x|α+1+δ
).

Theorem 1.1 becomes

thm 5.1 Let u0 satisfy assumption (3). There is a Lipschitz function s∞, defined on the
unit sphere of RN , such that the solution u of (46) emanating from u0 satisfies

u(t, x) = Uc∗

(
|x| − c∗t+

N + 2

c∗
lnt+ s∞(

x

|x|
)

)
+ot→+∞(1),

if α > 1, and

u(t, x) = Uc∗

(
|x| − c∗t+

N + 2− λ
c∗

lnt+ s∞(
x

|x|
)

)
+ot→+∞(1),

if α = 1.

The shift N+2−λ
c∗

has already been identified by Ducrot [8], up to O(1) terms. His assumptions
are more general than ours, in the sense that he neither requires the gradient estimate on
ν, nor the quantitative estimate for ν(x) − λ

|x|α . However, our result goes one step further.

Theorem 5.1 would probably hold without the error estimate on ν(x), one would simply
need to be more careful in the construction of sub and super solutions. On the other hand,
we have not tried to push the limits of validity of Theorem 5.1, and this might well be quite
an interesting question.
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The proof of Theorem 5.1 goes exactly along the same lines as that of Theorem 1.1 for
α > 1, the term ν(x) being thrown into the perturbative terms li(τ, ξ). Of course they now
depend on Θ, but in a smooth and exponentially small in time fashion, so they do not require
any additional arguments. When α = 1, the same algebraic steps as in Section 2 reveal the
presence of a nonperturbative term in equation (9). More precisely, this equation becomes

∂tv = ∂rrv + (
N − 1

r + c∗t− klnt
− k

t
)∂rv − (

N − 1

r + c∗t− klnt
− k

t
− λ

r + c∗t− k ln t
)v

+

(
ν(r + c∗t− klnt,Θ)− λ

r + c∗t− l ln t

)
v +

∆Θv

(r + c∗t− klnt)2
− e−rv2.

(47)

To identify k we simply have to make sure that equation (47) behaves like the Dirichlet heat
equation, perturbed by higher order terms; thus the formula (10) becomes

N − 1

c∗
− λ

c∗
− k = −3

2
,

hence the shift. The remaining terms will be, in the self-similar variables, exponentially
decreasing terms. The method used to prove a gradient estimate in Θ for v will then work
exactly as in Proposition 4.3, thanks to the estimate on |∇ν|.

We finally mention that we leave open the question of higher order expansion of the shift,
which is also quite an interesting question.

References

[1] D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusion arising in population ge-
netics, Adv. in Math. 30 (1978), 33–76.

[2] H. Berestycki, F. Hamel, Reaction-diffusion equations and propagation phenomena. Applied Math-
ematical Sciences, 2014.

[3] H. Berestycki, The inluence of advection on the propagation of fronts in reaction-diffusion equations,
in: Nonlinear PDE’s in Condensed Matter and Reactive Flows, eds. H. Berestycki, Y. Pomeau, NATO
Science Series C, Mathematical and Physical Sciences, Kluwer Acad. Publ., Dordrecht, NL, 569 (2002).

[4] J. Berestycki, E. Brunet, J. Derrida, A new approach to computing the asymptotics of the
position of Fisher-KPP fronts, ArXiv preprint https://arxiv.org/pdf/1802.03262.pdf.

[5] M.D. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer.
Math. Soc. 44 (1983).

[6] A.-C. Chalmin, J.-M. Roquejoffre, in preparation.

[7] Y. Du, F. Quiros, M. Zhou, Logarithmic corrections in Fisher-KPP type Porous Medium Equations,
arXiv: 1806.02022.

[8] A. Ducrot, On the large time behaviour of the multi-dimensional Fisher-KPP equation with compactly
supported initial data, Nonlinearity 28 (2015), 1043–1076.

[9] U. Ebert, W. Van Saarloos, Front propagation into unstable states: universal algebraic convergence
towards uniformly translating pulled fronts, Phys. D 146 (2000), 1–99.

[10] L.C. Evans, P.E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic
equations, Indiana Univ. Math. J. 38 (1989), 141–172.

[11] P.C. Fife, B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front
solutions, Arch. Ration. Mech. Anal. 65 (1977), 335–361.
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